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Figure S1. Schematic illustration of atomic displacements in the three vibration modes, with the view 
along the a-axis shown [46]. 

 

Figure S2. Schematic diagram of Raman measurement experiment. A polarized laser passes through a 
half-waveplate and excites the sample, and the excitation signal is detected by an analyzer placed in 
parallel. α is the angle between the laser polarization direction and the sample optical axis direction. 

The intensity of the Raman vibrational modes is indicated by [47]: 
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where ei and eo are the unit polarization vectors of the incident and scattered laser, the incident 
laser polarization direction is parallel to the z-axis, and the analyzer is fixed along the z-axis, 
so there are ei = (0 0 1)T , eo=(0 0 1).R is the Raman tensor for the different modes, denoted as: 
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Define the angle between the x-axis and the a-crystal axis as β. The rotation matrix of the 
Raman tensor is M, and the rotated Raman tensor is R', 
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Also rotating the half-wave plate counterclockwise requires the introduction of the Jones 
matrix Jλ/2: 
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Thus, the intensity of the Raman mode is described as: 
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Substituting the above equation into Eq. S6 yields: 
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which are fitted the experimental ones well in Figure 2b. 

  

Figure S3. (a)Schematic diagram of Mueller matrix ellipsometry principle. θ denotes the angle of 
incidence, p and s denote the vertically decomposed components of the light wave. The coordinate system 



x-y-z is the ellipsoid system coordinate system. (b) Schematic diagram of an ellipsometry experiment. 
When the sample is rotated in the a-c plane, the azimuth angle is defined as the angle between the a-axis 
after rotation and before rotation. For the measurement, the sample is placed on the sample stage as 
shown in Fig. S3b, at which time it is noted as azimuth = 0°, and then the azimuth is changed by rotating 
the sample stage. Measurements were made at 15-degree azimuthal intervals, and each measurement 
included ellipsometric data at five angles of incidence. Measurement position corresponding to the data 
used for ellipsometric fitting is also shown. The Euler angles ψ, θ are fitted so that the crystal axes are 
parallel to the elliptic-partial coordinate system, which results in ψ= -14.655 ° , θ= 62.127 °  after an 
anisotropic fit such that the a-axis and c-axis are parallel to the x-axis and y-axis, respectively. 

 
Figure S4. Mueller matrix spectra of Ta2NiS5 with incidence angles from 55° to 70° and their best-fit 
curves.  

The ellipsometric data analysis is done by modeling and fitting the experimental data to 
get the results, where the model includes both the physical structure and the optical constants 
of each part. In our experiments, the physical structure consists of Ta2NiS5 single crystals and 
the air above them, where (1) the roughness is not considered, and its fitting or not has almost 
no effect on the RMSE; (2) since the thickness has no effect on the fitting process, the Ta2NiS5 
bulk samples are analyzed directly as the substrate; and (3) the Ta2NiS5 is opaque, and therefore 
the effect of backside emission is not considered, and the mathematical model B-spline is 
directly used in the fitting. For the optical constants, the dielectric tensor of Ta2NiS5 is used as 
a parameter for fitting, and for orthorhombic crystal systems, the dielectric tensor can be 
expressed by the dielectric functions εa, εb and εc in the direction of the three crystal axes, which 
are replaced with physical oscillator models, including Gaussian model, Tauc-Lorentz model, 
and so on, after being fitted by the B-splines. 
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where εGaussian and εTauc-Lorentz are the Gaussian model and Tauc-Lorentz model. They can be 
respectively expressed as : 
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In Eq. S3 and S4, A, η, and En refer to the amplitude, the damping coefficient, and the center 
energy of the oscillators, respectively. E0 is the peak transition energy and Eg is the bandgap 
energy. εr are converted from the Kramers-Kronig relation using εi. 

For the analysis of our data, the ellipsometric parameters ψ and Δ were first fitted using 
B-splines, this is because there is little priori knowledge about the optical properties of 
Ta2NiS5, which prevents us to construct a suitable parameterized dispersion model in the first 
step of the ellipsometric fitting. The B-spline function is a pure mathematical model and has 
the advantage that it doesn’t need priori knowledge about the optical transitions of the 
investigated material and can quickly achieve rough initial values for the dielectric functions. 
Then the model was converted to a biaxial crystal and the Euler angle fitting is turned on. Since 
this material belongs to the orthorhombic crystal system and the angle between the three crystal 
axes is 90°, it is not necessary to enter the crystal axis clamping angle. Then Mueller matrix is 
fitted with this model, and the dielectric function of the three directions is obtained by three B-
splines, and then the dielectric function of the three directions is physically parameterized, 
respectively. After the parameterization is completed, the Mueller matrix is fitted again, and 
the final result is obtained. The results show that there are 1, 0, and 3 Gaussian models and 9, 
9, and 10 Tauc-Lorentz models in the a, b, and c directions, respectively, and the specific fitting 
results are shown in Table S1. 

 

 

 

 

 

 

 

 

  



Table S1. Best-fit parameters for physical oscillators in anisotropic ellipsometric fitting. 

 Oscillators 
Center 

energy(En)[
eV] 

Peak 
transition 

energy (E0) 
[eV] 

Bandgap 
energy(Eg) 

[eV] 
Amplitude (A) 

Damping 
coefficient (η) 

[eV] 

εa 

Tauc-Lorentz / 0.586±2.7392 0.034±2.9251 15.7966±179.81931 1.130±4.3261 

Tauc-Lorentz / 1.487±0.0251 0.192±2.1559 5.0092±15.98085 0.312±0.0330 

Tauc-Lorentz / 1.574±0.0088 1.508±0.0084 250.7507±81.63456 0.207±0.0168 

Tauc-Lorentz / 2.372±0.0158 0.813±0.6036 14.1183±11.03434 0.589±0.0363 

Tauc-Lorentz / 4.056±0.0320 0.024±1.2011 8.6395±4.93567 1.377±0.0645 

Tauc-Lorentz / 5.052±0.0336 4.225±0.0631 217.0681±28.01467 1.779±0.0495 

Tauc-Lorentz / 1.289±0.0265 0.265±1.1553 3.6303±8.27404 0.377±0.0572 

Tauc-Lorentz / 2.371±0.0143 2.558±0.0151 249.3404±82.28161 0.245±0.0853 

Tauc-Lorentz / 2.953±0.0177 0.000±8.4413 0.1327±0.75527 0.259±0.0343 

Gaussian 7.238±0.1099 / / 3.915150±0.5904565 0.9218±0.15382 

εb 

Tauc-Lorentz / 0.773±0.1337 0.412±0.2913 3.9482±18.66293 0.429±0.4630 

Tauc-Lorentz / 1.547±3.8366 3.8366±6.5043 4.7297±74.42277 1.846±4.3057 

Tauc-Lorentz / 1.612±0.0266 0.000±56.5519 0.0219±1.52982 0.063±0.0471 

Tauc-Lorentz / 1.938±0.1079 1.565±0.1008 81.9329±51.357 0.936±0.2184 

Tauc-Lorentz / 2.398±0.1010 2.254±0.0574 106.4267±67.57983 0.596±0.1742 

Tauc-Lorentz / 3.150±0.2354 2.840±0.1317 73.4194±50.74651 1.107±0.2261 

Tauc-Lorentz / 4.469±0.0678 3.534±1.1290 24.9346±58.08078 0.567±0.2045 

Tauc-Lorentz / 5.113±0.2806 3.714±0.9289 46.4110±150.87999 1.670±1.3951 

Tauc-Lorentz / 6.417±24.0344 4.296±8.3134 37.1567±929.44771 6.124±102.6502 

εc 

Tauc-Lorentz / 0.769±0.1653 0.431±0.4734 29.8006±109.89458 0.456±0.2421 

Gaussian 1.205±0.3693 / / 7.189544±19.7884447 0.4377±0.92859 

Gaussian 1.511±0.1686 / / 9.305308±16.1119673 0.3452±0.40304 

Tauc-Lorentz / 1.611±0.0457 1.334±0.87 35.7172±230.12087 0.169±0.1068 

Tauc-Lorentz / 1.752±0.0383 1.548±0.1341 277.4768±393.27676 0.264±0.0756 

Tauc-Lorentz / 2.032±0.0703 0.722±8.5309 7.9328±98.42038 0.299±0.1107 

Tauc-Lorentz / 2.280±0.0814 1.926±0.5644 92.5269±164.28007 0.469±0.3120 

Tauc-Lorentz / 3.101±0.1582 2.475±0.5272 53.7244±73.70178 0.960±0.3423 

Tauc-Lorentz / 4.130±0.4930 0.000±81.1032 2.0155±80.73983 0.948±1.3786 

Tauc-Lorentz / 4.359±0.1007 3.797±0.7138 61.2940±225.80516 0.502±0.2897 

Tauc-Lorentz / 5.099±0.2584 3.677±2.2319 39.8543±86.51341 1.332±0.7867 

Tauc-Lorentz / 6.201±0.3838 5.203±1.7988 38.7830±105.46711 1.132±0.5109 

Gaussian 0.006±960.61 / / 793.496577±0.103 0.0073±240.88 



 
Figure S5. Experimental and calculated reflectance spectra of a-axis and c-axis. The difference in values 
is mainly due to that the measured ellipsometric data may fluctuate greatly depending on the 
measurement environment, the signal-to-noise ratio of the beam, the sample, the incidence and so on, but 
the positions of the featured absorbing peaks reflected by the measured ellipsometric spectra remain 
unchanged with these factors. Therefore, the absolute values of the optical constants extracted by the 
mathematical fitting from the measured ellipsometric data may deviate from their real values and notably 
differ from each other in different measurement conditions, which ultimately leads to a discrepancy 
between the calculated reflectance value using the extracted optical constants and the measured one by 
the spectrophotometer. 

 

Figure S6. Optical constants calculated from first principles. 

After fitting the critical point using Eq. 4, the energy band structure calculated using first 
principles was used to plot the energy difference between the valence and conduction bands 
in the Brillouin zone, Ecv, and then the energy axis of the curve fitted to the critical point was 
aligned with the Ecv energy axis. It is worth noting that the bandgap calculated by the first 
nature principle is usually inconsistent with the experimental bandgap, so it is necessary to 
artificially shift Ecv, i.e., the bandgap is aligned, and the experimental bandgap of 0.25 eV[33] is 
used for Ta2NiS5 in this experiment. Then isoenergy lines are drawn from the center energy of 
the critical point to find the position tangent to Ecv, i.e., the position where the optical transition 
occurs [4]: 
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where Jcv is the joint density of states involved in the interband transition, S is the constant 
energy surface defined by Ecv = E, and ∇k(Ecv) is the gradient in the k-space. Obviously, with ∇k(Ecv) = 0 at the tangent point, the joint state density is in a singular state and undergoes an 
optical transition. Then the valence and conduction bands involved in the transition are 
obtained by Ecv and labeled in the energy band structure diagram, and then the atomic orbitals 
and carrier types involved in the transition are identified in combination with PDOS. 

Table S2. Best-fit parameters for Ta2NiS5 critical point analysis. 

d2εi/dE2 

(i = a, b, c) 

Center Energy(E0) 

[eV] 

Phase Angle(φ) 

[°] 

Amplitude(A) 

[F/m] 

Broadening(Γ) 

[eV] 

d2εa/dE2 

0.53 133.25 2.04 0.10 
1.25 166.09 0.71 0.17 
1.53 200.40 1.25 0.10 
1.55 216.54 3.44 0.17 
2.38 200.23 0.04 0.07 
2.40 128.79 2.49 0.29 
2.97 173.25 0.05 0.12 
4.05 147.96 2.87 0.57 
5.28 134.71 3.40 0.78 

d2εb/dE2 

0.77 153.69 0.43 0.21 
1.61 78.70 0.01 0.03 
1.78 185.61 2.05 0.75 
1.85 145.67 2.98 0.42 
2.40 202.08 0.61 0.26 
3.15 145.67 1.72 0.58 
4.44 178.39 0.60 0.30 
5.29 154.18 0.88 0.60 
6.04 142.21 1.38 0.85 

d2εc/dE2 

0.75 197.42 2.72 0.21 
1.08 209.76 1.12 0.29 
1.59 162.26 3.84 0.14 
1.61 128.28 2.53 0.11 
1.76 128.25 2.94 0.14 
2.04 141.61 1.66 0.15 
2.32 160.06 1.64 0.26 
3.49 160.34 5.54 0.81 
3.80 190.11 0.85 0.39 
4.32 247.35 1.83 0.39 
5.74 169.58 0.97 0.92 

 


