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Abstract: Environmental pollution has been decreased by using photocatalytic technology in con-
junction with solar energy. An efficient method to obtain highly efficient photocatalysts is to build
heterojunction photocatalysts by combining graphitic carbon nitride (g-C3N4) with layered dou-
ble hydroxides (LDHs). In this review, recent developments in LDH/g-C3N4 heterojunctions and
their applications for organic pollutant removal are systematically exhibited. The advantages of
LDH/g-C3N4 heterojunction are first summarized to provide some overall understanding of them.
Then, a variety of approaches to successfully assembling LDH and g-C3N4 are simply illustrated.
Last but not least, certain unmet research needs for the LDH/g-C3N4 heterojunction are suggested.
This review can provide some new insights for the development of high-performance LDH/g-C3N4

heterojunction photocatalysts. It is indisputable that the LDH/g-C3N4 heterojunctions can serve as
high-performance photocatalysts to make new progress in organic pollutant removal.

Keywords: layered double hydroxides; carbon nitride; heterojunction; photocatalysis; organic
pollutant removal

1. Introduction

Environmental pollution has made it extremely difficult for humanity to flourish sus-
tainably [1–5]. The use of photocatalytic technology to harness clean and reproducible solar
energy is widely considered to be the most effective answer to the issues [6–8]. An effective
method for reducing pollution is to use photocatalytic technology to degrade organic pollu-
tants by using solar irradiation [9,10]. In principle, photocatalysis is an oxidation-reduction
process. The fundamental components of the photocatalytic process, photocatalysts, are
crucial in driving the reaction and harvesting light [11–15]. Consequently, research into
highly effective photocatalysts is crucial for the advancement of photocatalytic technology.

An organic semiconductor having triazine or heptazine as its main constitutional
unit and a layer structure resembling graphite is known as graphitic carbon nitride (g-
C3N4) [7,8,16]. Since the use of g-C3N4 in photocatalytic hydrogen synthesis was initially
discovered [17], it has garnered considerable interest. Because g-C3N4 possesses a smaller
band gap (approximately 2.7 eV) than traditional photocatalysts like TiO2 [18], it can be
stimulated by visible light. Furthermore, g-C3N4 is competitive among other photocatalytic
materials due to its excellent chemical stability, high thermostability, affordable raw ingre-
dients, and straightforward production procedure [19–22]. However, there are numerous
issues with the industrial uses of g-C3N4. Only blue and purple lights, with a wavelength of
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460 nm, may pass through g-C3N4, resulting in a low solar energy utilization rate [23]. The
redox capacity of g-C3N4 is reduced because of the rapid recombination of photocarriers.
The specific surface area (SSA) of g-C3N4 is relatively tiny because of its bulk characteristics.
These flaws prevent g-C3N4 from being developed further for photocatalytic uses. To
increase the photocatalytic performance of g-C3N4, various techniques have been used,
including decorating co-catalysts, doping elements (such as F, O, Ni, Fe, etc.), building
nanostructures, creating heterojunctions [24,25], etc. To boost the separation of charge
carriers in g-C3N4, creating heterostructures with different semiconductors is the most
important technique. Because of the varying Fermi levels between various photocatalysts,
when they come into contact with one another, charge carriers can travel across the semicon-
ductors, which ultimately create an internal electric field (IEF) between them. The electric
field allows the photoinduced electrons and holes to flow in a certain direction, thereby
separating them [26,27].

A highly efficient method for improving photocatalytic performance has recently
been discovered by creating layered double hydroxides (LDHs)/g-C3N4 heterojunctions.
Essentially, LDHs are a class of two-dimensional (2D) hydrotalcite-like clay materials made
up of exchangeable interlayer anions and positively charged host layers [28,29]. LDHs and
their derivatives have been found useful in a variety of sectors, especially photocatalysis,
because of their inexpensive features, excellent chemical stability, customizable composition,
homogeneous distribution of cations and anions, and interchangeable interlayer anions.
Nevertheless, because of the fast recombination of photocarriers, the photocatalytic activity
of single LDHs is unsatisfactory [30]. Therefore, by building LDH/g-C3N4 heterojunctions
with a smart design, it is possible to obtain optimal photocatalysts with top performance
while overcoming the drawbacks of g-C3N4 and LDHs.

Until now, although there have been numerous encouraging reviews on g-C3N4
and LDH-based photocatalysts [7,26,27,29,31–34], a comprehensive review specifically
focusing on LDH/g-C3N4 heterojunctions for organic pollutant removal is unavailable. In
this review, recent developments in LDH/g-C3N4 heterojunctions and their applications
for organic pollutant removal are carefully reviewed. The advantages of LDH/g-C3N4
heterojunctions are first summarized to provide some overall understanding of them. Then,
a variety of approaches to successfully assembling LDHs and g-C3N4 are simply illustrated.
Last but not least, certain unmet research needs for the LDH/g-C3N4 heterojunction
are suggested. This review can provide some new insights for the development of high-
performance LDH/g-C3N4 heterojunction photocatalysts. It is indisputable that the LDH/g-
C3N4 heterojunctions can serve as high-performance photocatalysts to make new progress
toward organic pollutant removal.

2. Advantages of LDH/g-C3N4 Heterojunctions

It has been suggested that one efficient method to enhance the photocatalytic activity
of LDH/g-C3N4 composites is to build 2D/2D heterojunctions. In addition to providing a
large number of surface active sites to create heterojunctions, the 2D structure of LDHs and
g-C3N4 significantly reduces the distance over which photocarriers must move within the
2D/2D heterojunctions, favoring a photocatalytic reaction [35,36]. LDHs are ideal materials
for creating 2D/2D heterojunctions with g-C3N4 because of their suitable band structure
and variable composition [29]. As is known to all, the band gap of LDHs is about 2.0–3.4 eV,
which can be adjusted by changing and regulating the M2+ and M3+, which is advantageous
for the capture of visible light [37]. In addition, the materials’ abundance of basic sites
makes them useful as heterogeneous photocatalysts for various chemical processes [38].
The active sites of LDH/g-C3N4 2D/2D heterojunctions are also changeable due to the
ability to manipulate the cations and anions [39]. Moreover, designing LDHs’ interlayer
space, number of layers, and functionalization with g-C3N4 are all rather simple processes
(Figure 1). There are several advantages to LDH/g-C3N4 heterojunctions as shown below:
(i) Owing to the close contact between LDHs and g-C3N4, photocarriers can conveniently
migrate, which is beneficial for photocarrier separation [40]. (ii) The high surface area in
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LDH/g-C3N4 heterojunctions and their strong light harvesting ability are beneficial for
photocatalytic activity [41]. (iii) LDH/g-C3N4 heterojunctions exhibit a shorter migration
distance than photocarriers, thus reducing the electron-hole recombination [42]. (iv) The
band structure can be simply adjusted [43]. All of these advantages ensure them with huge
application potential in organic pollutant removal.
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Based on the band alignment between the conduction band (CB) and the valence band
(VB) of LDHs and g-C3N4, the heterojunctions formed between them can be classified
into three types: straddling-gap junctions (Type I), staggered-gap junctions (Type II), and
broken-gap junctions (Type III). When two semiconductors with staggered band alignment
are intimately contacted, and there exists a charge migration between the CB in LDHs and
the VB in g-C3N4, a Z-scheme system is formed. This Z-scheme system is characterized by
an efficient electron-hole separation process, leading to enhanced photocatalytic activity.
The charge transfer between the semiconductors results in the formation of a potential
difference at the interface, driving the separation of photogenerated charge carriers and
reducing their recombination rate. This mechanism significantly improves the overall
efficiency and performance of the heterojunction photocatalysts. Therefore, understanding
the band alignment and charge transfer processes in heterojunction systems is crucial for the
design and optimization of advanced photocatalytic materials with superior performance.
Although both the Z-scheme and Type II heterojunctions have the same staggered band
alignment, e−-h+ transfer occurs in opposite directions in these two semiconductors. In
contrast to Type II heterojunctions, where photogenerated e− and h+ are transferred from
high potentials to low potentials, leading to compromised redox capacities, a Z-scheme
heterojunction can drive the photogenerated e− in LDHs to migrate and then recombine
with the photogenerated h+ in g-C3N4. This process leaves the high energy h+ at the VB of
LDHs and the high energy e− at the CB of g-C3N4 for photocatalysis [44].

To confirm the existence of the type of heterojunction, band structure analysis is
crucial [45]. The solid UV-vis absorption and the X-ray photoelectron spectroscopy (XPS)
valence band spectrum are common techniques for obtaining the band structure. Through
the band structure analysis, we can determine what kind of heterojunction it is (Type
I, Type II, and Type III). Notably, Type II and Z-scheme heterojunctions share a similar
staggered band alignment structure. Nevertheless, their charge transfer pathways are
significantly different. In order to determine if the charge transfer route is Z-scheme
or type II heterojunctions, it is therefore critically necessary to investigate it in detail
using some techniques such as (i) self-confirmation by photocatalytic reactions, products,
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and radical species, (ii) selective photodeposition of a noble metal, (iii) in situ XPS, (iv)
femto-second transient absorption spectra (fs-TAS), (v) photoassisted Kelvin probe force
microscopy (photo-KPFM), theoretical calculations, etc. For example, the work function
(Φ) plays a crucial role in investigating the energy band alignment and charge transfer of
heterojunctions, making it an essential physical parameter [46]. We can also determine Φ
through theoretical calculations and further determine the charge transfer route.

3. Synthetic Strategy of LDH/g-C3N4 Heterojunctions

To obtain good photocatalytic performance, the development of the LDH/g-C3N4
heterojunctions is crucial. The principal building techniques, such as electrostatic self-
assembly, in situ coprecipitation, hydrothermal, solvothermal, and calcination strategies,
depend on the assembly strategies of LDHs and g-C3N4. These synthesis techniques are
covered in depth in the sections that follow.

3.1. Electrostatic Self-Assembly Method

Layered composites are frequently manufactured via electrostatic self-assembly. It uti-
lizes the electrostatic interactions between materials with various charges [47–49]. During
the self-assembly process, the electrostatic adsorption with different charges mainly propels
the assembly, while electrostatic repulsion between like charges controls the assembly of
each layer. In contrast to the electropositive host layer of the LDHs created by the orderly
arrangement of metal cations, the suspension of virgin g-C3N4 in aqueous solution is elec-
tronegativity due to –NH2 deprotonation [50,51]. By means of electrostatic self-assembly,
LDH/g-C3N4 heterojunctions can be produced thanks to these characteristics. LDHs and g-
C3N4 are exfoliated to nanosheets during the synthesis process before self-assembly. There
are numerous ways to exfoliate LDHs using mechanical stirring or ultrasonic treatment [52].
For example, Tahir and co-workers reported 2D/2D CoAl-LDH/g-C3N4 heterojunctions
with a strong interface through the self-assembled deposition of CoAl-LDH flakes onto
layered g-C3N4 nanosheets (Figure 2) [53]. They further used the CoAl-LDH/g-C3N4
product for MDR and methane bi-reforming to reduce flared gas (methane) with CO2.
Mg-Al-LDH/g-C3N4 materials were created by Xu and co-workers using an electrostatic
self-assembled method. In this work, the scientists initially produced Mg-Al-LDH through
deposition with NaOH and g-C3N4 from urea by thermal polymerization. Then, g-C3N4
nanosheets and Mg-AlLDH nanosheets were created using a combination of the hydrother-
mal method and sonication exfoliation. The produced g-C3N4 and Mg-Al-LDH showed
zeta potentials of 27.3 mV and 52.7 mV, respectively. The Mg-Al-LDH/g-C3N4 photocata-
lyst was produced by immediately combining the two photocatalysts, which caused the
g-C3N4 and Mg-Al-LDH to electrostatically interact with each other. The scientists used
a transmission electron microscope (TEM) to examine the photocatalyst morphology in
order to confirm the 2D/2D assembly of Mg-Al-LDH and g-C3N4 and discovered that
Mg-Al-LDH flakes were evenly distributed onto g-C3N4 sheets.

3.2. In Situ Coprecipitation Strategy

By introducing a precipitating agent, the synchronous precipitation of more than one
cation in a uniform solution is known as coprecipitation. Because of the straightforward
manipulation, cheap and controllable reaction circumstances, and homogeneous compo-
sition, this technology has been a significant means of preparing composites with two
or multiple metals [10,54,55]. The process of coprecipitation is also frequently utilized to
create LDHs [56]. By combining the metal cations needed for the host layer with alkaline
liquor, and then allowing the suspension to age, the necessary LDHs can be produced. The
interlayer anions of the LDHs are present in the mixed cationic solution. By adjusting the
reaction parameters, e.g., solution pH, temperature, and aging time, the LDH size can be
tailored. The basic process for generating LDH/g-C3N4 through coprecipitation involves
depositing the metal cations on the g-C3N4 nanosheet once they have been electrostatically
deposited onto it.
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By using in situ coprecipitation, Li and colleagues [57] have successfully created a
2D/2D Zn-Cr-LDH/g-C3N4 heterojunction. Figure 3 depicts the precise synthesis proce-
dure (from I to V). The modified g-C3N4 sheets, also known as g-C3N4-C(N) sheets, were
originally created by the authors by combining urea with citric acid. They were then formed
into a suspension. Through electrostatic attraction, Zn2+ and Cr3+ were deposited onto the
g-C3N4-C(N) nanosheet during this procedure. After that, NaOH was used for depositing
Zn2+ and Cr3+ to create Zn-Cr-LDH on the surface of g-C3N4. The photocatalytic activity
of the Zn-Cr-LDH/g-C3N4-C(N) product used by the authors to further photocatalyze the
breakdown of Congo red was obviously higher than Zn-Cr-LDH or g-C3N4 alone. An in
situ crystallization technique, used to create Zn-AlLDH/g-C3N4 composites, was disclosed
by Yuan and co-workers [58]. In this work, Zn2+ and Al3+ coprecipitated to in situ produce
Zn-Al-LDH crystals on g-C3N4 nanosheets. The microstructure of Zn-Al-LDH/g-C3N4 was
studied by using TEM, and they discovered the comparatively large g-C3N4 nanosheets
were homogeneously coated on Zn-Al-LDH flakes.

3.3. Hydrothermal Strategy

The hydrothermal strategy is a popular method to create composites at high temper-
atures and high pressures in a pressure-tight reactor by using water as a solvent [59–62].
The fundamental benefit of this technology is the ease with which a crystalline product can
be produced via a straightforward hydrothermal procedure. Controlling the reaction condi-
tions also makes it easy to develop the morphology and structure of materials [63]. The
process of hydrothermal oxidation, reduction, precipitation, breakdown, polymerization,
and so forth are further subcategories of the hydrothermal method depending on the type
of reaction that occurs. Numerous researchers have employed the hydrothermal precip-
itation approach to create LDH/g-C3N4 heterostructures. Under mild temperature and
pressure circumstances, it can be challenging for some metal cations to coprecipitate and
produce layered hydroxides, but in a hydrothermal environment with high temperature
and pressure, the reaction is simpler to carry out. Additionally, the LDH/g-C3N4 products
that are produced typically have a nice 2D/2D morphology.
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By using a hydrothermal process, Liu and colleagues [64] have created a Zn-Cr-
LDH/g-C3N4 composite (Figure 4). In their research, bulk g-C3N4 was made via thermal
polymerization using urea as precursors, and was treated with ultrasound to produce a
g-C3N4 nanosheet suspension. The suspension was then mixed with Zn2+, Cr3+, and lye.
The hydrothermal reaction was carried out for 24 h under 120 ◦C. The precipitates from the
autoclave were eventually collected and dried to produce the Zn-Cr-LDH/g-C3N4. Chew
and co-workers [65] employed urea and NH4F instead of NaOH lye for the hydrothermal
preparation of Co-Al-LDH/O-doped g-C3N4 in order to create LDH/g-C3N4 with uni-
form 2D/2D morphology. In order to prevent the nonuniform precipitant dispersion and
response rate from causing unequal LDH sizes, Co2+ and Al3+ were precipitated in this
technique using the hydrolysis of urea. The hydrolysis of urea produced NH3 and CO2.
While the release of CO2 served to agitate the reaction mixture, the produced NH3 raised
the pH value. As a result, Co-Al-LDH flakes eventually precipitated in a homogenous
fashion, further producing high-purity products of consistent size.

3.4. Solvothermal Method

The hydrothermal process is improved upon by the solvothermal method. Organic
solvents are used as the reaction medium. Although the hydrothermal approach has numer-
ous benefits, it is only capable of producing a small number of non-oxides, such as carbides,
nitrides, and phosphides, because both the reactants and the products can hydrolyze or
react with H2O [32,66,67]. Nonaqueous solvents can be used to properly execute these
reactions. Additionally, under high-pressure conditions, several organic solvent properties,
such as density, viscosity, and surface tension, fluctuate greatly, which can create specialized
media for numerous chemical processes [68]. Due to some organic solvents’ lower boiling
points, the gas pressure in solvothermal systems can be higher than that in hydrothermal
systems at the same temperature, and the higher pressure encourages the crystallization
of the product [69]. When building the LDH/g-C3N4 heterostructure, an organic solvent
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can increase the reaction precursors’ dispersity (for instance, a g-C3N4 suspension), which
boosts their chemical reactivity and makes it easier to build 2D/2D structures. Given
the benefits, the solvothermal approach was frequently used in investigations to create
LDH/g-C3N4 photocatalysts.
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Recently, Zhao and co-workers [70] have created Zn-Al-LDH/g-C3N4 composites
using the solvothermal technique (Figure 5). Ethylene glycol (EG) was used as the reac-
tion environment in their research. Through calcining the urea and suspending it in EG
with NaOH, g-C3N4 was prepared. The solvothermal procedure then involved combining
the two EG suspensions. The TEM observation showed that g-C3N4 sheets were evenly
distributed in EG and that the Zn-Al-LDH/g-C3N4 had a suitable lamellar structure. In ad-
dition, it was discovered that the Zn-Al-LDH interlayer spacing (1.03 nm) was greater than
ordinary LDHs intercalated with carbonate (0.73 nm). In order to boost photocatalytic effi-
ciency, a comparatively large interlayer spacing can offer larger room for reactant transport
and more sites that are active for photosynthesis [71]. Lian and co-workers [72] synthesized
a 2D/2D NiCo-LDH/g-C3N4 Z-scheme heterojunction through the solvothermal tech-
nique, which displayed improved photocatalytic efficacy under visible light illumination
for the breakdown of tetracycline hydrochloride (TC) and the formation of hydrogen (H2).
For the NiCo-LDH/g-C3N4, a Z-scheme mechanism was suggested, demonstrating the
heterojunction’s twin benefits of strong redox capacity.

3.5. Calcination Method

A substance is heated during calcination to cause it to evaporate H2O. This technique
is used to create composites of calcined LDH and g-C3N4. LDHs are utilized as starting
materials in the synthesis process, where they are calcined to create mixed metal oxides
(MMOs) through geometric modification [73,74]. The produced MMOs exhibit excellent
thermal stability and can be widely distributed. The production of metal oxides with
an increased specific surface area and porosity allows for the further enhancement of
photocatalytic efficiency [75]. Furthermore, calcining LDHs can create spinels, which can
improve their capacity to capture visible light [76]. The literature that is currently accessible
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indicates that there are three calcination techniques to produce a calcined LDH/g-C3N4
heterojunction. First, the produced LDH/g-C3N4 composites are immediately calcined. The
second technique involves first calcining LDH to MMO and then calcining the compounds
of MMO and g-C3N4 [77]. The third strategy, which was more often employed, involves
co-calcining the raw materials for g-C3N4 and LDH [31]. Figure 6 illustrates the synthesis
of dual-S-scheme g-C3N4/Ti3C2T/Co2Al0.95La0.05-LDH composites through a simple calci-
nation method [78]. Benefits of the g-C3N4/Ti3C2T/CoAlLa-LDH dual-S-scheme assembly
include faster charge transfer between the conductor and semiconductor. Additionally,
a simple coprecipitation technique was used to create a nanocomposite with a notewor-
thy 2D/2D heterojunction made of CoFe-LDH loaded on g-C3N4 nanosheets [79]. When
compared to pure g-C3N4 and CoFe-LDH alone, the prepared nanocomposite showed
noticeably higher photocatalytic performance for TC removal.
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Numerous preparation techniques, including electrostatic self-assembly, in situ co-
precipitation, hydrothermal, solvothermal, and calcination, are beneficial for achieving a
close and robust interface between g-C3N4 and LDH, leading to improved photocarrier
migration. Powerful interactions between them, such as covalent bonds, ionic bonds,
coordination bonds, hydrogen bonds, and van der Waals forces, may eventually form and
serve as pathways for charge transfer while enhancing interface interaction. Especially
with the electrostatic self-assembled approach, the original architecture may be conserved
and a closely touching interface can be formed. They can be guaranteed to have a homo-
geneous architecture and small size distribution by using a self-assembly technique. On
the other hand, the calcination approach results in a low photocatalytic activity due to the
comparatively inadequate interface contact between them. But it is simple and cheap and
more suitable for actual industrial production (Table 1).
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Table 1. Comparison between different methods for the preparation of LDH/g-C3N4 heterojunctions.

Synthesis Strategy Advantages Disadvantages

Electrostatic self-assembly method Very suitable for the preparation of 2D/2D
LDHs/g-C3N4

Time- and cost-consuming, complicated
preparation process, and low efficiency

In situ coprecipitation method Facile, eco-friendly, and highly efficient Easy to agglomerate

Hydrothermal and
solvothermal method

(i) Facile, eco-friendly, and highly efficient
(ii) Produced photocatalysts with a relatively
high crystallinity, small size distribution, and
controllable architecture

Complex preparation process

Calcination method Facile, eco-friendly, and effective, and
reduced aggregation

Relatively poor interface contacts
between two semiconductors

4. LDH/g-C3N4 Heterojunctions for Organic Pollutant Removal

Because g-C3N4 and LDHs can create a heterojunction efficiently, it is an unusual
approach to increase photocatalytic performance. This is because the as-produced electron-
hole pairs are effectively separated. The property of LDH/g-C3N4 photocatalysts can be
significantly enhanced via a rational 2D/2D structure design, allowing for their widespread
usage in photocatalytic organic pollution removal. The photocatalytic performance and
mechanism of several LDHs/g-C3N4 are examined and addressed in the section that follows.

Divalent cations such as Co2+, Mg2+, Ni2+, Zn2+, etc. as well as trivalent cations such
as Al3+, Cr3+, Fe3+, Mn3+, Ti3+, etc. were employed to build LDH/g-C3N4 heterojunctions,
according to the existing literature. These LDH/g-C3N4 heterojunctions with improved
photocatalytic performance were explored for organic pollutant removal. For instance, the
ZnAl-LDH/g-C3N4 photocatalyst was described by Shanker and colleagues [80] using a
microwave-assisted technique. Compared to bare g-C3N4 and ZnAl-LDH photocatalysts,
the optimized ZnAl-LDH/g-C3N4 compound showed the greatest photodegradation rate
constant of 1.22 × 10−2 min−1 for ciprofloxacin (CIP). Khataee and co-workers [81] re-
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ported a g-C3N4/ZnFe LDH binary heterojunction for the photodegradation of tetracycline
(TC) with the aid of Oxone. The effective combination of g-C3N4/ZnFe LDH/Oxone/UV
achieved an evidently improved degradation rate for TC. Thus, it can be also effectively
used for the removal of other organic pollutants. Using an easy one-step in situ hydrother-
mal process, mesoporous g-C3N4/Zn-Ti LDH-laminated van der Waals heterojunctions
were effectively produced [82]. A laminated van der Waals heterostructure was successfully
generated between the electronegative g-C3N4 nanocrystal and the electropositive Zn-Ti
LDH, thanks to a strong electrostatic attraction between them. As a result, the resulting het-
erojunctions demonstrated superior photocatalytic performance for eliminating ceftriaxone
sodium completely (>97%). This simple method for creating mesoporous g-C3N4/Zn-Ti
LDH-laminated van der Waals heterojunctions provides new information for creating
high-performing photocatalytic materials.

Cerium (Ce) has been widely used as a dopant in LDHs/g-C3N4 because of its low
price and outstanding redox performance [83,84]. Xu and co-workers [85] reported var-
ious g-C3N4/Ce-doped MgAl-LDHs via a solvothermal strategy (Figure 7a). g-C3N4/
MgAl0.80Ce0.20-LDH has a large SSA (52.71 m2 g−1) and a good separation efficiency of
photocarriers, owing to the coupled effect of Ce-doping and g-C3N4-LDH heterojunctions
(Figure 7b,c). As a result, ~49% Congo red (CR) is adsorbed through g-C3N4/MgAl0.80Ce0.20-
LDH, and the CR degradation efficiency reaches 90% within 180 min (Figure 7d,e). They
also found that both photogenerated h+ and superoxide radical ·O2− could obviously
improve photocatalytic CR oxidation performance (Figure 7e). A more effective transfer of
photocarriers between g-C3N4 and MgAl0.80Ce0.20-LDH is likely the cause of the enhanced
photocatalytic property.
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Figure 7. (a) Diagrammatic sketch of fabrication route of g-C3N4/MgAl0.80Ce0.20-LDH. BJH N2

adsorption-desorption isotherms (b) and pore size distribution (desorption) (c) of g-C3N4 and g-
C3N4/Ce-doped MgAl-LDHs. CR adsorption capacity (d) and pseudo-first-order kinetic plots for
CR photodegradation (e) of g-C3N4 and g-C3N4/Ce-doped MgAl-LDHs. (f) Mechanism explanation
of photocatalytic degradation via g-C3N4/Ce-doped MgAl-LDHs. Reproduced with permission [85].

Dai and co-workers [41] reported g-C3N4@Ni-Ti LDH nanocomposites with a high
SSA through hydrothermal strategy. These nanocomposites were utilized for the sonopho-
tocatalytic removal of amoxicillin (AMX). The results showed that when AMX is photocat-
alytically degraded under visible light irradiation, g-C3N4@Ni-Ti LDH nanocomposites
perform better than their individual g-C3N4 and Ni-Ti LDH. He and his co-workers [86] pre-
pared ZnM-LDH/g-C3N4 (M = Al, Cr) Z-scheme heterojunctions through the electrostatic
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self-assembled strategy. ZnAl-LDH and ZnCr-LDHs/g-C3N4 may be desulfurized by pho-
tocatalytic oxidation/extraction in 3 h for model oil, with a 99.8 and 96.6% desulfurization
rate, respectively. Mahjoub and co-workers [87] reported a new Bi-doped NiAl-LDH/g-
C3N4 2D/2D heterojunction for the effective photodegradation of ciprofloxacin (Cipro).
Under visible light irradiation, the optimal composite (40%-g-C3N4/LDH) demonstrated
86% Cipro elimination effectiveness within 180 min. The enhanced flow of photocarriers
to the surface and close face-to-face contact between two semiconductors in heterojunc-
tion were the key causes of the aforementioned boost in catalytic activity. This method
offers a fresh viewpoint on creating 2D/2D heterojunctions between LDH and other 2D
semiconductors for the simultaneous detection and photodegradation of antibiotics.

ZnAl-LDH and a non-metal, boron immersion have been used to structurally modify
g-C3N4 in order to increase its light absorption. The obtained 40% B-g-C3N4 and 30%ZnAl-
LDH/g-C3N4 displayed an increased SSA of 14.3137 and 26.292 m2/g, illustrating 90.25
and 86.31% phenol photodegradation within 270 min [88]. Lin and co-workers [79] reported
a CoFe-LDH/g-C3N4 with a notable 2D/2D heterojunction via a simple co-precipitation
strategy. When compared to pure g-C3N4 and CoFe-LDH, the CoFe-LDH/g-C3N4 nanocom-
posite showed noticeably higher catalytic performance toward TC photodegradation. Jiao
and co-workers [89] reported halogen-doping (F and Cl) g-C3N4-modified ZnAl-LDH
(FCCN/LDH) nanocomposites via a simple coprecipitation process for the photodegra-
dation of TC. In contrast to single FCCN and LDH, the FCCN/LDH showed improved
photocatalytic activity, which is because of the proper band alignment and a Z-scheme
migration mechanism. The tenable Z-scheme mechanism indicated that the primary free
radicals involved in photodegradation are h+ and ·O2− active species (Figure 8). In addition,
flower-like g-C3N4/NiZnAl-LDH S-scheme heterojunctions with oxygen vacancies [90]
and vulcanized ZnAl LDH-modified g-C3N4 heterojunctions [91] also displayed improved
photocatalytic performance.
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The photocarriers’ separation can be increased by connecting LDH and g-C3N4, yet
some LDH/g-C3N4 photocatalysts have charge carriers that are difficult to further migrate
and engage in redox processes [92]. Building LDH/g-C3N4/X ternary photocatalysts,
therefore, needs to be taken into consideration, where X stands for another photocatalyst
or noble metal. This plan is anticipated to improve light harvesting and the transfer of
photocarriers. Ag and reduced graphene oxide (RGO) were predominantly utilized to
achieve these targets, according to the research that is currently available. For instance,
Fazaeli et al. [93] prepared a new Ag-bridged dual Z-scheme Ag/g-C3N4/CoNi-LDH plas-
monic heterojunction by a simple hydrothermal method. The most favorable degradation
conditions for a TC solution were found to be 7 pH, 40 g L−1 catalyst dosage, 30 mg L−1 TC
concentration, and a 100 min irradiation period. Pazhanivel and co-workers [94] reported
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an RGO-supported g-C3N4/NiMgAl LDH hybrid for achieving high-performance pho-
tocatalytic organic pollution removal. A ternary heterojunction consisting of CoAl-LDH,
g-C3N4, and RGO (LDH/CN/RGO) with a noticeable 2D/2D/2D structure utilizing a facile
hydrothermal strategy was reported recently [92] (Figure 9a). Of all the manufactured cata-
lysts, the LDH/CN/RGO ternary heterojunction with RGO and LDH contents of 1 weight
percent and 15 weight percent, respectively, displayed the highest degrading efficiency
(Figure 9b,c). It also showed outstanding stability throughout recycling studies. Due to
the unique 2D/2D/2D configuration of the constituent CN, LDH, and RGO, speeding up
the photocarriers’ transport processes to effectively impede their recombination resulted in
enhanced photocatalytic performance (Figure 9d,e). Furthermore, the possible photodegra-
dation routes for both CR and TC were proposed on the basis of the intermediate products
(Figure 9f). Therefore, with their high performance and ability to respond to visible light,
the current LDH/CN/RGO ternary heterojunctions show great potential for real-world
uses in solar energy transformation and environmental preservation.
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the photodegradation of CR (b) and TC (c). PL spectra (d) and photocurrent responses (e) of CN,
LDH/CN, CN/RGO, and LDH/CN/RGO photocatalysts. (f) Mechanism explanation of photocat-
alytic degradation of CR and TC over LDH/CN/RGO. Reproduced with permission [92].

Besides the above common LDH/g-C3N4 heterojunctions, researchers have also made
great efforts to develop other candidates to prepare LDH/g-C3N4 heterojunctions, e.g.,
NiFe-LDH/g-C3N4 [95], g-C3N4@NiAl-LDH [96], g-C3N4@NiFe-LDH [97], g-C3N4/MgZnAl-
calcined LDH [98], ZnMgAl LTH/ZnO/g-C3N4 [99], Co-Al LDH/g-C3N4-CoFe2O4 [100], g-
C3N4/ZnFeMMO [76], g-C3N4@LDH/NCQDs [101], NiFe-LDH/NRGO/
g-C3N4 [102], ZnCr-LDH/g-C3N4-C(N) [57], In2S3/g-C3N4/CoZnAl-LDH [103], ZnTi/
C3N4/Ag LDH [104], etc. As exhibited in Table 2, g-C3N4@Ni-Ti LDH [41] displayed a
very high photocatalytic activity by sonophotocatalytic process, and the proposed sonopho-
tocatalytic process and the relatively low cost give them huge application prospects.
Furthermore, multicomponent LDH/g-C3N4-based photocatalysts such as CoAl-LDH/g-
C3N4/RGO [92] displayed some unique merits, and thus it is more worthy of attention.
Moreover, for more clarification and improvement, a deeper understanding of the charge
migration pathway and the photocatalytic mechanism is essential. Beyond question,
LDH/g-C3N4 systems will have huge potential in photocatalytic organic pollutant removal.
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Table 2. Comparison of the photocatalytic organic pollution removal property over LDH/g-C3N4

systems.

Photocatalysts Preparation
Strategy

Mass
(mg) Light Source

Target
Pollutant/Initial
Concentration

Degradation
Time (min)
and Rate (%)

Kapp
a

[10−2 min−1] Ref.

ZnAl-LDH/
g-C3N4

Microwave-
assisted
method

30 35 W Xe
arc lamp CIP/20 mg L−1 140 (~84.1) 1.22 [80]

g-C3N4/
ZnFe LDH

Mechanical
stirrer method 50–300 6-W UVC lamp TC/10–55 µM 30 (~92.4) - [81]

g-C3N4/
Zn-Ti LDH

Hydrothermal
method 100 300 W xenon

lamp, >420 nm
Ceftriaxone
sodium/10 mg L−1 240 (~97) 1.14 [82]

g-C3N4/
MgAl0.80Ce0.20-
LDH

Solvothermal
method 20 5 W LED lamp,

400–760 nm CR/50 mg L−1 180 (~90) 1.01 [85]

g-C3N4@Ni-Ti
LDH

Hydrothermal
method - 400 W Hg lamp AMX/1000 mg L−1 75 (~99.5) - [41]

ZnM-LDH/
g-C3N4
(M = Al, Cr)

Electrostatic
self-assembly
method

180 500 W
mercury lamp Model oil/90 mL 180 (~99.8) - [86]

Bi-doped
NiAl-LDH/
g-C3N4

Annealing
method 50

400 W
Mercury-vapor
lamp, >400 nm

Cipro/10 mg L−1 180 (~86) - [87]

ZnAl-LDH/
g-C3N4

Thermal
condensation - - Phenol/700 mg L−1 270 (~62.38) - [88]

CoFe-LDH/
g-C3N4

Coprecipitation
method - 5 W LED light,

>420 nm TC/40 mg L−1 180 (~83.8) - [79]

FCCN/LDH Coprecipitation
process 50 300 W Xe lamp TC/20 mg L−1 120 (~72.13) 2.314 [89]

g-C3N4/
NiZnAl-LDH

Hydrothermal
method 25 500 W Xenon

lamp, >400 nm TC/10 mg L−1 120 (>99) 2.329 [90]

ZnAlSx@
g-C3N4

Hydrothermal
method 50 300 W Xe lamp TC/20 mg L−1 180 (~94.05) - [91]

Ag/g-C3N4/
CoNi-LDH

Hydrothermal
method 40 100 W Xe lamp TC/30 mg L−1 100 (~86.3) - [93]

RGO/g-C3N4/
NiMgAl LDH

Hydrothermal
method 20 250 W

mercury lamp MB/50 mg L−1 75 (~95.14) 1.8 [94]

LDH/CN/RGO Hydrothermal
method 50 300-W

halogen lamp TC/20 mg L−1 30 (>99) - [92]

NiFe-LDH/
g-C3N4

Hydrothermal
method 20 500 W Xenon

lamp, >420 nm - 60 (~96.81) 5.457 [95]

g-C3N4@
NiAl-LDH

Hydrothermal
method 600

500W
high-pressure
Hg lamp.

- 180 (~99) - [96]

g-C3N4@
NiFe-LDH

Hydrothermal
method 50 500 W Xenon

lamp, >420 nm - 240 (~99) 1.52 [97]

g-C3N4/
MgZnAl-
calcined LDH

Template
method 250

300 W
Xenon lamp,
>420 nm

- 240 (>99) - [98]

ZnMgAl LTH/
ZnO/g-C3N4

Stirring
strategy 10 300 W

Xenon lamp MB/50 mg L−1 75 (>99) - [99]
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Table 2. Cont.

Photocatalysts Preparation
Strategy

Mass
(mg) Light Source

Target
Pollutant/Initial
Concentration

Degradation
Time (min)
and Rate (%)

Kapp
a

[10−2 min−1] Ref.

Co-Al
LDH/g-C3N4-
CoFe2O4

Stirring
strategy - 50 W

LED lamp - - 2.4 [100]

g-C3N4/
ZnFeMMO

Stirring
strategy 25 500 W Xenon

lamp, >300 nm
Sulfadiazine/
5 mg L−1 240 (~96.4) 1.317 [76]

g-C3N4@LDH/
NCQDs

Hydrothermal
method 100 300 W Xenon

lamp, >400 nm TC/20 mg L−1 120 (~90) - [101]

NiFe-LDH/
NRGO/g-C3N4

Calcination-
electrostatic
self-assembly
method

20 - RhB/20 mg L−1 120 (~97) - [102]

ZnCr-LDH/
g-C3N4-C(N)

Coprecipitation
method 50 500 W Xenon

lamp, >400 nm CR/20 mg L−1 60 (~70) 1.924 [57]

In2S3/g-C3N4/
CoZnAl-LDH

Hydrothermal
method 150 300 W Xe lamp,

320–780 nm MO/50 mg L−1 120 (~90.75) - [103]

ZnTi/C3N4/
Ag LDH

Self-assembly
method 150 300 W Xe lamp Phenol/20 mg L−1 210 (~76.6) - [104]

a Kapp represents the reaction rate constant.

5. Conclusions and Outlook

In conclusion, developing LDH/g-C3N4 heterojunctions is a successful method for
achieving effective photocatalysis for the removal of organic pollution. The separation and
transfer of photoinduced charge carriers can be substantially facilitated by the planar config-
uration and close contact of LDH and g-C3N4, which improves photocatalytic performance.
For building an LDH/g-C3N4 heterojunction with the 2D/2D and suitable band structures,
a variety of synthesis techniques have been reported, including electrostatic self-assembly,
in situ coprecipitation, hydrothermal, solvothermal, and calcination strategies. An excel-
lent photocatalytic property in the breakdown of organic pollutants may be attributed
to the synergistic interaction between LDH and g-C3N4. The research investigations on
LDH/g-C3N4 photocatalysts are still in their early stages, despite the many successes that
have been made, and it is clear that more study is required. The following examples of
opportunities and difficulties call for greater emphasis and investigation:

(i) Matching the redox potential of a particular photocatalytic process with the CB (or
VB) potential of LDH/g-C3N4 photocatalysts is crucial. This is likely to modify the
CB (or VB) position of LDHs/g-C3N4 to offer high redox potential for a variety of
photocatalytic processes since the band structure of the compound is customizable.
The precise adjustment technique, however, requires more research.

(ii) Gaining an in-depth understanding of the transfer mechanism of charge is also cru-
cial. The precise charge transfer pathway and photocatalytic process can be further
provided using theoretical calculations and characterization methods [61,105,106] in-
cluding in situ FTIR, in situ XPS, photo-KPFM, and synchrotron radiation. The search
for additional LDH can combine with g-C3N4 to improve photocatalytic activity,
which is made easier with a greater knowledge of the mechanism.

(iii) Constructing ultrathin 2D/2D structures is highly worth considering. The ultrathin
LDHs and g-C3N4 have been suggested as photocatalysts in certain investigations.
This is also likely to construct ultrathin LDH/g-C3N4 heterojunctions that will enable
more rapid photocarrier migration because of the further shortened migration distance
and decreased photocarrier recombination.



Nanomaterials 2023, 13, 3066 15 of 19

(iv) Enhancing the capacity to capture visible or even near-infrared light, which accounts
for over half of solar radiation, is strongly advised. Even while LDH/g-C3N4 photocat-
alysts can work with visible light, surface sensitization, doping, band gap correction,
and other techniques can help them gather sunlight more effectively.

(v) Expanding the applications of LDH/g-C3N4 photocatalysts in light of their special
advantages is essential to creating a sustainable society.

(vi) Some effective enhancement strategies, such as morphological modulation, loading
co-catalysts, interface engineering, doping, and exposing more reactive facets, should
be seriously studied to achieve an actual application of LDH/g-C3N4 systems.

(vii) Improving the ability to harness both visible light and near-infrared light, which
collectively represent more than 50% of solar irradiation, is paramount. LDH/g-C3N4
photocatalysts show potential for efficient operation under visible light, and there are
also opportunities to further enhance sunlight harvesting capacity through techniques
such as surface sensitization, doping elements, adjusting the band gap, and more.

Looking ahead, this developing field offers both many prospects and difficult problems.
This review is thought to be able to offer some fresh and sophisticated perspectives for

directing the logical design of LDH/g-C3N4 systems for organic pollution removal. There
is no doubt that the LDH/g-C3N4 systems will soon have useful industrial applications.
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