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Abstract: A co-sputtering process for the deposition of Fey gGag 2B alloy magnetostrictive thin films
is studied in this paper. The soft magnetic performance of FeygGag B thin films is modulated by
the direct-current (DC) sputtering power of an FeGa target and the radio-frequency (RF) sputtering
power of a B target. Characterization results show that the prepared Fej gGag B films are amorphous
with uniform thickness and low coercivity. With increasing FeGa DC sputtering power, coercivity
raises, resulting from the enhancement of magnetism and grain growth. On the other hand, when
the RF sputtering power of the B target increases, the coercivity decreases first and then increases
because of the conversion of the films from a crystalline to an amorphous state. The lowest coercivity
of 7.51 Oe is finally obtained with the sputtering power of 20 W for the FeGa target and 60 W for
the B target. Potentially, this optimization provides a simple way for improving the magnetoelectric
coefficient of magnetoelectric composite materials and the sensitivity of magnetoelectric sensors.

Keywords: co-sputtering; magnetostrictive thin films; soft magnetic performance; coercivity; magne-

toelectric sensors

1. Introduction

During the past decades, it has been discovered that the magnetoelectric coefficient
of composite materials is much higher than that of single-phase materials. Moreover,
these materials can directly convert magnetic signals into electrical signals even under
passive conditions. Therefore, magnetoelectric composite materials can be used as sensitive
elements in magnetoelectric sensors and are widely applied in the fields of microwave
communication [1-3], band-pass filters [4—6], phase shifters [7-9], etc.

Magnetoelectric composite materials are multi-phase composite materials that com-
bine magnetostrictive layers and piezoelectric layers. In order to obtain a high magneto-
electric coefficient, it is necessary to choose materials with greater magnetostrictive coef-
ficients. FeGaB alloy is a type of material with a high magnetostrictive coefficient, low
saturation magnetic field, and excellent soft magnetic performance. By optimizing the
deposition process, the soft magnetic and magnetostrictive performance of FeGaB films
can be improved, thereby enhancing the sensitivity of magnetoelectric sensors.

Currently, methods for preparing FeGaB films include pulsed laser deposition
(PLD) [10-12], the sol-gel method [13-15], and magnetron sputtering deposition [16-18].
Films prepared by PLD technology exhibit controllable thickness and smooth surface mor-
phology, but the coating area is small and the deposition rate is low. The sol-gel method
allows for easy and uniform doping of trace elements at the molecular level, but the entire
sol-gel process takes a long time and the gel contains a large number of micropores, which
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will release a lot of gas and organic compounds during the drying process, leading to a
shrinkage of the composite films. Magnetron sputtering deposition has the advantages
of a large coating area, slow heating of the substrate, good adhesion, and low cost, so
is an excellent choice for the preparation of magnetostrictive materials. There are two
approaches employing magnetron sputtering using (i) a single cathode composed of FeGaB
alloy or (ii) co-sputtering [19,20] with two FeGa and B cathodes. The first method requires
high accuracy for the element composition and uniformity of the target, and it is difficult
to control the element composition by sputtering parameters, resulting in low target uti-
lization. By controlling the sputtering parameters of different targets, the co-sputtering
process can regulate the film composition, making the films more uniform and optimizing
the soft magnetic performance. Meanwhile, co-sputtering has higher target utilization,
better flexibility, and operability.

In this study, a co-sputtering process with FeGa alloy and B targets was carried out for
the deposition of FeGaB magnetostrictive films, and the sputtering power was optimized
for the improvement of soft magnetic performance. The composition, surface morphol-
ogy, and coercivity of the Fep gGag 7B films under different sputtering process parameters
were characterized and analyzed by using X-ray diffraction (XRD, D8 ADVANCE A25,
Saarbrucken, Germany), atom force microscopy (AFM, INNOVA, Billerica, MA, USA),
and vibrating sample magnetometer (VSM, Lakeshore 7404, Great Barrington, MA, USA)
methods. The influence of sputtering process parameters on the soft magnetic performance
of the FeGaB films was systematically analyzed, which proposed a potential way for the
enhancement of magnetoelectric (ME) sensor sensitivity.

2. Growth Process of Feg sGap B Magnetostrictive Films

The composition ratio and structure parameters play a crucial role in determining the
magnetostrictive properties of FeGaB [21] thin films, which can be regulated by process
parameters. A cross-sectional diagram of the composite film is shown in Figure 1. The
substrate is single-crystal silicon with a thickness of 500 um, on which is 500 nm Mo, 1 pm
Al gScooN, and Fey gGap B magnetostrictive film in sequence. As the composite film is
used for the preparation of an ME sensor, Mo acts as the bottom electrode of the sensor,
AlpgSco N is the piezoelectric film, and FeygGag»B thin film is the magnetostrictive layer.

Fe,3Ga,,B

lumAIScN

500umSi

Figure 1. A diagram of the cross-section of the composite film.

The Mo metal film is deposited by the magnetron sputtering process, and the
Al gScg 2N [22] piezoelectric film is prepared by the co-sputtering method using Al and
Sc targets in a nitrogen environment at the temperature of 350 °C. For the FeygGap 2B
magnetostrictive film, a magnetron sputtering system with Fey sGag» alloy as the DC target
and pure B material as the RF target is carried out. The coercivity and deposition rate of
Feg gGag 2B can be adjusted by changing the sputtering power parameters of the targets, in
order to obtain an Fey gGag»B thin film with lower coercivity and better uniformity.

3. Characterization Method of Fey sGag B Magnetostrictive Films

After the growth of Fe gGag 2B magnetostrictive films, the composition, surface mor-
phology, and coercivity of the films are characterized by the XRD, AFM, and VSM methods.
Through the XRD scanning spectrum, the types and composition of the films can be
identified, and the quality (e.g., crystallinity and grain size) of the films can also be analyzed
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by the intensity of the diffraction peaks. As the major peaks of the films like AlygScg N,
FeysGag 2B, etc. are in the range of 36° to 65°, the scanning range is set as 30° to 70°.

By AFM measurement, the surface morphology and root mean square (RMS) rough-
ness value of the films can be obtained for the evaluation of the deposition uniformity.
Herein, a scanning area of 5 pm x 5 um is used because it can not only reflect the relatively
complete uniformity of the film, but also ensures high efficiency.

The magnetic hysteresis loops of the samples can be measured by a vibrating sample
magnetometer (VSM). By applying an external magnetic field from —1000 Oe to 1000 Oe
and repeating this process, the magnetic hysteresis loop of the FeygGag B film is obtained
through measuring its magnetization intensity. The coercivity is defined as the external
magnetic field applied on the films when the internal magnetization intensity of the films is
zero. Thus, through the analysis of VSM curves, the coercivity of the films can be obtained.
A lower coercivity of a film means better soft magnetic properties and a greater sensitivity
of an ME sensor, so by comparing the coercivity of different samples, the optimal process
parameters can be achieved.

4. Results and Discussion

A Fe( gGay B alloy magnetostrictive thin film is initially deposited at sputtering condi-
tions of DC power of 30 W and RF power of 46 W. As illustrated in Figure 2, the surface to-
pography of the composite film has been studied by atomic force microscopy (AFM), which
shows that the root mean square (RMS) roughness value is below
9.8 nm. Hence, good uniformity of thin films with columnar growth has been obtained
from sputtering.

41.6nm

(b)

Figure 2. (a) Surface of the composite film by AFM; (b) 3D image of FepgGag B film.

Figure 3 shows the XRD pattern of the substrate surface after sputtering FepgGag 2B
with a DC power of 30 W and an RF power of 46 W. A diffraction peak at the degree of 36°
shows that the AlpgScg,N piezoelectric film exhibits a typical (002) direction crystal and
superior piezoelectric performance. On the other hand, the sputtered Fey §Gag > B film shows
a more pronounced diffraction peak at 44° [21], which means that the magnetostrictive film
has large grains in the crystal and great coercivity. FeygGag,BOs is possibly the natural
oxide of FepgGag»B thin film in air, and Fe (200) is the iron elemental in Fey gGag 7B film.
Due to the natural quality of the crystalline in the film, under the external magnetic field
it is difficult to achieve the rotation of magnetic domains in a high crystallinity film. So
it exhibits a higher coercivity and poorer soft magnetic properties. By optimizing the
sputtering power and exploring the process conditions, the best soft magnetic performance
of the Fey gGag»B film can be achieved.
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Figure 3. The XRD pattern of Feg gGag B film.

Figure 4 shows the variation curve of the thickness of FeypgGag;B thin film with
FepsGay, target power. Maintaining the power of target B at 46 W, the thickness of the
deposited Fep gGag 2B film changes from 247.2 nm to 318.2 nm with an increase in the FeGa
alloy target power from 20 W to 40 W. There is a linear relationship between the power of
the FeGa target and the thickness of the thin film. While keeping the power of the FeGa
target at 30 W, the thickness of Fey sGag ;B film only ranges from 247.2 nm to 250.1 nm with
an increase in the power of the B target from 46 W to 67 W.
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Figure 4. (a) Thickness variation for FeGa sputtering power; (b) thickness variation for B sputtering power.

It can be seen that the sputtering power of FeGa alloy targets can significantly change
the deposition rate. Increasing the DC sputtering power results in more Ar+ ions being
produced, which leads to higher energy for the atoms on the target surface. As a result,
more target atoms are ejected from the target surface and deposited onto the substrate.
However, excessively high sputtering power will lead to high coercivity in the FeygGag»B
film, while low sputtering power can result in weak glow discharge during the sputtering
process, which is not conducive to maintaining the sputtering process. The power of the B
target has a minor influence on the deposition rate of the FeygGag 2B film. In the sputtering
process of the Fey gGag 7B film, the sputtering efficiency of the RF target is much lower than
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that of the DC target, so the sputtering yield of B atoms is relatively small and has a minor
effect on the deposition rate.

Figure 5 is the XRD image of Fey gGag > B thin films corresponding to different sput-
tering powers of FeGa targets. The B target power remains at 46 W, and when the FeGa
sputtering power changes, strong diffraction peaks appear at both 25 W, 30 W, and 40 W.
The grain size of the thin film can be calculated using Scherrer’s formula:

KA
b= Beos(8)

where « is the Scherrer constant, A is the wavelength of the X-ray, f is the full width at half
maximum (FWHM) of the diffraction peak, and 0 is the Bragg diffraction angle. The grain
size of the Fe gGag B thin film with different powers of FeGa target is displayed in Table 1.
When the power of the FeGa target is 40 W, the FWHM of the diffraction peak of the film is
0.496° and the grain size of the Fep gGag ;B thin film obtained by sputtering at this power is
11.8 nm. When the power of the FeGa target is 30 W, the FWHM of the diffraction peak
of the film is 0.715°, and the grain size of the FejgGag»B thin film obtained by sputtering
at this power is 8.2 nm. When the power of the FeGa target is 25 W, the FWHM of the
diffraction peak for the deposited film is 0.840° and the grain size of the FepgGag B film is
7.0 nm. As the power of the FeGa target decreases to 20 W, the diffraction peak tends to
flatten, indicating that as the B content in the film components relatively increases, the grain
size of the film is refined, and the Fey gGag 2B thin film becomes amorphous; Boron atoms
are expected to distribute around the boundaries of grains and suppress their growth.
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Figure 5. The XRD pattern of Fep gGag B film with different FeGa powers.

Table 1. The grain size of the Fey gGag ;B thin film with different powers of FeGa target.

The Power of FeGa Target (W) The Grain Size of the FeygGag 2B Thin Film (nm)
40 11.8
30 8.2
25 7.0

Figure 6 shows the magnetic hysteresis loops of thin films formed at different sputter-
ing powers of FeGa alloy targets, which are measured by a vibrating sample magnetometer
(VSM). It is shown that the coercivity of the thin film raises with an increase in FeGa alloy



Nanomaterials 2023, 13, 2948

6 0f 9

M/Ms

08 [
0.6 |

04+

=02 |

=04 L

0.6 +

=08

Magnetic Hysteresis Loops

target sputtering power, and the minimum coercivity is 17.72 Oe. Therefore, when there is
a specific ratio between FeGa alloy and B target materials, a better soft magnetic property
can be achieved. By comparing with the XRD graph, it can be observed that the smaller
the FWHM of the diffraction peaks in the FepgGag ;B thin film, the larger the coercivity
will be. When the B element is introduced into the FeGa thin film, the Fey gGag»B thin film
transforms into an amorphous phase, leading to an increase in FWHM, which means a
small coercivity. This is beneficial for eliminating magnetic crystalline anisotropy, thereby
improving the soft magnetic performance of the Fey gGag»B thin film.
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Figure 6. (a) Normalized (M/Ms) M-H loop of FeygGag B films with different FeGa powers;
(b) coercivity variation with FeGa sputtering power.

Figure 7 shows the XRD spectra of Fey gGag B thin film at different powers for B target
sputtering. The FeGa target power is set at 20 W. At a B target sputtering power of 46 W, a
pronounced FeGa(110) diffraction peak appears at around 44°. From the XRD spectra, it
can be observed that as the B target power increases, the intensity of this diffraction peak
decreases gradually and tends to flatten. This suggests that the increased B target power
leads to a relatively higher B content in the FeygGag B film, causing it to transform into
an amorphous state. The FeGa lattice becomes more disordered, and B atoms fill the gaps
within the FeGa lattice, resulting in further refinement of the FeGa grains and the gradual
disappearance of sub-grain boundaries. This decrease in grain size reduces the resistance
to magnetization domain rotation under external magnetic fields. When the B target power
reaches 67 W, the diffraction peak becomes slightly obvious. Moreover, it is inferred that as
the B target sputtering power continues to increase, the intensity of the diffraction peak
will also increase. This could be attributed to the excessively high B target power leading
to a high quantity of B atoms in the film, and as a result, the film deposition becomes
non-uniform and discontinuous, hindering the homogeneous distribution of boron atoms
within the Fep gGag»B film. Consequently, the film surface becomes uneven, and the overall
film quality deteriorates, resulting in larger crystallinity.

In order to enhance the sensitivity of an ME sensor for the detection of weak magnetic
fields, it is necessary to select FepgGag 2B films with lower coercivity. The coercivity of
the Feg gGap 2B films deposited at different B powers is measured by a VSM, as shown in
Figure 8. As the B target power increases, the coercivity of the film first decreases and then
increases. The minimum coercivity of 7.51 Oe is achieved. The coercivity values match well
with the diffraction peaks in the XRD graph in Figure 6, indicating that the amorphous
nature of the Fey gGag»B film is an important factor for its excellent soft magnetic properties.
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Figure 7. The XRD pattern of FeygGay 2B film with different B powers.

Figure 8. (a) Normalized (M/Ms) M-H loop of Fey gGay »B films with different B powers; (b) coercivity
variation with B sputtering power.

5. Conclusions

The effects of sputtering power from FeGa and B targets on the deposition rate, soft
magnetic performance, and coercivity of Fep gGag 2B thin films were investigated using the
magnetron co-sputtering method. The prepared FeygGag B thin films’ thickness raises
sharply with increasing FeGa target sputtering power, while it remains almost constant
with variations in the B target power. The XRD and VSM results show that as the power of
FeGa targets decreases from 40 to 20 W, the Fey gGag ;B thin film becomes amorphous and
the coercivity decreases. However, with increasing B sputtering power, the B content in the
FepgGag 2B films increases, and the coercivity initially decreases and then increases. When
the B sputtering power increases to 60 W, the coercivity of the FepgGag»B film decreases to
7.51 Oe, and further increasing the sputtering power leads to an increase in coercivity. In
general, an FeGa power of 20 W and a B sputtering power of 60 W resulted in Feg gGag 2B
films with low coercivity and a high magnetostriction coefficient, providing potential for
the fabrication of high-frequency magnetoelectric sensors with high magnetic coupling
coefficients and sensitivity.
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