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Abstract: Heterogeneous photocatalysis is a promising technique for removing pollutants from
water. In this work, supercritical antisolvent (SAS)-micronized ZnO (ZnOSAS) is coupled with
commercial anatase TiO2 (PC50) to study the photocatalytic degradation of ceftriaxone under UV
and visible light. Diffuse ultraviolet–visible reflectance (UV−vis DRS) measurement revealed that
the presence of ZnO leads to a slight absorption in the visible region. Wide-angle X-ray diffraction
(WAXD) analysis showed the presence of both ZnO wurtzite and TiO2 anatase crystalline phases
in the composite. Photocatalytic tests proved that the activity of the ZnOSAS/PC50 composite is
higher than that of commercial ZnO, SAS-micronized ZnO, and PC50, allowing complete ceftriaxone
degradation under UV light after only 2 min of irradiation time. In contrast, about 90% of ceftriaxone
degradation is achieved after 180 min of visible-light irradiation. The photocatalytic results for an
experiment carried out in the presence of probe scavenger molecules for reactive oxygen species
show that hydroxyl radicals and positive holes are both reactive species involved in the ceftriaxone
photocatalytic degradation mechanism. Finally, reuse cycles of the ZnOsas/PC50 composite are
performed, demonstrating the stability and recyclability of the photocatalyst.

Keywords: supercritical antisolvent; composite photocatalyst; ZnO/PC50; degradation; photocatalysis;
ceftriaxone

1. Introduction

Population growth and the development of industries favored by technological and
scientific progress have led to an increase in water pollution. In particular, the growing
contamination of wastewater by organic and inorganic pollutants refractory to conventional
treatment methods requires the development of innovative technologies capable of degrad-
ing them. Advanced oxidation processes (AOPs) are efficient methods for achieving the
degradation of numerous organic substances. AOPs are based on generating highly reactive
species, mainly hydroxyl radicals (·OH), which can oxidize pollutants into non-harmful
substances. Among AOPs, heterogeneous photocatalysis using semiconductor oxides has
proven to be a very effective solution for removing pollutants [1,2]. Both zinc oxide (ZnO)
and titanium dioxide (TiO2) are n-type semiconductors widely used as photocatalysts for
the removal of several water pollutants [3–7]. However, the practical applications of these
two semiconductors are limited by their large band gap (3.37 eV for ZnO [8] and 3.2 eV for
TiO2 [9]), which makes them able to absorb only UV light, and by the rapid recombination
of photogenerated holes and electrons [10,11]. Hence, these semiconductors cannot use
the potential of solar photocatalysis. Therefore, several techniques have been employed
to allow the absorption of photons with lower energy. These techniques include surface
modification [12–14], band gap modification by doping with metals and non-metals [15–18],
and semiconductor coupling [19,20]. In general, to suppress the recombination phenomena
of photoproduced electron–hole pairs and extend the absorption range of semiconductors
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into the visible-light region [21], a promising and interesting strategy is the manufacture of
composites obtained by coupling two semiconductors [20,22–24]. From this perspective,
the study and engineering of composites is one of the approaches most widely adopted
by researchers to obtain an improvement in the photocatalytic activity [19,25–28]. For in-
stance, Marcì et al. formulated ZnO/TiO2 heterojunctions that showed an enhancement in
photocatalytic activity for the phenol, 2-chlorophenol, and pentachlorophenol degradation
compared to bare TiO2 and ZnO [19]. Mousa et al. synthesized TiO2/ZnO heterojunctions
for dye photodegradation [21]. They proved that the coupling of ZnO and TiO2 led to an
increase in the lifetime of the photogenerated charges, allowing more efficient separation
of electron–hole pairs due to the electron transfer from the conduction band of ZnO to the
conduction band of TiO2 with the simultaneous transfer of positive holes from the valence
band of TiO2 to the valence band of ZnO [21]. In recent years, ZnO-based photocatalysts in
the form of nanoparticles were prepared by the supercritical antisolvent (SAS) precipitation
route [29–32]. They showed better photocatalytic performances than those prepared by
drying–precipitation and sol–gel methods [32]. Indeed, using Eu-doped ZnO prepared
by SAS precipitation, it was possible to remove Eriochrome Black-T dye under UV and
visible irradiation. The SAS-prepared sample showed better photocatalytic efficiency in
terms of both discoloration and mineralization than the drying–precipitation sample. In
particular, the SAS-prepared sample reached almost total dye removal after 240 min of
UV light irradiation, whereas for the sample prepared via drying–precipitation, the total
organic carbon (TOC) reduction was equal to 80% [32].

Considering these promising results, in this preliminary experimental work, ZnO/TiO2
composites were synthesized using commercial ZnO, ZnO micronized through the super-
critical antisolvent technique, and commercial TiO2 to enhance the photocatalytic perfor-
mance of bare ZnO and TiO2.

The photocatalytic activity of the composites was evaluated using ceftriaxone as a
model pollutant in the presence of UV light and visible-light irradiation.

2. Materials and Methods
2.1. Materials

Zinc acetate dihydrate (C4H6O4Zn·2H2O, purity ≥ 99%) and commercial ZnO (named
ZnOcomm) were provided by Carlo Erba (St. Louis, MO, USA), and commercial TiO2
(PC50) was produced by Cristal Global Millennium Inorganic Chemical. Dimethylsulfoxide
(DMSO, purity 99.8%) was supplied by Carlo Erba. CO2 (purity 99%) was provided by
Morlando Group s.r.l. (Naples, Italy). Ceftriaxone sodium (C18H16N8Na2O7S3 3.5H2O)
was purchased from Merk Generics. Isopropyl alcohol (CH3CH(OH)CH3) was provided
by Merk Life Science S.r.l. (Milan, Italy). Distilled water was used as a solvent to prepare
ceftriaxone solutions.

2.2. Preparation of ZnO from ZnAc Micronized through Supercritical Antisolvent
(SAS) Technique

The micronization of zinc acetate dihydrate (ZnAc) powders was carried out using
the SAS process [32]. This process exploits the peculiar characteristics of carbon dioxide in
the supercritical state: diffusivities comparable to those of gases and densities of an order
of magnitude similar to those of liquids [29].

The SAS plant comprises a cylindrical vessel with an internal volume of 500 cm3,
serving as the core of the process. To attain the required pressure, two high-pressure pumps
were employed to introduce CO2 (antisolvent) and a liquid solution (DMSO + solute) into
the chamber. CO2 was pre-cooled in a refrigerated bath before being introduced into the
chamber, while the liquid solution was injected into the precipitation chamber through a
stainless-steel nozzle. A Proportional Integral Derivative (PID) controller, coupled with
heating bands, was used to maintain the vessel’s operating temperature. Pressure regulation
was achieved via a micrometric valve, and pressure measurement was facilitated by a test
gauge manometer. At the bottom of the precipitation chamber, a porous filter with 0.1 µm
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diameter pores allowed the passage of the CO2-solvent mixture, enabling the collection of
the precipitated powders. The flow rate of CO2 was measured using a rotameter. At the
beginning of each SAS experiment, CO2 was pumped into the precipitation chamber until
the desired pressure and temperature were achieved.

Once the quasi-steady-state composition of solvent and antisolvent was established,
the liquid solution was introduced through the nozzle to initiate solute micronization.
After the solution injection, CO2 continued to flow for a calculated duration to ensure the
complete removal of solvent residues. Subsequently, the CO2 pump was turned off, and
the vessel was depressurized gradually to atmospheric pressure. In our experiments, the
liquid flow rate was set at 1 mL min−1, and the CO2 flow rate was 30 g min−1 for ZnAc. A
schematic representation of SAS plant is shown in Figure 1. 
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Figure 1. SAS plant sketch. V1: carbon dioxide tank; V2: liquid solution burette; RB: refrigeration 
bath; P1: carbon dioxide pump; P2: liquid pump; PC: precipitation chamber; M: manometer; MV: 
micrometric valve; LS: liquid separator; BPV: back-pressure valve; R: rotameter; DMSO: outcoming 
solvent. 

Micronization conditions, including a pressure equal to 150 bar, temperature equal 
to 40 °C, and concentration of 15 mg mL−1 for the micronization of ZnAc, were chosen 
following a previous work [29]. Before each experiment, the solution was prepared by 
dissolving the solute in 100 mL of DMSO, which served as the solvent, to achieve the de-
sired concentration and maximum sample yield. After each SAS experiment, the powder 
was collected in the precipitator, and DMSO was extracted using supercritical carbon di-
oxide (scCO2). The obtained powder was annealed at 500 °C for 2 h in air with a heating 
rate equal to 2 °C min−1 to obtain zinc oxide nanoparticles (named ZnOSAS) [29]. 

 

 

 

 

 

 

 

 

Figure 1. SAS plant sketch. V1: carbon dioxide tank; V2: liquid solution burette; RB: refrigeration
bath; P1: carbon dioxide pump; P2: liquid pump; PC: precipitation chamber; M: manometer; MV:
micrometric valve; LS: liquid separator; BPV: back-pressure valve; R: rotameter; DMSO: outcom-
ing solvent.

Micronization conditions, including a pressure equal to 150 bar, temperature equal
to 40 ◦C, and concentration of 15 mg mL−1 for the micronization of ZnAc, were chosen
following a previous work [29]. Before each experiment, the solution was prepared by
dissolving the solute in 100 mL of DMSO, which served as the solvent, to achieve the
desired concentration and maximum sample yield. After each SAS experiment, the powder
was collected in the precipitator, and DMSO was extracted using supercritical carbon
dioxide (scCO2). The obtained powder was annealed at 500 ◦C for 2 h in air with a heating
rate equal to 2 ◦C min−1 to obtain zinc oxide nanoparticles (named ZnOSAS) [29].

2.3. Preparation of ZnO/PC50 Composites

The preparation of the semiconductor–semiconductor composites was performed
through mechanical mixing involving the use of isopropanol in aqueous medium [33]. In
detail, 0.176 g of ZnO (ZnOcomm or ZnOSAS) and 1 g of commercial TiO2 (PC50) powder
were added to an aqueous solution (100 mL) of isopropanol (1 M). The suspension was
subsequently maintained at 80 ◦C under continuous stirring to allow solvent removal
and obtain ZnOcomm/PC50 and ZnOSAS/PC50 composites. The content of ZnO in both
composite samples was 15 wt%, which was optimized in a previous paper [33].
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The samples are named as follows:

• PC50;
• ZnOcomm;
• ZnOSAS;
• ZnOcomm/PC50;
• ZnOSAS/PC50.

2.4. Characterization Methods

A field emission scanning electron microscope (FESEM, mod. LEO 1525, Carl Zeiss
SMT AG, Oberkochen, Germany) was employed to detect the morphology of the samples;
the powders collected in the chamber for each test were distributed on a carbon tab
(Agar Scientific, Stansted, UK) and enclosed with gold–palladium (layer thickness 250 Å)
using a sputter coater (mod. 108 A, Agar scientific, Monterotondo, Italy). The diffuse
ultraviolet–visible reflectance (UV-Vis DRS) spectra of the samples, recorded with an RSA-
PE-20 reflectance spectroscopy accessory (Labsphere Inc., North Sutton, NH, USA), were
obtained using a Perkin Elmer Lambda 35 spectrophotometer (Waltham, MA, USA). The
band gap values were calculated through the corresponding Kubelka–Munk function
(F(R∞)) and by plotting [F(R∞)·hν]2 against hυ (eV). The Brunauer, Emmett, and Teller
(BET) surface area of the samples was measured by dynamic N2 adsorption measurement
at −196 ◦C using a Costech Sorptometer 1042 (Costech International S.p.A., Milan, Italy);
all the samples before the measurement were pretreated at 150 ◦C for 30 min in He flow.
Wide-angle X-ray diffraction (WAXD) patterns were obtained with an automatic Bruker
D8 Advance diffractometer (VANTEC-1 detector, Milan, Italy) using nickel-filtered Cu-Kα

radiation. Laser Raman spectra were achieved at room temperature with a Dispersive
MicroRaman (Invia, Renishaw) equipped with a 514 nm laser in the range of 100–2000 cm−1

Raman shift.

2.5. Photocatalytic Activity Tests

The photocatalytic activity tests were carried out under UV light and visible light.
The tests were performed using 0.02125 g of PC50 (dosage = 0.425 g L−1) and 0.00375 g
of ZnOcomm and ZnOSAS (dosage = 0.075 g L−1) corresponding to the amounts of
PC50 and ZnO present in composites and 0.025 g of ZnOcomm/PC50 and ZnOSAS/PC50
(dosage = 0.5 g L−1). The photocatalysts were dispersed in 50 mL of ceftriaxone aqueous
solution with an initial concentration of 5 mgL−1. The entire duration of the UV-light-
driven tests was 10 min: 60 min in the dark phase and 10 min under UV light, whereas the
visible-light-driven tests had an overall duration of 240 min: 60 min in the dark phase and
180 min under visible light. The suspension was introduced into a cylindrical Pyrex reactor
(ID = 3 cm and VTOT = 200 mL, Microglass Heim Srl, Naples, Italy). UV-LEDs (nominal
power 10W, provided by Daylight White Light, Shenzen, China) emitting at 365 nm and
visible LED (nominal power 10W, provided by Daylight White Light, China strips) strips
with emissions in the 400–800 nm wavelength range were placed around the reactor to
irradiate the suspensions. The photoreactor was placed on a magnetic stirrer, and the
air was bubbled inside the suspension to prevent the sedimentation of the photocatalyst
particles. Liquid samples were taken during the test time using a syringe with a volume of
3 mL, which were then filtered and placed in 2 mL vials.

High-Performance Liquid Chromatography (HPLC) (Agilent Technologies 1200 infin-
ity series, Santa Clara, CA, USA) was employed to measure the ceftriaxone concentration.
A C18 as a stationary phase column operating on isocratic elution using a mobile phase
constituted by a mixture of 80:20, KH2PO4 buffer, and methanol, was used [29].

The removal efficiency of ceftriaxone was determined with the following formula:

η =

(
1 − C

C0

)
•100 (1)
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where C is the ceftriaxone concentration at the generic irradiation time, and C0 is the initial
ceftriaxone concentration.

3. Results and Discussion
3.1. Chemical–Physical Characterization of Photocatalysts
3.1.1. FESEM Characterization

The images in Figure 2 show the morphologies of different samples: the commercial
samples produced with the SAS technique and composite samples. Figure 2a,b show the
SEM micrography of commercial samples; it is evident that these samples had crystalline
and irregular shapes. Observing Figure 2c, it is clear that using the SAS micronization
allowed for obtaining amorphous nanoparticles of ZnO with a mean diameter of 0.08 µm,
as reported in Table 1. The obtained composites (Figure 2d,e) exhibited a predominantly co-
hesive structure. This cohesion is likely attributed to the sample preparation method, which
includes mixing in the presence of isopropanol and a drying stage at room temperature,
potentially resulting in particle aggregation.
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Figure 2. FESEM images of all the commercial samples produced with the SAS technique and com-
posite samples: (a) commercial PC50, (b) commercial ZnO, (c) ZnO produced with the SAS technique,
(d) composite sample produced using commercial ZnO, and (e) composite sample produced using
ZnO with the SAS technique.
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Table 1. Morphology, mean diameter (md), standard deviation (sd), crystallite size, specific surface
area (SSA), and band gap (Eg) values of all synthesized samples. (NP = nanoparticle; cMP = coalescent
microparticle; C = crystal).

Sample Morphology md ± sd
[µm]

D [nm]
Anatase Wurtzite

SSA
[m2g−1]

Eg
[eV]

PC50 C - 26 44 3.27
ZnOcomm C - 24 6 3.17
ZnOSAS NP 0.08 ± 0.007 22 20 3.03

ZnOcomm/PC50 cMP - 25
25 40 3.22

ZnOSAS/PC50 cMP - 27
23 39 3.22

The data on morphology, mean diameter (md), and standard deviation (sd) are re-
ported in Table 1.

3.1.2. UV-vis DRS Results

The UV-vis DRS spectra in the wavelength range of 350–650 nm for all the photocata-
lysts are shown in Figure 3a.
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Figure 3. (a) Reflectance spectra of PC50, ZnOcomm, ZnOSAS, ZnOcomm/PC50, and ZnOSAS/PC50
samples; (b) plot of [F(R∞) hv]2 versus the photon energy of PC50, ZnOcomm, ZnOSAS,
ZnOcomm/PC50, and ZnOSAS/PC50 samples. The intersection of the dashed lines with the x-axis
gives the value of Eg.
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PC50, ZnOSAS, and ZnOcomm showed strong absorption in the UV region (λ < 400 nm),
but, as expected, no absorption was found in the visible region. The same result was
observed for ZnOcomm/PC50 and ZnOSAS/PC50. In addition, the absorption band of
ZnOcomm and ZnOSAS located at about 360 nm disappeared for both composites because of
the shielding effect of TiO2 in the UV-light region [34]. Band gap values (Eg) were calculated
using the Kubelka–Munk function (Figure 3b), and the obtained values are reported in
Table 1. The Eg was 3.27 and 3.17 eV for PC50 and ZnOcomm, while the lowest value of Eg
(3.03 eV) was measured for ZnOSAS, revealing a slight red shift of absorption onset in the
visible region (at about 410 nm). However, a slight increase in Eg was observed for both
composites concerning the Eg value of ZnOSAS. In particular, the same Eg value of about
3.22 eV was obtained for ZnOcomm/PC50 and ZnOSAS/PC50 systems.

3.1.3. WAXD Results

The wide X-ray diffraction (WAXD) patterns of all photocatalysts are shown in Figure 4.
The PC50 sample showed the main diffraction signals typical of titania in the anatase phase
with two main reflexes at 2θ = 25.3◦ and 48◦, which are referred to as the diffraction crys-
talline faces (101) and (200), respectively [35,36]. The diffraction patterns of ZnOcomm and
ZnOSAS displayed the characteristic reflections of the wurtzite phase with the main peaks
located at 2θ = 31.9◦, 34.5◦, and 36.3◦, being ascribed to the (100), (002), and (101) faces,
respectively [36]. The WAXD spectra of the ZnOcomm/PC50 and ZnOSAS/PC50 composites
confirmed the presence of both the wurtzite and anatase phases of ZnO and PC50, respec-
tively. Moreover, the crystallite sizes (D) of the wurtzite and anatase phases identified in
both the composites (Table 1) were very similar to those of ZnOcomm, ZnOSAS, and PC50,
proving that, in agreement with the literature, the coupling of the two semiconductors
realized through the isopropanol method did not modify the crystalline phases of bare
ZnOcomm, ZnOSAS, and PC50 [33].
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W = wurtzite; A = anatase.

3.1.4. Specific Surface Area (SSA) Measurement

The SSA values estimated using the BET method are reported in Table 1. PC50 showed
a high value of 44 m2g−1 according to the literature [33], whereas the SSA data of ZnOcomm
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and ZnOSAS are lower than those observed for PC50, being equal to 6 and 20 m2g−1,
respectively. The lower value of SSA for ZnOcomm is in agreement with the values reported
in the literature [37,38]. The SSA value of composites was very similar to the SSA value of
PC50, probably due to the high amount of PC50 in the photocatalytic composites. Also, the
SSA data of ZnO/PC50 composites agree with the values reported in the literature [33,39].
In particular, ZnOcomm/PC50 and ZnOSAS/PC50 samples evidenced a similar SSA value of
approximately 40 m2g−1, which is higher than that obtained for bare ZnOcomm and ZnOSAS.

3.1.5. Raman Spectroscopy Results

Raman analysis was carried out at room temperature, and the photocatalysts’ spectra
in the range 100–900 cm−1 are displayed in Figure 5.
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Figure 5. Raman spectra of PC50, ZnOcomm, ZnOSAS, ZnOcomm/PC50, and ZnOSAS/PC50
photocatalysts.

The Raman bands for PC50 were observed at 144, 192, 393, 513, and 636 cm−1, cor-
responding to the Eg(1), Eg(2), B1g(1), A1g + B1g(2), and Eg(3) of anatase modes, re-
spectively [35]. The Raman signals observed for ZnOcomm and ZnOSAS were ascribed to
the active modes of wurtzite ZnO crystal [40]. In particular, the E2 (high) Raman mode
observed at about 437 cm−1 and at 332 cm−1, ascribed to E2(H)–E2(L) (multi-phonon),
was identified [41,42]. In agreement with the literature [34], only Raman bands of anatase
TiO2 were found in ZnOcomm/PC50 and ZnOSAS/PC50. Still, the signals of ZnO in the
composites were not detected due to the higher percentage of TiO2 in ZnOcomm/PC50 and
ZnOSAS/PC50 photocatalysts. However, a blue shift of the Eg(1) Raman active mode of
PC50 from 144 to about 142 cm−1 was observed for the two composites. This blue shift
could be due to the presence of oxygen vacancies in the ZnOcomm/PC50 and ZnOSAS/PC50
photocatalysts [43,44].

3.2. Photocatalytic Activity Results

Figure 6 shows the degradation of ceftriaxone under UV light (wavelength equal to
365 nm) using PC50, ZnOcomm, ZnOSAS s, ZnOcomm/PC50, and ZnOSAS/PC50.
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Figure 6. Photocatalytic tests of ceftriaxone using PC50, ZnOcomm, ZnOSAS, ZnOcomm/PC50, and
ZnOSAS/PC50 photocatalysts in the presence of UV light (wavelength equal to 365 nm).

The bare ZnOcomm and ZnOSAS samples completely degraded ceftriaxone after 10 min
of UV light, while PC50 showed a degradation efficiency higher than both ZnOcomm and
ZnOSAS. Indeed, in the presence of PC50, complete ceftriaxone degradation was achieved
after 4 min of irradiation time. In the presence of both composites, an increased ceftriaxone
degradation rate was observed, probably because the charge–carriers recombination phe-
nomenon was inhibited [21,36]. Also, in the case of other pollutants, such as ciprofloxacin,
the photocatalysis with modified TiO2 nanocrystals gave good results [45]. In this paper,
the ZnOSAS/PC50 composite allowed the complete elimination of ceftriaxone after only
2 min of irradiation. The formulated ZnOcomm/PC50 and ZnOSAS/PC50 composites were
also tested in ceftriaxone degradation under visible irradiation (wavelength in the range
400–800 nm) (Figure 7).

Under visible-light irradiation, the ZnOSAS/PC50 composite exhibited a higher degra-
dation rate in the overall reaction time concerning ZnOcomm/PC50. In particular, pho-
tocatalytic degradation efficiency was about 90% in the presence of ZnOSAS/PC50 after
180 min of visible light, which can probably be attributed to the presence of the ZnOSAS
photocatalyst that can absorb visible light to a certain extent (see Figure 3).

The ceftriaxone degradation follows the pseudo-first-order kinetics [29,46,47] defined
by the following equation:

−ln
C
C0

= k•t (2)

The kinetics constant value was the straight-line slope derived by plotting −ln C
C0

vs.
the irradiation time.

Table 2 reports the degradation constant values under UV and visible-light irradiation.
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Table 2. Apparent degradation kinetic constant (k) using PC50, ZnOcomm, ZnOSAS, ZnOcomm/PC50,
and ZnOSAS/PC50 samples under UV irradiation and using ZnOcomm/PC50 and ZnOSAS/PC50
composites under visible irradiation.

Sample kUV [min−1] *
UV Light Tests

kVis [min−1] **
Visible-Light Tests

PC50 1.18 -
ZnOcomm 0.40 -
ZnOSAS 0.32 -

ZnOcomm/PC50 1.43 0.0085
ZnOSAS/PC50 2.00 0.0131

* kUV calculated after 10 min of UV LED irradiation time. ** kVis calculated after 180 min of visible LED
irradiation time.

ZnOSAS/PC50 exhibited the highest degradation rate in the presence of UV light
with a kinetic constant equal to 2.00 min−1, proving the improved activity related to the
coupling of two semiconductors. Moreover, the ZnOSAS/PC50 composite showed a higher
degradation rate (~0.0131 min−1) than that observed with ZnOcomm/PC50 (~0.0085 min−1),
even under visible-light irradiation.
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Figure 7. Photocatalytic tests of ceftriaxone using ZnOcomm/PC50 and ZnOSAS/PC50 composites in
the presence of visible-light irradiation (wavelength in the range 400–800 nm).

3.2.1. Role of Reactive Oxygen Species in Ceftriaxone Photocatalytic Degradation in the
Presence of the ZnOSAS/PC50 Composite

The influence of reactive oxygen species (ROS) in ceftriaxone photocatalytic degra-
dation was studied using the ZnOSAS/PC50 composite. Ethylenediaminetetraacetic acid
(EDTA, 10 mM), isopropanol (IPA, 10 mM), and benzoquinone (BQ, 1 µM) were added
as scavenger probe molecules to quench positive holes [15], hydroxyl radicals [48], and
superoxide [49].

Figure 8 shows that adding EDTA, IPA, and BQ led to variation in the degradation
efficiency of ceftriaxone under UV light irradiation. In particular, the presence of EDTA and
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IPA significantly reduced the ceftriaxone photodegradation performances, underlining that
the positive holes and hydroxyls are the main ROS involved in the degradation mechanism
of ceftriaxone driven by UV irradiation.
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Figure 8. Effect of ethylenediaminetetraacetic acid (EDTA), isopropanol (IPA), and benzoquinone
(BQ) on ceftriaxon degradation using ZnOSAS/PC50 composite under UV light.

3.2.2. Possible Mechanism of the Photocatalytic Activity of the ZnOSAS/PC50 Composite

A possible mechanism of the activation of the ZnOSAS/PC50 composite under UV light
was proposed based on the results of the photocatalytic degradation of ceftriaxone under
UV irradiation carried out in the presence of scavengers (Figure 8), which demonstrate that
hydroxyl radicals and positive holes are the main ROS involved in ceftriaxone degradation.
Considering this, the Mulliken relationship was used for calculating the edge position of
the conduction band (ECB) and valence band (EVB) for ZnOSAS and PC50 [50]:

ECB = X − Ee − 0.5 ∗ Ebg (3)

EVB = ECB + Ebg (4)

where X is the absolute electronegativity of ZnO (5.94 eV) and TiO2 (5.81 e V) [51,52], Ee
is the energy of free electrons on the hydrogen scale (ca. 4.5 eV), and Ebg is the band gap
energy of the ZnOSAS (3.03 eV) and PC50 (3.27 eV) obtained from UV-vis DRS measurement
(Table 1).

Based on the literature [33,53,54] and considering the results obtained, a Z-scheme
composite was proposed (Figure 9).
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Figure 9. Proposed mechanism for electron and hole transfer in ceftriaxone degradation under UV
light irradiation.

In the presence of UV light, the photogenerated holes migrated from the VB of ZnOSAS
to the VB of PC50, whereas the electrons promoted in the CB of PC50 transferred into
the CB of ZnOSAS. However, since ECB of ZnOSAS (−0.075 eV) was less negative than
the standard reduction potential of O2/·O2

− (−0.33 eV vs. NHE), the electrons in CB of
ZnOSAS were not able to reduce oxygen into reactive ·O2

−. Therefore, at the interface
between the two semiconductors, the electrons CB of ZnOSAS were free to migrate into the
VB of PC50 [55]. This transfer mechanism maintains the photogenerated charge carriers
separated on opposite side of the composite, reducing the charge carriers’ recombination
rate [33]. On the other hand, the EVB of PC50 (+2.945 eV vs. NHE) was more positive than
that of ·OH/H2O (+2.68 eV vs. NHE), and therefore the positive holes could react with
H2O to form ·OH. When the positive holes were quenched by adding the EDTA scavenger
(Figure 8), they were not available to generate ·OH. Therefore, this suggested activation
mechanism agrees with the experimental results on the role of ROS reported in Figure 8,
which shows that OH and h+ acted in ceftriaxone photocatalytic degradation under UV
irradiation. Finally, the photocatalytic degradation activity of ZnOSAS/PC50 in the presence
of visible light (Figure 7) could be explained by the interface gap between the CB of PC50
(+2.945 eV vs. NHE) and VB of ZnOSAS (−0.075 eV vs. NHE), which allowed the activation
of the photocatalyst under visible light [33].
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3.2.3. Stability Tests on ZnOSAS/PC50 Composite

Different reuse cycles of ceftriaxone degradation under UV light were performed to in-
vestigate the stability of the ZnOSAS/PC50 composite, which showed the best photocatalytic
performance. In detail, 0.5 g L−1 of catalyst dosage, an initial ceftriaxone concentration of
5 mg L−1, and a volume of the solution equal to 50 mL were employed. The photocatalyst
was recovered after each test, subsequently centrifuged, washed with distilled water, and
dried at room temperature for 24 h. Figure 10 shows the ceftriaxone degradation efficiency
after 10 min of UV light in five recycling tests.
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Figure 10. Reuse cycles of the ZnOSAS/PC50 composite.

From the first to the fifth cycle, no substantial reduction in the degradation efficiency of
ceftriaxone was found in the presence of UV light, demonstrating that ZnOSAS/PC50 is a very
stable catalyst and can be reused several times without losing its original catalytic activity.

4. Conclusions

A SAS-micronized ZnO photocatalyst (ZnOSAS) and commercial ZnO (ZnOcomm) were
coupled with commercial TiO2 (PC50) by mechanical mixing in an aqueous phase with the
addition of isopropanol. FESEM images showed the regular shape of the SAS-obtained sam-
ple. WAXD patterns evidenced the presence of wurtzite and anatase crystalline phases by
confirming the incorporation of the two semiconductor materials in the ZnOcomm/PC50
and ZnOSAS/PC50 samples, resulting in the creation of a composite. The activity re-
sults under UV light demonstrated that coupling the two semiconductors led to higher
photocatalytic activity than just using the bare samples. In particular, the ZnOSAS/PC50
composite achieved a complete removal of ceftriaxone after just 2 min of irradiation time.
Photocatalytic experiments in the presence of UV light performed with the addition of
the probe scavenger molecules showed that the main reactive oxygen species responsible
for the ceftriaxone degradation mechanism were the positive holes and hydroxyl radicals.
Based on such results and considering the UV-Vis DRS findings, the Mulliken equation was
used to propose a possible scheme of the band alignment together with the photogenerated
charge–transfer mechanism for the ZnOSAS/PC50 composite under UV light. The results
evidence the possible formation of a Z-scheme heterojunction that facilitates the transport
of photogenerated electrons at the interface between the two semiconductors, reducing the



Nanomaterials 2023, 13, 3130 14 of 16

e–/h+ recombination rate and improving the photocatalytic degradation performances.
Moreover, ZnOSAS/PC50 also exhibited an appreciable degradation activity under visible
light with a degradation efficiency of about 90% after 180 min of visible light, probably due
to the generation of an interface gap between the conduction band of PC50 and the valence
band of ZnO. Finally, the stability and reusability of the ZnOSAS/PC50 composite were
verified after five recycling cycles.
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