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Abstract: Transparent ZnMn;Oy thin films on indium tin oxide (ITO) were prepared through spray
pyrolysis and implemented as electrodes in symmetric supercapacitors (SSCs). A specific capacitance
value of 752 F g~ at 0.5 A g~ ! and a 70% retention over 3000 galvanostatic charge-discharge (GCD)
cycles were reached with a 1.0 M NaySOy electrolyte in a three-electrode electrochemical cell. Analysis
of the cycled electrodes with 1.0 M NaySO, revealed a local loss of electrode material; this loss in-
creases when electrodes are used in SCCs. To avoid this drawback, solid polyvinylpyrrolidone-LiClO,
(PVP-LiClO4) and quasi-solid polyvinylpyrrolidone-ionic liquid (PVP-ionic liquid) electrolytes were
tested in SSCs as substitutes for aqueous NaySO4. An improvement in capacitance retention without
a loss of electrode material was observed for the PVP-ionic liquid and PVP-LiClOy electrolytes. With
these non-aqueous electrolytes, the tetragonal structure of the ZnMn,O4 spinel was maintained
throughout the cyclic voltammetry (CV) cycles, although changes occurred in the stoichiometry
from ZnMn, Oy to Mn-rich Zn;_ Mnj3_,Oy. In the case of the electrolyte 1.0 M NaySQy, the loss of
Zn2* led to the formation of MnO; via Zny.4M3O4. The location of the three SCCs in the Ragone
plot shows supercapacitor behavior. The electrochemical results prove that the pseudocapacitance
is the major contributor to the electrode capacitance, and the SCCs can therefore be considered
as pseudocapacitors.
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1. Introduction

There are currently several active approaches to promote the development of storage
systems, as well as generation and storage together, to overcome the inherent seasonality
of renewable energies. There are many devices that can store electric energy, such as
rechargeable lithium-ion batteries, capacitors, electrochemical capacitors, and fuel cells.
They all differ in their energy density, power density, efficiency, voltage window, and
current density [1]. Electrochemical capacitors, also named supercapacitors (SCs), are
devices with a promising future as energy storage systems because, compared to other
systems, they offer a high power density, fast charge—discharge rate, excellent cycle stability,
and low cost and they can be designed as eco-friendly systems with the proper selection
of materials [2,3]. There is an emerging demand for transparent optoelectronic devices
where transparent supercapacitors with high optical transmittance, but without sacrificing
performance, will be needed.

The energy storage mechanism of SCs is due to the double-layer capacitance formed by
the electrode—electrolyte interface and faradaic processes produced by reversible adsorption—
desorption or oxidation-reduction chemical reactions (pseudocapacitance) [4]. SCs’ elec-
trochemical performance is closely related to the electrode material, surface area, porosity,
electrochemical activity, and kinetic characteristics of the electrodes [5]. Therefore, this
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implies that, in addition to being a suitable material selection, it is important to improve the
ion and electron transport of the electrode, and the electrode/electrolyte interface [4,6,7].

Carbon-based materials, conducting polymers, and metal oxides are used as electrode
materials. These materials have advantages and disadvantages. Carbon materials show
great mechanical strength, excellent electronic conductivity, high specific surface area
accessible to the electrolyte ions, and can be obtained from biomass [8,9]. Graphene
oxide tends to aggregate and restack, making its surface less accessible to the electrolyte.
Conducting polymers have a relatively high conductivity and capacitance compared to
carbon-based electrode materials [10]. However, reduction—oxidation causes mechanical
stress in conducting polymers, limiting their stability during charge-discharge cycles. Metal
oxides, such as MnQO,, exhibit high energy and power density. However, they suffer from
poor electrical conductivity, capacitance fading, short cycling lifetime due to their intrinsic
drawbacks of crystallographic instability, volume expansion, and severe aggregation during
redox reactions [11]. Zhong-Shuai et al. [12] comparatively reported the pros and cons of
graphene, metal oxides, and graphene/metal oxide composites.

Manganese oxide-based materials are interesting for SCs due to their high theoreti-
cal specific capacitance, excellent capacitive performance in aqueous electrolytes [13,14],
multivalence, low cost, and environmental friendliness. Manganese can adopt ten oxi-
dation states, 7+ through 3—, but only three oxidation states, 2+, 3+, and 4+, are usually
observed [15,16]. Manganese forms numerous stable stoichiometric oxides (MnO;, Mn,03,
Mn30,, and MnO) and metastable oxides (such as MnsOg) in which Mn?* and Mn3*
coexist [17]. Manganese oxides form a variety of polymorphs; for example, MnO; may
exist as crystalline «, B, 7,9 or € and the oxyhydroxide MnOOH exhibits three natural
polymorphisms («, B, 7).

Manganese oxide MnO, has a large theoretical specific capacitance of 1370 F g1,
but its high resistivity (107® S em~!) reduces electronic conductivity substantially [18].
Electrodes with MnO; as the principal active material suffer from a short cycle life, mainly
due to Mn loss from the electrode through the disproportionation reaction to the production
of soluble Mn?* [2,19-21]. In order to avoid or reduce this unwanted behavior, some
authors chose to limit the potential window to 0.1-1.0 V, reducing the probability of a
MnO, disproportion reaction [2], while other authors have tried to introduce different
elements in the electrode matrix in order to increase its conductivity [19]. Reversible Zn2*
intercalation/deintercalation in the MnO, host framework and the formation of ZnMn,Oy4
combined with H* co-intercalation are recognized as the main energy storage mechanisms
in Zn/MnOQO, cells [22].

Aqueous Zn ion batteries adopt the controlled chemical extraction/insertion of Zn [23].
Zn forms, with Mn, various compounds ranging from mixed oxides to spinel compounds
such as ZnMnyOy4. ZnMn,Oy belongs to the AB,Oy spinel family, with Zn?* and Mn3*
ions at the center of tetrahedral and octahedral sites, respectively, while the oxygen atoms
are distributed over the corners of the octahedra and tetrahedra [24,25]. The Zn%* in the
spinel ZnMn,Oj can be replaced by divalent ions (Cd?" Ca?*, Mg?*, Mn?*), while Mn>*
can be replaced by trivalent ions (AI**, Fe3*) [26]. However, the substitution of Zn?* by
Mn?* would be compensated by the simultaneous oxidation of Mn3* to Mn**, which is
described by the formula t-[Zn%*, Mn?*] o-[Mn3*, Mn**, Zn?*], [Ol4 (t, o, for tetrahedral
and octahedral sites, respectively) [24]. Mn-rich spinels, such as Zn,Mn3_,O4 with x <1,
are stable at low temperatures [24]. ZnsMnj3_,O; tetragonal spinel structures were found
at room temperatures for a range of values of x from 0 to 1 [27]. With x > 1, Peitado et al.
found a mixture of tetragonal and hexagonal spinel structures at high temperature [28].
ZnMn;O4 has been proposed as an anode for Li-ion batteries [29,30] and as electrodes for
supercapacitors [31].

In this work, we analyzed the effect of an electrolyte on the spinel ZnMn,O4 when
it is used as an electrode in symmetric SCs. Analysis of the cycled electrodes shows
that with Nay;SOy4 aqueous electrolytes, irreversible zinc extraction and the local loss of
electrode material occur. To avoid this drawback, quasi-solid PVP-ionic liquid and solid
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PVP-LiClOy electrolytes were tested as substitutes for aqueous Na;SO4 in symmetric
supercapacitors (S5Cs). During CV cycles, the tetragonal spinel ZnMn;O4 undergoes a
change in stoichiometry through the loss of Zn to Mn-rich phases, with Zn;_,Mnj3_,O4
maintaining a tetragonal structure until it finally becomes MnO;, as is the case with the
1.0 M NaySQO; electrolyte. This process is inhibited to a greater or lesser extent by the PVP-
ionic liquid and PVP-LiClOy electrolytes, resulting, after CV cycles, in a gradient of different
stoichiometries in the composition of the thin film from Na;SO4 to Zng 7Mny 3304.

2. Materials and Methods
2.1. Preparation of ZnMn,Oy Electrodes

ZnMn; Oy electrodes were prepared through spray pyrolysis over commercial InpO3:5n
(ITO) glass (XOPGlass, Castellon, Spain). In this deposition method, the precursor solution
was pushed through a syringe pump into the spray nozzle to be nebulized on the substrate
with a stream of compressed air. The substrate was kept at a controlled temperature. The
precursors zinc acetate (Zn(AC),-2H,0) and manganese acetate (Mn(AC),-4H,0) (Sigma-
Aldrich, St. Louis, MO, USA) were dissolved in distilled water with concentrations of
0.005 M and 0.01 M, respectively. Regarding the experimental conditions of spray pyrolysis,
the flow rate and substrate temperature were set at the values of 20 mL h~1 and 400 °C,
respectively, while the deposition time varied from 2 to 15 min. The electrode size was
2.5cm x 4.0 cm.

2.2. Supercapacitor Assembly

Three symmetric supercapacitors (SSCs) were assembled using two ZnMn;O,4/ITO/
glass electrodes and three different electrolytes (Figure 1). The first electrolyte was prepared
using an acetate film soaked in 1.0 M NaySOy (Sigma-Aldrich, St. Louis, MO, USA)
(Figure 1a); the second with 6.0 g of LiClO, (Sigma-Aldrich, St. Louis, MO, USA) and
6.0 g of polyvinyl pyrrolidone (PVP) (Mw:1,300,000) (Sigma-Aldrich, St. Louis, MO, USA)
dissolved in 75.0 mL of ethanol (Panreac Quimica, Barcelona, Spain) (named as PVP-
LiClQOy). This solution was screen-printed onto the ITO substrate and dried (Figure 1b).
The ionic conductivity of the solid electrolyte obtained was 1.89 10* S cm~!; however, this
conductivity may decrease due to the loss of residual ethanol from the electrolyte [32]. The
third electrolyte was prepared with 9.0 g of commercial ionic liquid, 1-(2-hydroxyethyl)-
3-methylimidazolium tetrafluoroborate [HEMIm][BF,] (Io-li-tec, Heilbronn, Germany),
together with 16.0 g of PVP (named PVP-ionic liquid) dissolved in 55 mL of methanol.
[HEMIm][BF,] ion gel exhibits an electrochemical stability window of, ca., 5.0 V and
an ionic conductivity of 5.7 1073 S cm~! at room temperature [33]. A 25 pm Meltonix
film (Solaronix, Aubonne, Switzerland) was used to prevent the direct contact between
electrodes (Figure 1b). A Meltonix polymer was also used to seal the SSCs by heating it to
60 °C. The electrode available area in the SSCg was 2 x 2 cm?. The PVP-ionic liquid and
PVP-LiClOy electrolytes had a pH of about 6, and the pH of the aqueous electrolyte 1.0 M
Na,SO4 was 6.2.

2.3. Characterization Methods

The thin-film crystalline structure was examined using an X-ray EMPYREAN diffrac-
tometer (PANanalytical, Malvern, UK). X-ray diffraction (XRD) spectra were recorded in
the theta-theta transmission configuration, placing the sample between two Kapton foils,
and by using a focusing mirror and the PIXcel 3D detector (working in 1D mode) with a
step size of 0.013° (26). The diffractograms were recorded between 10° and 80° in 20 with
a total measuring time of 60 min. The morphology of the electrodes was studied using
a field emission scanning electron microscope (FE-SEM), Helios Nanolab 650 dual beam
instrument (Thermo Fisher Scientific, Waltham, MA, USA). High-resolution transmission
electron microscopy (HRTEM) images and energy-dispersive X-ray spectroscopy (EDS)
images were obtained on Talos F200X equipment (Thermo Fisher Scientific, Waltham, MA,
USA). Optical transmittance measurements were carried out using a Varian Cary 5000
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model spectrophotometer (Agilent, Santa Clara, CA, USA) with an integrating Spectralon
sphere. X-ray photoelectron spectra (XPS) were recorded on a Physical Electronics PHI
5700 spectrometer (Physical Electronic, Chanhassen, MN, USA) using monochromatic Mg
radiation. Adventitious Cls at 284.8 eV was used for charge shift correction.

(1) @
(3)

(a) ()

3)

(b)

Figure 1. Scheme of the symmetric supercapacitors (a) using an acetate membrane soaked in
1.0 M NapSO, aqueous solution, and (b) with a Meltonix separation polymer and electrolyte formed
by PVP-ionic liquid or PVP- LiClOy. (1) Glass, (2) ITO, (3) ZnMn;Oy, (4) acetate membrane soaked
with 1.0 M Nay SOy, (5) separation polymer (frame), (6) non-aqueous electrolyte (PVP-ionic liquid or
PVP-LiClOy).

2.4. Electrochemical Measurements

Electrochemical performance of ZnMn,O,/ITO electrode was measured in a typical
three-electrode electrochemical cell with a saturated calomel electrode (SCE) as reference
electrode and platinum as counter-electrode with 1.0 M NaySOy solution as electrolyte. The
electrochemical properties were investigated through cyclic voltammetry (CV), galvanos-
tatic charge—discharge (GCD), and electrochemical impedance spectroscopy (EIS). These
electrochemical measurements were carried out on a Biologic VSP potentiostat (Biologic,
Knoxville, TN, USA). Due to the gel-like nature of the PVP-ionic liquid and quasi-solid
nature of the PVP-LiClOy electrolytes, it was not possible to perform electrochemical tests
in a three-electrode electrochemical cell. The electrochemical characterization of the SSCs
was carried out with a two-electrode configuration for the three electrolytes tested. The
specific capacitance C of the CVs and the GCD discharge curve (F-g~!), energy density
E (Wh-kg 1), power density P (W-kg '), and Coulombic efficiency 7 (%) were calculated
according to Equations (1)-(5):

[ i(u)du

C= m-v-AV @)
I-At
C= AV )
0.5- C- AV?
E=—35 )
E
P = 13600 ()
tq
n=-2.100 (5)
te

where i(u) is the voltammetric current (A), m is the mass of active material (g), v is the
potential scan rate (V-s™1), AV is the potential window of CV of the discharge curves (V),
Iis the applied current (A), At and t; are the discharge times (s), and ¢, is the charge
time (s). For SSCs where both electrodes have the same capacitance, the total capacitance is
half of the electrode capacitance.
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3. Results and Discussion
3.1. Characterization of the ZnMn,Oy4 Thin-Film Electrodes Obtained
3.1.1. Chemical and Morphological Characterization

The ZnMn;,04/ITO/glass electrodes are transparent, and their light transmittance
depends on the ZnMnyOy film thickness (Figure 2a), which is a function of the deposition
time (Figure 1a). Table S1 shows the optical parameters of the thin films. The importance
of the electronic conductivity of the ZnMn, Oy electrode on the specific capacitance was
indicated by Zhao et al. [29]. The sheet resistance of the ITO substrate, measured using
the four-point probe technique (Ossila, Sheffield, UK), was 19.93 () per square, and that
for the thin film of ZnMn,O4 was 447.97 () per square with a deposition time of 2 min.
Thicker ZnMn,Oy films were more resistive and their specific capacitance decreased. For
this reason, films with a deposition time of 2 min and a thickness of around 35 nm were
selected to form the electrodes. The 2 min layer showed the best compromise between
electrical conductivity, transparency, and specific capacitance.
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Figure 2. (a) Optical transmittance spectra of the ZnMn,0O,/ITO/glass electrodes at different de-
position times; (b) XRD pattern of the as-deposited electrode of ZnMn,Oy4 on ITO corresponding
to deposition time of 15 min, (¢) XRD standard diffraction pattern of ZnMn;0O4 PDF 01-071-2499,
(d) 5 min.

Figure 2b—d show the grazing incidence X-ray diffraction spectra of the ZnMn,Oy4
films with deposition times of 5 and 15 min. The ZnMn;O; films grown with a deposition
time of 2 min did not show diffraction peaks. The identified XRD peaks (Figure 2b—d)
correspond to the ITO substrate and tetragonal ZnMn,O, hetaerolite, International Centre
for Diffraction Data, Power Diffraction File (PDF) 01-071-2499 (Figure 2c). No peaks of
Zn0O, ZnMnOs3, or Mn oxides were identified by XRD.

The SEM image of the ZnMn, O, surface (Figure 3a) shows a superficial pattern of
circles due to spray droplets. The chemical element surface maps using EDS (Figure 3b,c,e,f)
indicate that Mn and Zn are homogeneously distributed on the surface and throughout
the cross-section. Figure 3g shows an HRTEM image of the cross-section of the ZnMn, Oy
thin film. Crystal planes corresponding to the most intense XRD peaks (103) (211) of the
hetaerolite are indicated in the fast Fourier transform (FFT) (Figure 3i) and HRTEM images
(Figure 3g,h).
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10 um

Figure 3. As-deposited ZnMn;Oy electrode: (a) SEM, (b) Mn, (c) Zn EDS images of the electrode
surface; (d) HAADEF; (e) Zn and (f) Mn EDS images of the electrode cross-section; (g) HRTEM image
of the cross-section; (h) magnification of the marked zone; (i) FFTs of the film cross-section.

XPS analysis of the surface was carried out by recording the Ols, Zn2p, Zn3p, Zn
LMM, Mn2p, Mn3p, and Mn3s XPS regions. Figure 4a shows the two Zn?* character-
istic peaks corresponding to Zn2p3,, and Zn2p;,, at binding energies of 1021.24 and
1044.34 eV, respectively, and with a spin-splitting AEz,2, of 23.1 eV, in agreement with
the literature [34-36]. Ols was deconvoluted in two peaks (Figure 4b), at 529.5 eV, corre-
sponding to the (Zn/Mn)-O metal bond, and at 531.2 eV for OH groups adsorbed on the
surface, following the proposal of other authors [26,37,38]. The width and the asymmetry
of the Mn2p core level peaks (Figure 4c) indicate the presence of manganese in at least
two different oxidation states; consequently, the Mn 2p3, main peak was deconvoluted
in two components with a AEp, splitting of 11.5 eV [26,39]: the Mn2p3,, main peak
contribution at 641.4 eV of the Mn3*, and the component at 642.4 eV attributed to Mn#** [40].

The presence of Mn** in the spinel ZnMn;Oy is coherent with the findings of other
authors [37,39]. Mn3s shows two multiplet split components caused by the coupling of
non-ionized 3s electrons with 3d valence band electrons (Figure 4d). However, in this
case, the analysis of the Mn3s is substantially more complicated because the Zn3p signal is
located in the same binding energy region as Mn3s, with Zn3p multiplet split components
for Zn?* with values of 87.7 eV and 90.7 eV for Zn3ps,, and Zn3p; /, respectively. The
magnitude of peak splitting of Mn3s (AE ;.3 ) has been reported as 5.79 eV, 5.50 eV, 5.41 eV,
and 4.79 eV for MnO, Mn304, Mn;03, and MnO,, respectively [41,42]. To carry out the
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deconvolution of the Mn3s-Zn3p region (Figure 4d), AE,35 (V) was estimated using the
equation of Beyreuther at al. (Equation (6)) [43].

Urn = 9.67 — 1.27 AEpinas (6)

where vy, is the average oxidation state. According to the deconvolution of the Mn2p XPS
signal (Figure 4c), the atomic ionic ratio Mn®* /Mn** is 10.63, meaning a value of vy, = 3.09,
and AEp,3,= 5.18 eV (Equation (6)). This value of AE,3:= 5.18 eV was used for the
deconvolution of the Mn3s signal (Mn3s-Zn3p), which is shown in Figure 4d.

(a) Zn2pzp (b) A Ofs

Intensity (a.u.)
Intensity (a.u.)

1050 1045 1040 1035 1030 1025 1020 1015 536 534 532 530 528 526
Binding energy (eV) Binding energy (eV)

Intenisty (a. u.)
Intensity (a.u.)

657 654 651 648 645 642 639 636 94 92 90 88 86 84 82 80
Binding energy (eV) Binding energy (eV)

Figure 4. XPS spectra of (a) Zn2p, (b) Ols, (c¢) Mn2p, (d) Zn3p-Mn3s of the as-deposited

ZnMn, Oy electrode.

3.1.2. Electrochemical Characterization

A three-electrode electrochemical cell with 1.0 M NaySO4 aqueous solution as the
electrolyte was used to characterize the behavior of the ZnMn,O, /ITO working electrode.
Pt was used as the counter-electrode and a saturated calomel electrode was used as a
reference. Figure 5a and Figure S1 show the cyclic voltammetry curves (CV) ranging from
—0.1to 1.2 V at different scan rates from 5 mV s~! to 200 mV s~!. The highest specific
capacitance achieved (Equation (1)) was 697 F g~ at 5mV s~!, which is better than the other
values reported for ZnMn,O; obtained through spray pyrolysis; for instance, 530 F g ! at
10 mV s~! was reported by Boukmouche et al. [44], and 155 F g~ ! at 2mV s~ ! was reported
by Guo et al. [45]. Table S2 shows, comparatively, the results obtained by other authors.
The specific capacitance undergoes a progressive decrease to 187 F g~! at 200 mV s~ ! due
to the diffusion limitation related to a higher potential scan rate (Figure 5b) [46—48]. The
square-like shape of the CV curves is due to the contribution of the electric double-layer
capacitance and the pseudocapacitance. The faradaic contribution has been reported as
a non-symmetric redox process related to the reversible extraction of Zn?* ions from the
ZnMn; Oy spinel according to reactions described in Equations (7) and (8) [20,49-51]. The
anodic peak at 0.83 V (Figure 4a) contributes to the faradaic capacitance. The shift in
the anodic peak from 0.83 V to 0.94 V would be due to polarization [52]. The reported
equilibrium potential of the reaction (Equation (7)) is Esyg=0.72 V (Egcg = 0.961 V) [22]:

ZnMnyOy > Znp_xMnz_Op + x Zn*T +2x e (7)
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which leads to the formation of MnO;:

2 _
ZnMnyOy <5 2 MnO, + Zn*t +2e (8)
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Figure 5. (a) Cyclic voltammetry curves of ZnMnyOy, electrode measured at different scan rates:
5,50, 100, and 200 mV s~ 1; (b) specific capacitance calculated as a function of scan rate; (¢) GCD
curves at current densities of 0.5, 1.0, 2.0, 3.0, and 4.0 A g_1 ; (d) specific capacitance calculated as a
function of current density; (e) Nyquist plot for ZnMn, Oy thin film (black: before; red: after cycling),
inset: zoom of the high-frequency region (black: before; red: after CV cycles); (f) GCD for different
number of cycles, (g) GCD capacitance retention; all the electrochemical analysis was carried out in
1.0 M Na,SOy electrolyte; (h) specific capacitance vs. v1/2; (i) b parameter vs. the potential, inset:
log i vs. log v, v scan rate (mV s~ 1).

The reversible intercalation/deintercalation of Zn%* in the MnO, matrix with the
formation of ZnMn,Oy, shown in Equation (8), has been indicated as the main energy
storage mechanism in Zn/MnQO; batteries [22,53].

Figure 5c shows the galvanostatic charge—discharge test (GCD) with applied current
densities from 0.5 A g~! to 4.0 A g~!. The GCD graphs present a quasi-symmetric trian-
gular shape at higher specific current densities, 3.0 A g~! and 4.0 A g~!, indicating the
pseudocapacitive behavior of the ZnMn,Oy electrode due to the combination of the surface
capacitive reactions and the redox reactions at the electrode—electrolyte interface, following
Zn?* extraction/insertion. Using Equation (2), specific capacitances from 752 F g~ ! at
05Ag 1to400F g !at4.0 A g~ ! were obtained (Figure 5d). The specific capacitance of
752 F g1 (0.5 A g~1) is better than other specific capacitance values reported for electrodes
based on manganese oxides obtained through spray pyrolysis, for example, with ternary
compositions, such as M:Mn3Oy4, where M = Ce, Cr, Cu, and Ni were specifically reported
as showing capacitances between 134 and 184 F g~ at 0.5 A g~ !, or 460 F g ! at a scan rate
of 5mV s~ ! for Ni:Mn304 [54-57].

Electrochemical impedance spectroscopy (EIS) measurements were performed in
1.0 M Na,SOy electrolytes in the 10-2-10° Hz frequency range. Figure 5e shows the Nyquist
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plots for the as-deposited ZnMn;Oj electrode and after 3000 CV cycles. The impedances
were simulated using the equivalent circuit shown in the inset of Figure 5e. The elements
of the equivalent circuit are the solution resistance (Rs), the charge-transfer resistance (Rct),
and the electrochemical double-layer capacitance (EDLC). The Nyquist curves consisted of
a small semicircle at high frequency for the charge-transfer resistance (R.) and a sloping
line at the low-frequency region. The R values were 25 () and 27 ) for the electrode
before and after CV cycles, respectively. Smaller R is beneficial to the charge transfer.
The R values obtained from the Nyquist plots were 7.0 () and 10.5 Q) for the non-cycled
and cycled electrodes, respectively. Smaller values of R, favor the diffusion of electrolyte
ions [9,58].

Figure 5f shows the initial cycle and cycles with 1000, 2000, and 3000 galvanostatic
charge—discharge at 2.0 A g~! in a 1.0 M NaySO; electrolyte. As shown in Figure 5g,
ZnMn, Oy electrodes exhibit a specific capacitance retention of 70% after 3000 GCD cycles.

The specific capacitance of the electrode is determined by the sum of the double-
layer capacitance (EDLC) and the pseudocapacitance due to redox, intercalation, and
diffusion processes within the active material [55-57]. The specific capacitance was plotted
against the inverse of the square root of scan rate, v-1/2 (mV~1//2 s1/2) to determine the
contribution of EDLC and pseudocapacitance (Figure 5h) through linear fitting. At a lower
CV scan rate, the plot’s specific capacitance deviates from linearity and those values were
excluded for the linear fitting (Figure 5h). The extrapolation of the linear fit to the y-axis
assumes that the specific capacitance was expected to have an electrostatic origin [57],
and the triangular area was assumed to indicate the pseudocapacitance. Therefore, from
Figure 5h, it is deduced that the contribution to the specific capacitance is mainly from
pseudocapacitive processes. The y-intercept of the linear fit determines the capacitance
through EDLC as 24 F g~! (3.4%), and the triangular area determines the capacitance
provided by the pseudocapacitance as 673 F g1 (96.6%), i.e., the electrode stores 96.6% of
the charge based on Zn?* intercalation or redox reactions and 3.4% of the charge based on
the capacitive mechanism [55]. In addition, the current resulting from the voltammetric
response at a specific voltage can be related to the scan rate according to the power-law
formula (Equation (9)) [59]:

i=ad’ )

where b is 0.5 for battery-like behavior and 1 for typical EDLC behavior [60]. The represen-
tation of log i vs. log v is shown in the inset of Figure 5i, and the values of b are shown in
Figure 5i. Figure 5i shows that at the smallest potential, b approaches 0.5, indicating that
the diffusion-controlled processes, and battery-like behavior, predominate. However, as the
potential increases, b becomes closer to 1, indicating an increase in capacitive contributions
related to non-diffusive controlled processes such as EDLC [52,61-63].

3.2. Characterization of the ZnMnyOy4 Thin-Film Electrodes after Cycling Process
Chemical and Morphological Characterization

To eliminate traces of the precipitated electrolyte salt, the cycled electrodes were
rinsed with water. Figure 6a shows the SEM image of the ZnMn,O; electrode surface
after 3000 CV cycles. The surface appears more textured and lacks the circular surface
marks of spray droplets. This change in the surface texture is produced through chemical
modification of the ZnMn,O4 according to Equations (7) and (8). The SEM-EDS images
of the cycled electrode show holes corresponding to local loss of the electrode material
(Figure 6a,b). The loss of Zn is also shown through EDS (Figure 6¢), yielding a Mn/Zn
average atomic ratio of 2 for the as-deposited electrode (Figure S2), and an average local
value of 42 for the cycled electrode, with points where Zn was not detected (Figure S3). The
HRTEM-EDS mapping images (Figure 6f) also show Zn loss in the cross-section of the film.
The loss of electrode material is due to the solubilization of the Mn and Zn [18,49]. The Zn
loss leads to irreversibility in the reactions of Equations (7) and (8), and, therefore, there is
an evolution of the composition of the electrode with loss of zinc during cycling.
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Figure 6. ZnMn;O, electrode after 300 CV cycles: (a) SEM; (b) Mn and (c) Zn EDS images of
the electrode surface; (d) HAADF; (e) Mn and (f) Zn EDS images of the electrode cross-section;
(g) HRTEM image of the cross-section, (h) magnification of the marked zone; (i) FFTs of the film
cross-section.

The XPS analysis (Figure 7a) of the electrode surface showed that after 3000 CV cycles,
the intensity of the Zn2pj3,, peak at 1021.3 eV decreased remarkably. The shift in the
Mn2p3/, peak to a higher binding energy of 643.1eV (Figure 7c) is due to the increased
contribution of the Mn** oxidation state. The Mn3s peak splitting AEym3s = 4.8 eV for
the cycled sample (Figure 7d), vp;,= 3.57 according to Equation (8), leading to a MnO 7
stoichiometry, indicates the transformation of ZnMn;Oy4 to MnO; [41], in addition to the
reversible transformation of ZnMn,Oy4 to MnO,. MnO, may participate in pseudocapacitive
reactions with the electrolyte (Equations (10) and (11)):

MnO; + H" +¢~ < MnOOH (10)

MnO; + Na©™ 4+ e~ <+ MnOONa (11)
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Figure 7. XPS spectra of (a) Zn2p, (b) Ols, (c) Mn2p, (d) Zn3p-Mn3s of the ZnMn,Oy electrode after
3000 CV cycles.

The formation of MnOOH was related to a better capacitive performance since it
facilitates ionic exchange [64—66]. The mild-acidic condition of the aqueous Na;SOy elec-
trolyte should prevent poor cycling performance due to the formation of species such as
Mn(OH), or ZnO. However, it does not prevent dissolution of Zn?*. The loss of capacitance
retention during GCD cycling (Figure 5g) is a consequence of the loss of Zn and the partial
dissolution of Mn in the electrolyte [22,53]. Due to film thickness and low crystallinity, it
was not possible to obtain grazing XRD spectra to identify the present compounds in the
electrode. However, according to the HRTEM images of the cross-section (Figure 6g,h)
and the corresponding FFT (Figure 6i), interplanar distances compatible with 5-MnO,
(PDF 04-005-4334) were obtained; these distances were also compatible with the Mn-rich
spinel Zn;_x Mnp yOy, with values of x and y between the values of Zng44Mnj 75504
(PDF 01-070-9109) and Zng p;Mnjy 93Oy (PDF 04-012-4910). These findings are supported by
the values of the Mn/Zn ratio found through EDS (Figure S3).

3.3. Symmetrical Supercapacitor
3.3.1. 1.0 M NaySO; as Electrolyte

A symmetric supercapacitor was assembled using an acetate membrane soaked in
1.0 M NaySOy as the electrolyte (Figure 1a). Figure S4 and Figure 8a show the SSC CV
curves with a potential window from +0.4 V to +1.5 V and scan rates from 25 mV s~ ! to
200 mV s~ 1. The specific capacitance values are shown in Table S3. The specific capacitance
for 1.2 V increased from 16 Fg~! (200 mV s~ ') to 33 F g_l (25 mV s~ 1), with the highest
value being 39 F g~ ! for £1.5 V (25 mV s~ !). The behavior is similar to that observed for
the three-electrode electrochemical cell, with an increase in current in all potential windows
tested as the scan rate increases; however, the specific capacitance did not increase with
an increase in scan rate. The observed drop in specific capacitance in the SC, with respect
to the value measured in the three-electrode electrochemical cell, is consistent with that
obtained by other authors; for example, for NiMn,Oy, Sankar et al. found a drop from
202 F g~ ! (three-electrode cell) to 50 F g~! at 1 mV s~! (asymmetric supercapacitor) [48].
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Figure 8. (a) Cyclic voltammetry curves with +1.2 V potential window at scan rates from 25 to
200 mV s~1; (b) GCD at different current densities of 0.5 A gfl, 1.0A gfl, and 2.0 A gfl; (c) GCD at
cycle 2, 1000, 2000, and 3000; (d) capacitance retention and Coulombic efficiency (GCD cycles) for the
SSC 1.0 M NapSOy.

Galvanostatic charge—discharge tests were carried out at different current densities,
from 0.5 A g~! t0 2.0 A g}, in the potential window of 0.0-1.2V (Figure 8b,c). A specific
capacitance of 17 F g~! was observed at a current density of 0.5 A g~!, yielding an energy
density of 3.4 Wh kg~ ! and a power density of 306 W kg !, which positions this SSC as a
supercapacitor in the Ragone plot. The specific capacitance values obtained from initial
GCD cycles are similar and even higher than those found in the literature [21]. As the
current density increases, the GCD curves show a more symmetric and triangular shape
indicating better Coulombic efficiency, but the specific capacitance decreases due to the
fast discharge of the supercapacitor. The electrochemical stability of the SSC was studied
using 3000 GCD cycles at a current density of 1.0 A g~ ! (Figure 8c). The SSC experienced a
drop in specific capacitance as the number of GCD cycles increased (Figure 8c,d). Figure 8d
shows the evolution of specific capacitance retention and Coulombic efficiency with the
number of cycles. On the other hand, there was a significant loss of electrode material
(Figures S3 and S9b) at the end of the 300 CV cycles as a consequence of the solubilization
of Mn and Zn, as mentioned above.

3.3.2. PVP-Ionic Liquid and PVP-LiClOy as Electrolytes

Two symmetric supercapacitors were assembled using PVP-ionic liquid or PVP-
LiCLOy as electrolytes following the arrangement shown in Figure 1b. The SSCs’ electro-
chemical tests were carried out with a two-electrode configuration.

PVP-Ionic Liquid Electrolyte

Figure 9a and Figure S5 show the CV curves of the PVP-ionic liquid SSCs with potential
windows from £0.4 V to 1.5 V and scan rates from 25 mV s~ ! to 200 mV s~ !. For the two
lowest potential windows of £0.4 V and £0.8 V, curves were obtained that were nearly
rectangular and possessed a specific capacitance of 15F g~ ! and 23 Fg~!,at 25 mV s},
respectively. An increase in pseudocapacitive behavior was observed for £1.2V (40 Fg~! at
25mV/s)and £1.5V (37 F g’l at25mV s~ 1), as shown in Table S4. The increase in the scan
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rate decreases the charge stored in the device due to the limitation of the diffusion processes,
making the interaction between the electrolyte and the electrode material less effective.
Figure 9b shows the electrochemical behavior of the device during GCD at different current
densities and a potential window of 0-1.2 V. The highest specific capacitance of 15 F g~ !
was obtained at 0.5 A g~ 1. Atlower current densities, the charge-discharge times are longer,
and the GCD profile is characteristic of a supercapacitor with faradaic contribution. As the
current density increases, the GCD curve adopts a more triangular profile characteristic
of EDLC (Figure 9b). Through GCD, the highest energy density of 3 Wh kg ! is obtained
at the current density of 0.5 A g~!, while the highest power density of 1080 W kg~ ! is
obtained for 2.0 A g~! (Table S4). As shown in Figure 9d,e, the SSC shows good stability,
maintaining a retention of 70% of its initial capacitance after 3000 GCD cycles at a current
density of 1.0 A g1, and the Coulombic efficiency (Figure 6d) is higher than that obtained
for SSC with 1.0 M Na,SOy (Figure 5f).
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Figure 9. SCC with PVP-Ionic liquid: (a) CV cycles with a £1.2 V potential window at scan rates
from 25 to 200 mV s~1; (b) GCD at current densities of 0.5 A g_l, 1.0A g_l, 20A g_l; (c) GCD cycles
2,1000, 2000, and 3000; (d) capacitance retention and Coulombic efficiency (GCD cycles).

After 300 CV cycles, the electrodes were recovered and washed with ethanol to
remove the electrolyte on the electrode surface. The SEM image (Figure 10a) shows a
more textured surface than the original electrode surface (Figure 3a), with spray droplet
marks still visible after 300 CV cycles. No loss of electrode material in the form of voids is
observed (Figure 10a), which may be due to a lower solubility of Zn and Mn in the PVP-
ionic liquid electrolyte than in the aqueous NaySO; electrolyte, favoring the reversibility
of the reactions described in Equations (7) and (8). The EDS mappings of Mn and Zn
(Figure 10b—f) show that both elements are present and homogenously distributed on the
surface and in the cross-section.
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Figure 10. SCC with PVP-ionic liquid as electrolyte after 300 CV cycles: (a) SEM; (b) Zn and (c) Mn
EDS images of the surface of the electrode; (d) Zn and (f) Mn EDS images; (e) HAADF images of the
electrode cross-section; (g) HRTEM image of the cross-section; (h) magnification of the marked zone;
(i) FFT of the film cross-section.

Figure 11a—d show the XPS spectra corresponding to Mn2p, Mn3s, Zn 2p3/», and Ols.
Both the Zn2p (Figure 11a) and Mn3s regions (Figure 11c) show a superficial loss of Zn,
but this Zn loss is less than in the case of the Na;SO; electrolyte. When the electrode was
exposed to cathodic conditions at the end of the last 300th cycle of CV, the Mn2p3,, and
Mn3s XPS peaks (Figure 11c,d) showed a shift toward lower binding energies of 640.8 eV
and 82.6 eV (641.4 eV and 83.5 eV, respectively, for the as-deposited electrode), respectively,
indicating the presence of Mn?2* [16,65,66]. This is corroborated by the deconvolution of the
Mn3s-Zn3p region (Figure 11c) with AE,3s = 5.8 eV for Mn3s [42,65]. FWHMSs of 2.2 eV for
Mn3s and 3.3 eV for Zn3p peaks were used for the deconvolution (Figure 11c). However,
when the opposite electrode was analyzed using XPS at the end of the 300th CV cycle,
under more oxidizing conditions, the Mn2p peak showed a shift toward higher binding
energies (642.1 eV), indicating Mn** (Figure 11d).



Nanomaterials 2023, 13, 3017

15 of 23

NN

Intensity (a.u)
Intensity (a.u)

1028 1026 1024 1022 1020 1018 982 984 986 988 990 992 994 996
Binding energy (eV) Kinetic energy (eV)

Mn3s-Zn3p (d) \ Mn2p

Intensity (a.u)

Intensity (a. u.)

94 92 90 88 86 84 82 80 660 655 650 645 640 635
Binding energy (eV) Binding energy (eV)

Figure 11. XPS of electrode of SCC PVP-Ionic Liquid: (a) Zn2p, (b) ZnLMM, (c) M3s Zn3p,
(d) Mn2p. Electrodes: (1) as-deposited, (2) after 300 CV cycles finishing under reducing conditions,
(3) after 300 cycles of CV finishing under oxidizing condition.

These XPS results are indicative of the reversibility of the redox processes occurring
on both electrodes, which can deliver a more stable capacity [67]. These valence changes at
the surface are compatible with the maintenance of the tetragonal structure of the spinel,
t-[Zn%*, Mn?*]o-[Mn®*, Mn**, Zn?*],[O], [24]. On the other hand, the ionic liquid is
composed of imidazolium and the tetrafluoroborate anion (BF,; ~). Furthermore, the XPS
Zn2p (Figure 11a) and the Auger region ZnLMM (Figure 11b) show a displacement in
the binding energy to 1022 eV for Zn2pj3,, and 986.7 eV (kinetic energy) for ZnLMM,
values identified as corresponding to ZnF, [68]. However, in this case, these values would
correspond to ZnZ*[BF, ], which is proof of the chemical interaction between the electrode
material and the electrolyte and is responsible for the partial solubilization of Zn in the
electrode—quasi-solid-electrolyte interface. According to FFT HRTEM of the cross-section
(Figure 10g-i), crystalline planes were identified that are compatible with a transforma-
tion from hetaerolite ZnMn, O, (PDF 01-071-2499) to Mn-rich tetragonal phases such as
Zng 75Mny 5504 (PDF 04-016-9607), with the stoichiometry changing across the cross-section
(Figure S6). Figure S6b shows the evolution of the Mn/Zn atomic ratio in the cross-section.
Figure 12 shows a scheme illustrating this transformation from ZnMn,Oy to the Mn-rich
phase Znj_yMn3_O4.

.Zn2+
2 Mn PVP-lonic Liquid ®Zn*
O ® zn2+
LI PVP- LiCIO,

Figure 12. Scheme of the transformation from ZnMnQOy to Znj.,Mn3.,Oj.
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PVP-LiClOy Electrolyte

Figure S7 and Figure 13a show the CV curves with potential windows from £0.4 V to
+1.5 V and scan rates from 25 mV s~! to 200 mV s~! (Table S5). The highest CV specific
capacitance value was 22 F g~! for a scan rate of 25 mV s~! and a potential window of
£1.2 V. Figure 13b shows the results of the GCD tests at constant current densities of
05Ag 1 1.0Ag ! and 2.0 A g! using a potential window of 0-1.2 V.
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Figure 13. SCC with PVP-LiClOy: (a) CV cycles with a +1.2 V potential window at scan rates from
25t0200 mV s~ 1; (b) GCD at current densities of 0.5 A gfl, 1.0A gfl, 20A gfl; (c) GCD cycles 2,
1000, 2000, and 3000; (d) capacitance retention and Coulombic efficiency (GCD cycles).

The SCC with this electrolyte shows the longest charge and discharge time of the
three electrolytes. The discharge time and the specific capacitance were 94 sand 39 Fg~!,
respectively, for an extracted current density of 0.5 A g~! (Figure 13b). At higher current
density, the SSC shows a reduction in discharge time and capacitance (Table S5) due to the
inability of the electrolyte to sustain a high charge transfer rate. The SSC using PVP-LiCIO,
retained 60% of its initial specific capacity after 3000 GCD cycles (Figure 13d). A factor
that can influence the loss of capacitance retention may be the fact that when the residual
amount of ethanol used in the PVP solution that remains in the solid electrolyte is lost, the
ionic conductivity of the PVP-LiClOy solid electrolyte decreases [33].

After 300 CV cycles, the electrodes of the SSC were recovered and washed with
ethanol to remove the electrolyte on the electrode surface. SEM images (Figure 14a) of the
electrode after 300 CV cycles with anodic conditions at the end of the last CV cycle show
a more textured surface than the original electrode surface (Figure 3a). SEM-EDS images
(Figure 14b,c) show a homogeneous distribution of Mn and Zn on the electrode surface, the
same as the TEM-EDS image of the cross-section (Figure 14d,f).
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Figure 14. SCC with PVP-LiClOy as electrolyte after 300 CV cycles: (a) SEM; (b) Zn and (c) Mn EDS
images of the surface of the electrode; (d) Zn and (f) Mn EDS images; (e) HAADF images of the
electrode cross-section; (g) HRTEM image of the cross-section; (h) magnification of the marked zone;
(i) FFT of the film cross-section.

The XPS Zn2p (Figure 15a) and the ZnLMM spectra (Figure 15b) are similar to those
of the corresponding original spinel surface. The Mn2p and M3s-Zn3p peaks are also
similar to those of the ZnMnyOy spinel. After the 300th CV cycle, the Mn2p3, region of the
electrode finished in cathodic conditions shows a very slight contribution to lower binding
energy, 0.2 eV, corresponding to the presence of reduced Mn valences (Figure 15d). The XPS
spectra of the Zn2p, ZnL. MM, and Zn3p-Mn3s regions of the electrode after 300 cycles of CV
are very similar to those obtained for the electrode before CV. If we compare this with what
occurred with the other two electrolytes, the ZnMn,O4 spinel in the SCC with PVP-LiClOy4
was shown to be more stable after 300 CV cycles. Using the fast Fourier-transform (FFT)
HRTEM of the cross-section (Figure 14gh), it is possible to identify crystalline planes
compatibles with a mix of spinel ZnMn,O, (PDF 01-071-2499) and Mn-rich tetragonal
phases, such as Zng 75Mnj 2504 (PDF 04-016-9607), with a stoichiometry change across the
cross-section (Figure S8). In this case, due to the fact that Zn?* has a similar ionic radius
(0.74 A) to that of Li* (0.76 A), the intercalation of Li* into the spinel structure could play a
role in the faradaic processes [69].
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Figure 15. XPS of electrode of SCC PVP-LiClOy: (a) Zn2p, (b) ZnLMM, (c) M3s Zn3p, (d) Mn2p.
Electrodes: (1) as-deposited, (2) after 300 CV cycles finishing under reducing conditions.

Figure 16 shows the Ragone plotat 0.5 A g~!,1.0 Ag~!,and 2.0 A g~! for the three
SCCsg. All of them showed supercapacitor behavior.
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Figure 16. Ragone plot, points corresponding to (1) 0.5 A gfl, 2)1.0A gfl, 3)2.0A gfl, and values
obtained by other authors [70-73].

4. Conclusions

ZnMn; 0Oy thin films were prepared using the spray pyrolysis method and used as
transparent electrodes in symmetric supercapacitors. The electrical resistivity of the films
limited the film thickness of ZnMn,O4. ZnMn, Oy thin films were tested in a three-electrode
electrochemical cell with aqueous 1.0 M Na;SO; as the electrolyte, showing a specific
capacity of 697 F g1 and a specific capacity retention of 70% after 3000 GCD cycles. The
challenge remains to ensure that the specific capacitance obtained with the three-electrode
electrochemical cell does not decrease when the electrode is used in the supercapacitor.
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Of the three electrolytes tested, the SCC with 1.0 M Nay;SO, showed the best specific
capacitance, but also showed the lowest capacitance retention due to irreversible Zn loss
and corrosion of the active electrode material. PVP-ionic liquid and PVP-LiClOy electrolytes
preserve the tetragonal spinel structure of the electrode with changes in stoichiometry to
a Mn-rich Zn;.,M3.,0O4, which can be interpreted as a semi-reversible process of Zn%*
deintercalation/intercalation without evidence of a loss of active electrode material along
the CV cycles. In the case of the electrolyte 1.0 M NaySOy, the loss of Zn?* leads to the
formation of MnO, via Zn;.,M340O4. XPS analysis of the two electrodes forming the
symmetric supercapacitor shows that there is a change in the Mn valence on the electrode
surface, with the presence of Mn** or Mn?* depending on if, at the end of the final cycle, the
electrode was exposed to more oxidizing or reducing conditions. It is observed in the SCC
PVP-ionic liquid that, on the electrode surface, there is an interaction between the anion
[BF; ] of the ionic liquid and the Zn?*. The Ragone plot (Figure 16) of the three SSCs shows
supercapacitor behavior; pseudocapacitance is the main contributor. The electrochemical
results prove that pseudocapacitance is the major contributor to the electrode capacitance
and that SCCs can therefore be considered as pseudocapacitors.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/nano13233017/s1; Figure S1: Three-electrode cyclic voltammogram
curves at different scan rates: 5, 10, 25, 50, 75, 100, 150, and 200 mV s~ !; Table S1: Values of specific
capacitance obtained by different authors; Figure S2: Example of EDS spectrum of the ZnMn,O,
electrode as obtained, and atomic percentages of Mn and Zn; Figure S3: Example of EDS spectrum of
the electrode after 3000 CV cycles and local values of the atomic percentage of the different chemical
elements; Figure 54: Cyclic voltammetry curves of SSC assembled with 1.0 M NaySO;. (a) 0.4 V;
(b) £0.8 V; (c) £1.2 V; (d) +1.5 V with different scan rates: 25 mV s~1, 50 mV s~1, 75 mV s~1,
100 mV s~1, 150 mV s~!, and 200 mV s~1; Table S2: (a) Specific capacitance, energy, and power
density calculated from cyclic voltammetry; (b) GCD measurements of the SSC assembled with
1.0 M NaySO; electrolyte; Figure S5: Cyclic voltammetry curves of SSC assembled with PVP-ionic
liquid. (a) 0.4 V; (b) £0.8 V; (c) £1.2 V; (d) £1.5 V with different scan rates: 25 mV s~ 50mVs,
75mV s, 100 mVs~1, 150 mV s~ 1, and 200 mV s—1; Table S3: (a) Specific capacitance, energy, and
power density calculated from cyclic voltammetry and (b) GCD measurements of the SSC assembled
with PVP-ionic liquid; Figure S6: (a) HAADF image EDS of the cross-section of the SCC (PVP-ionic
liquid) electrode after 300 CV cycles; (b) Mn/Zn atomic ratio and (c) atomic percentages of Mn
and Zn, along the line marked on the HAADF image; Figure S7: Cyclic voltammetry curves of SSC
assembled with PVP-ionic liquid. (a) 0.4 V; (b) 0.8 V; (c) £1.2'V; (d) £1.5 V with different scan rates:
25mVs~1,50mVs~!,75mVs~!, 100 mV s, 150 mV s~1, and 200 mV s~!; Table S4: (a) Specific
capacitance, energy, and power density calculated from cyclic voltammetry; (b) galvanostatic charge—
discharge measurements of the SSC assembled with PVP-LiClO,; Table S5: (a) Specific capacitance,
energy and power density calculated from cyclic voltammetry; (b) galvanostatic charge-discharge
measurements of the SSC assembled with PVP-LiClOy; Figure S8: (a) HAADF image EDS of the
cross-section of the SCC electrode (PVP-LiClOy) after 300 CV cycles; (b) Mn/Zn atomic ratio; and
(c) atomic percentages of Mn and Zn, along the line marked on the HAADF image; Figure S9:
(a) SEM images of the surface of the electrode as obtained. SEM images of the surface of the SSC
electrode after 300 CV cycles using as electrolyte: (b) 1.0 M NaySO4, (c) PVP-ionic liquid, and
(d) PVP-LiClOy [2,45,70,74-78].
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