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Abstract: The integration of 3D printed sensors into hosting structures has become a growing area of
research due to simplified assembly procedures, reduced system complexity, and lower fabrication
cost. Embedding 3D printed sensors into structures or bonding the sensors on surfaces are the
two techniques for the integration of sensors. This review extensively discusses the fabrication
of sensors through different additive manufacturing techniques. Various additive manufacturing
techniques dedicated to manufacture sensors as well as their integration techniques during the manu-
facturing process will be discussed. This review will also discuss the basic sensing mechanisms of
integrated sensors and their applications. It has been proven that integrating 3D printed sensors into
infrastructures can open new possibilities for research and development in additive manufacturing
and sensor materials for smart goods and the Internet of Things.

Keywords: 3D printing; embedded sensor; additive manufacturing; sensor integration

1. Introduction

Integrated sensors are microelectronic systems incorporated in a host material or
structure and able to sense their exposed stimuli to produce an electrical output. Integrated
sensors have been used in biology [1,2], energy [3], civil and mechanical structures [4],
aerospace [5], and additive manufacturing [6] applications. Temperature, pressure, hu-
midity, and motion are among the physical properties that can be detected by integrated
sensors. Wang et al. sought to integrate the technology of structural health monitoring
diagnostics for microelectronic systems [1]. Preventative measures were taken to reduce
the risk of sensor failure and damage when integrated into the composite system. Various
integration methods were tested, and low-cost pressure sensors were manufactured in
this work. Petrie et al. investigated the effects of inserting sensors in silicon carbide (SiC)
ceramics for monitoring the nuclear energy production process [3]. Sensor embedment was
done by infiltrating cavities within SiC structures for nuclear reactor system monitoring.
Parameters such as strain and fuel temperature were monitored for encapsulated material
integrity and power operation productivity.

Classifications of integrated sensors are based on their specific functions and imple-
mentation of the structure in the field of application. The types of integrated sensors that
will be studied in this work are embedded or surface-bonded sensors. Embedded sensors
are a network of technology that are directly incorporated into a material and can be in-
tegrated though direct embedment or by inserting into voids within the host material [7].
Shifts in stress concentration, crack development, and increased matrix stiffness are some
issues that can be encountered when embedding sensors. Nevertheless, since the sensors
are shielded from the outside environment, which reduces the risk of sensor damage and
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enhances durability. Surface bonded sensors are attached to the host structure surface
using an adhesive [8]. Careful surface preparation must be done to effectively secure the
sensor, and the bonding layer should be scaled accordingly. Sensing performance and
the transducer ability to produce a signal through the bonding layer can be a setback for
surface-bonded sensors. However, practical access to sensors suggests feasible sensor
maintenance when experiencing failure.

Additive manufacturing (AM), also referred to as 3D printing or rapid prototyping,
is the process where the material is deposited or joined in a layer-by-layer fashion to
produce a three-dimensional part or object based on a digital model [9]. This type of
technology has rapidly grown in popularity throughout the years due to its many benefits
over conventional manufacturing methods. In comparison to traditional techniques such
as computer numerical control (CNC) machining, injection molding, plastic forming, and
plastic joining, AM technology has many advantages. These benefits include but are not
limited to manufacturing cost, speed, part quality, and reliability [9–11]. AM costs are
much lower than conventional technology in small volume manufacturing which requires
expensive investments in mold development. It ensures fast prototyping and manufac-
turing, reduced time to market, and efficiency. This technique ensures innovation for
customization, personalization, and the use of design imagination. AM technology keeps
innovating and changing to increase its advantages and benefits over other manufacturing
technologies [12–15].

The essential part of embedded/integrated sensing is that it cannot function without
proper connections of functional materials (sensing part) with electrically conductive
materials (communication part). In traditional manufacturing methods, multiple steps are
required to complete the production of a single sensor and integrate it into the structure.
Compared to traditional methods, AM technology is highly advantageous because with
multi-material printing, a fully functional sensor can be fabricated within a single step in
multi material printing [16]. The degree of freedom available when designing a sensor
is incomparable to any other conventional technology [17]. Because of the unique set of
advantages of AM methods, instead of competing with other traditional methods (computer
numerical control (CNC) machines, hot pressing, and molding approaches), it is more
likely that AM will complement other fabrication methods. Currently, there are different
AM methods to combine functional material with conductive parts to enable sensing
functionality. Hybrid AM method combines AM-printed parts with non-AM structures
such as regular wiring, printed circuit boards, or entire sensors [18]. This method allows
for specific combination of parts and complements other classic assembly techniques.
Another method is conductor infusion that can print channels in otherwise non-conductive
sensing materials by AM methods with a subsequent infusion of conductive inks [19–22].
In this method, the infusion of conductive materials in dielectric materials is possible by
using dissolvable support material to form networks of channels. This method allows
complicated electrical wiring to be printed since the channels are formed in full freeform
fabrication [17]. The most complex and advantageous method to integrate sensors is
multi-material printing that combines conductive and non-conductive materials [16,23].
Freedom of design, straightforward fabrication, and co-printing conductors, i.e., conductive
materials printed in the same cycles as the dielectric materials, are the most desirable and
positive sides of AM technology [17].

Many types of integrated sensors have been fabricated through AM that can sense,
transmit, control, and react to environmental situations [24,25]. Embedded sensors have
been explored through different AM technologies like fused filament fabrication (FFF),
laser cladding (LC), stereolithography (SLA), ultrasonic AM, and laser powder bed fusion
(LPBF). Fused filament fabrication (FFF) is the most used AM technology where the mate-
rial is extruded through a nozzle and deposited layer by layer until a final part is fabricated.
FFF is popular due to its simplicity, low cost, non-toxic, and cost-effective materials manu-
facturing process. Embedding sensors with FFF is possible by stopping the printing process
and inserting the sensor into the enclosure. Sbriglia et al. embedded a single axis circuit
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piezoelectric accelerometers by stopping the printing process and inserting the sensor
manually [26]. The application of FFF embedded sensors technology enables state-of-health
monitoring and real-time diagnostics. Optimal depth placement of the sensor is important
to get optimum sensitivity and accurate readings. Shemelya et al. created three varieties of
capacity sensors using fine-pitch copper mesh and embedded copper wires by embedding
an Aerotech gantry system [27]. A registration procedure was developed to record points
in which the fused deposition modeling (FDM) machine would stop building the part to
integrate the sensor and, subsequently, resume its fabrication until being fully embedded in
polycarbonate material. The embedded bulk conductive sensors within the part contained
wire, mesh, microcontrollers, and light-emitting diodes. These capacitive sensors success-
fully identified three metallic materials and saltwater from distilled water by measuring the
relative capacitance when placed at the optimal depth. Embedded bulk conductive sensors
have potential applications in biomedical, material sensing, electronic characterization,
and electrical interconnect characterization. Stereolithography (SLA) AM technology uses
directed irradiation to cure the light-activated resin in a vat layer by layer until a final part
is fabricated [28]. Embedded sensors in SLA are seen more towards fabricating embedded
micro-electromechanical system (MEMS) devices and electrochemical microfluidic devices
(EMD). Tse et al. demonstrated that SLA could be used to create custom reaction packages
of high aspect ratio to construct packages right on top of MEMS devices on a wafer scale.
In addition, it provides the benefit of eliminating the dead volume of microfluidics and
microsensors seen in traditional manufacturing [29]. Costa et al. fabricated a microfluid
device with embedded low-cost reusable electrodes using stereolithography (SLA) [30].
EMD demonstrated good electrochemical stability, electroanalytical performance, and out-
standing conductive performance. The SLA-printed EMD showed a suitable alternative
tool for coupling separation techniques. Direct Energy Deposition (DED) is an AM technol-
ogy that feeds a stream of metallic powder or wire into a melt pool that is created by a laser
beam that scans across the coated targeted surface. Inkjet printing grants unprecedented
deposition control up to the micron, resulting in accurate parts [31]. Due to the extreme
dimensional accuracy of inkjet printing, it can produce fine seed circuits for small electron-
ics. Ruikuan et al. utilized inkjet printing to fabricate a sensor system to monitor thermal
flow, resulting in an energy efficient sensor with a linear performance [32]. Humber et al.
similarly used inkjet printing, but for CO2 detection [33]. As seen with Ruikuan et al.,
inkjet integrated sensors are power efficient, with short carbon detection times and low
power consumption. Hybrid AM incorporating traditional subtractive processing with
AM, which enables the embedding and reconditioning of sensors using laser cladding.
Juhasz et al. successfully designed a hybrid system using laser cladding to integrate a
prefabricated functional ceramic ink-based strain gauge into a laser clad PH13/8 stainless
steel enclosure [34]. Machining and laser cladding technology allowed for reconditioning
of the sensor in case of damage. UAM enabled metallurgical bonds between layers of metal
foils by using ultrasonic energy at room temperature. The low-temperature aspect of the
process is attractive for embedded sensors as it can secure a safe integration of a sensor into
a part without damage during the fabrication period. Hehr et al. embedded a fiber optic
strain sensor into aluminum alloy 6061 ASTM tensile samples [35]. The embedded sensor
showed no slipping, interface robustness, and accurate results during testing, with some
limitations related to the commercially available fiber optic strain sensors being unable
to read specific interface strain caused by poisons ratio effects. Laser powder bed fusion
(LPBF) is one of the most popular AM technologies that involves using a laser on a powder
bed to melt and fuse material powder [36,37]. On the topic of embedded sensing, LPBF
faces a couple of challenges to make sure that the sensor is safe during enclosure (i.e., high
temperatures, high pressures, powder contamination, chamber dimensions, inert gas flows,
and the powder recoater). Binder et al., introduced design concepts to standardize LPBF
embedding sensors [38]. The author embedded a pt100 temperature sensor which was
previously embedded at the bottom of an elastic casting compound, to protect the sensor
from electrostatics, and powder contamination, while still ensuring accurate measurements.
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An insulative aluminum cover was fixed to protect the sensor from direct laser radiation.
Finally, all sensors were functional after embedding, but due to the embedding’s isolative
effect, the sensor suffered from a delayed response.

This review article broadly discusses several types of integrated sensors with their
sensing mechanisms, fabrication procedures, and embedding techniques using various AM
processes. The basic sensor fabrication technique, sensing mechanism and applications are
shown in Figure 1. It provides technical discussions of various integration methods for
sensors with each AM technology. The most commonly and widely used techniques like
FDM, Vat polymerization, DIW, DED, LPBF, and SLM are extensively described with their
fabrication and embedding challenges, limitations, and recent progress of the works. The
most distinguishable features of these embedded 3D printing technologies over conven-
tional methods are their freedom in designing and ease of fabrication. This review also
enlists some of the typical sensors explaining their construction methods using 3D printing,
working principles and wide applications in different sectors. Lastly, the current limitations
in embedding the sensors and 3D printing processes are discussed and future trends are
also suggested to overcome existing problems. The 3D-printed integrated sensors, their
fabrication methods, sensing mechanisms, and applications are summarized in Table 1.
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2. Sensing Mechanism and Type
2.1. Transducing

Sensors are made up of the sensing component, a transducing mechanism, and an
apparatus to interpret output data [39]. There are various types of sensing mechanisms
based on physical or chemical principles. To distinguish which sensing element is suitable
for a specific application, the characteristics of various transduction methods are discussed
in the following section.

2.1.1. Piezoresistivity

Piezoresistive devices interpret variations of electrical resistivity within electrome-
chanical systems while they are subjected to mechanical strain [40]. Piezoresistive mecha-
nisms incorporate electrodes that can be embedded or attached to the device, as shown
in Figure 2a. The structural mechanical, and electrical behavior of sensor materials, those
of which should be electrically conductive, directly affects the performance of the piezore-
sistive response because of possible discrepancies in signal strength and accurate sensor
readings. Wang et al. tackles common piezoresistive obstacles, such as signal sensitivity,
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by successfully 3D printing stretchable and porous sensing elements [41]. The electrode
printing ink was comprised of plastic urethane and silver flakes while the sensing layer
employed conductive carbon black nanoparticles and sacrificial sodium chloride particles
for porosity.

Table 1. Fabrication, mechanism, and applications of 3D printed integrated sensors.

Methods Printed Materials Mechanism Applications Ref.

FFF

Thermoplastic elastomer Capacitive Force sensor [42]

TPU/PLA/Carbon black Capacitive,
Resistive Mechanical and tactile sensing [17]

Polyphenylsulfone/Polycarbonate Capacitive Biomedical sensing, human
interface devices, material sensing [43]

PA12/Magnetic particle Magnetic Magnetic sensor application [44]

DIW

Sensor: TPU/Carbon black,
Electrode: TPU/Ag Piezoresistive

Skin-attachable electronics,
human–machine interfaces, and

electronic skins
[41]

Silver with sacrificial ink Inductive/capacitive Food deterioration [45]

Graphene/PDMS and PTFE/PDMS Electrical resistive Smart textile [46]

Urethane Triacrylate/Methacrylic acid Inductive/capacitive Neuro-robotics and
neuro-prosthetics [47]

Clay slurry Capacitive Relative humidity sensing [48]

LPBF
Type K thermocouple Seebeck effect Temperature sensing [49]

SS 316L powder (Conductive material) Magnetic Structural health monitoring [50]

SLM SUS 316L, Inconel 718C Thermal Self-cognitive ability of metals [51]

SLA
PDMS Electrochemical Biologically active molecule

sensing [52]

Optical fiber Pulse-calling Particle analysis [53]

Elastomer Piezoresistive Tactile sensor [52]

DLP SP-RF0900 Resistive Robotic manipulation [54]

Resin Capacitive Particulate matter sensing [55]

DED
Ti-6AL-4V Magnetic Eddy current test [56]

Stainless Steel/Zirconia Resistive Structural health monitoring [57]

Tin oxide Electrical resistive Gas sensing [34]

Inkjet ZnO Resistive Gas sensing [58]

Acrylic rubber Resistive Robotic gripper [59]

TPU/graphite ink Capacitive Robotics [60]

FDM
PLA/wax filament Nucleotide sequence Dengue virus detection [61]

BTO/MWCNT/PVDF Piezoelectric Energy storage [62]

BTO/PVDF Piezoelectric Pressure sensing [63]

2.1.2. Capacitance

The capacitive sensor consists of two parallel electrode plates and a dielectric material
sandwiched in between [42]. The distance between the capacitor plates is directly influ-
enced by the exerted force on the sensor, and the capacitance can be measured by also
considering the plates’ overlying area. Qiu et al. fabricated integrated sensing capacitors to
fabricate tissues and organs for surgery preparation through 3D printing technique [2]. The
capacitance capability exhibited by their 3D printed sensors was accomplished through
printing with polyacrylamide hydrogels for the plates and a silicone elastomer as the
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dielectric material, where the elastomer experienced deformation when compressed. Due
to deformation, the tactile sensor produced a capacitance change directly related to the
applied pressure that simulated organ/tissue handling during surgical procedures.
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2.1.3. Piezoelectricity

The piezoelectric effect translates applied mechanical energy into a voltage or gen-
eration of electric current [65]. Piezoelectricity is amongst the most efficient transduction
methods, in terms of output voltage and high sensitivity [66]. The piezoelectric transducer
is comprised of two electrodes that contain a piezoelectric material sandwiched in be-
tween; piezoelectric materials can be Lead zirconate titanate (PZT), Barium Titanate (BT) or
Polyvinylidene fluoride (PVDF). Cui et al. prepared PZT colloidal particles for implementa-
tion into photo-sensitive ink to produce 3D-printed complex architectures [67]. The usage
of 3D-printing enabled the ability to print convoluted geometries while maintaining a
strong piezoelectric efficiency and therefore, functionalization of an additive manufactured
part. Complete manufacturing of the piezoelectric devices follows the order, 3D printing
fabrication, electrode formation, and poling. 3D printing makes it possible to merge the
first two steps and make the poling process easier [9]. Figure 2 is showing three common
transduction methods.

2.1.4. Magnetic Sensing

Magnetic sensors detect the presence of a magnetic field and provide actionable data
regarding an object’s positioning, speed, rotation, and direction of movement. 3D printing
technology presents a promising manufacturing technique to fabricate functional magnetic
sensor devices of complex geometries with multiple materials and scales [68]. Only a
few pieces of research in his field are available till now [44,56]. Christian Huber and his
group mixed permanent magnetic filaments with pure polyamide (PA12) filaments and 3D-
printed polymer-bonded magnets with a variable magnetic compound fraction distribution
to obtain a required external field of the manufactured magnets [44]. Credi et al. proposed
two different techniques for 3D printing high-sensitivity magnetically responsive cantilever
beams and verified their feasibility as magnetic sensors [69].

2.2. Wired

3D Printing sensor technology can be considered as (a) embedding an existing sensor
into a printed structure or (b) printing the entire sensor [60]. Electronic functionality has
been added to additively manufactured parts by embedding wiring, printed circuit boards,
or entire sensors. Integrated wired sensors can be obtained by joining a non-conductive
material with conductive inks through previously printed channels or using multi-material
printing of conductive and non-conductive materials [17].
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Embedded sensors can be easily fabricated by manufacturing the non-conductive part
first and then adding the electronic component. Shemelya et al. successfully fabricated
capacitive sensors using fused deposition modeling and embedded wiring and were able
to manufacture a fully encapsulated sensor [27]. To achieve this, the AM process was
interrupted various times to fully embed all electronic components. In order to 3D print a
joint-angle sensor, the fabrication process had to be halted once the cavity for the wiring
harness has been printed to add this mentioned component to the part before printing is
resumed. However, since the printing process must be interrupted multiple times during
sensor fabrication, the procedure has to be organized and registered to maintain accuracy
during the prints.

Sensors can also be fabricated by fusing a conductive material through channels
fabricated in a non-conductive printed part. This approach for embedded sensors is
challenging to implement because the fusion of materials makes it challenging to insert and
remove supports in small spaces. With this method, the inks used can (a) remain liquid after
infusion, (b) be infused as a liquid and then solidified via curing or evaporation of solvents,
or (c) be infused as a solid via a carrier that evaporates after the process [70]. Chizari et al.
developed highly conductive CNT/PLA nanocomposites to fabricate liquid sensors via 3D
printing [70]. Here, the material was extruded out of a nozzle, allowing for tunable scaffold
thickness affecting the relative resistance change inversely. The evaporation of solvent
during the printing process raised issues of deformation, leading to filament overlap, and
hence, more sensitive sensors. Utilizing the freedom that AM offers, Chizari et al. increased
the number of printed layers, resulting in lower sensitivity. Mu et al. embedded silver
nanoparticle ink via direct ink write into another 3D printed part for the use of flex sensors,
leading to 9% yield strain, and low resistance change after cyclic loading and unloading [71].
TGA/DSC was conducted to ensure that the volatile solvent had been removed completely.
This method of embedding sensors born of ink solvent removal was successful due to its
use of limited supports and verification method. Mu et al. fabricated a flexible sensor,
fabricating a ring that varies resistance based on the bent position of the finger.

Fusion of materials via multi-material printing to fabricate sensors has the design
freedom and is a straight-forward fabrication. Sensors fabricated using this method are
primarily manufactured using ink or paste-based 3D printing technology such as direct
ink write (DIW). Nassar et al. demonstrated the feasibility of this method by 3D printing a
silver palladium paste and Glassbend Flexi material to fabricate a bendable smart sensing
structure [23]. In comparison to the previous techniques, multi-material printing allows
for the sensor to be manufactured in one single print without the need of interrupting or
pausing the fabrication at the mid-print stage.

The challenge with wired embedded sensors, for all these methods, is that the sensors
do have to be connected via a physical wire to a power source and to the component
that will be outing the data provided by the sensor to have a fully functional sensor.
Therefore, a new technology has emerged, allowing for wireless sensors to be fabricated
via AM technology.

2.3. Wireless

Embedded printed components serve as efficient wireless sensors for accurate sensing,
computation, and communication. These sensors shine in their capacity to monitor a wide
range of physical and environmental variables, including pressure, temperature, motion,
and others [72]. Wu et al., fabricated a passive wireless inductor-capacitor (LC) tank sensor
using inkjet AM technology to create the coils channel and pad structures, which were later
filled with liquid metal paint to create electrically conductive structures. This wireless LC
tank sensor was used to measure the shift in resonance frequency which showed difference
of 4.3% when the milk was stored at room temperature for 36 h [45].

Farooqui et al. pioneered the creation of 3D-printed disposable wireless sensors
that incorporate microelectronics for extensive environmental monitoring. As a proof of
concept, they demonstrated wireless temperature, humidity, and H2S level sensing [73].
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Additionally, researchers have explored 3D-printed wireless implantable sensors. Herbert
et al. developed a wireless, stretchable implantable biosystem via 3D printing for real-time
monitoring of cerebral aneurysm hemodynamics, achieving wireless monitoring up to
6 cm through biological tissue [74]. Kalhori et al. designed and 3D printed a compact LC
location sensor with enhanced wireless detection capabilities, enabling readouts from a
distance of 10 cm [75]. Parker et al. created a customizable wireless implantable neural
probe using 3D printing technology [76]. Furthermore, there have been reports on 3D-
printed soft capacitive strain sensors integrated with wireless vascular stents, providing a
biocompatible, battery-free, and wireless monitoring system [77,78].

3. Progress on 3D Printed Integrated Sensor
3.1. FFF Based 3D Printed Embedded Sensors

Fused filament fabrication (FFF) is an AM technique where material is extruded
through a nozzle and being deposited layer by layer until a final part is fabricated [79]
shown in Figure 3. FFF technology has high potential in the creation of 3D printed parts
with embedded sensors. Many works have demonstrated the capabilities of FFF technology
to create a variety of sensors including electrochemical, capacitive, piezoresistive and
piezoelectric. In piezoelectric sensors, Košir et al. designed a methodology for a single-
process FFF manufactured dynamic piezoelectric sensor [80]. The piezoelectric sensor
was manufactured by FFF made by polyvinylidene fluoride (PVDF) and poling with an
electric field of 16.5 MV/m. Four different filaments were used for the 3D printed dynamic
sensor: PVDF (piezoelectric film), electrify (electrodes), HTPRO PLA (build surface), and
TPU (electrode support). Two types of sensors were manufactured using this technique to
measure 31 (In-plane—direction along the print trace) and 32 (In-plane perpendicular to 31)
piezoelectric mode responses as seen in Figure 4. Excitation force and the generated charge
were the metrics used to measure the in-plane and out-of-plane piezoelectric responses.
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Katseli et al. fabricated an electrochemical cell-on-a-chip device by using FFF [81]. The
device was manufactured in a single-step process using a dual extruder 3D printer. The
printed part consisted of a miniature cell made with polylactic acid (PLA) with 3 electrodes
embedded of carbon-loaded acrylonitrile butadiene styrene (ABS) conductive material as
seen in Figure 4. The electrochemical sensor was used to determine paracetamol (PAR)
and caffeine (CAF) in pharmaceutical tablets and was tested in urine spiked with PAR
and CAR. 0.3 molL−1 of H2SO4 electrolyte was used due to having the best sensitivity
and background characteristics for PAR and CAR. Differential pulse voltammetry (DPV)
was used for simultaneous determination measurements of PAR and CAF. Lastly, the
electrochemical chip design demonstrated fast and sensitive voltametric analysis while
using small quantities of sample.
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Gooding et al. manufactured a rectangular part with 3DSolutech Natural Clear PLA
while embedding one layer into the surface, a 3D printed strain gauge using conductive
PLA-Graphene composite filament [52]. The conductive material served to measure the
strain gauge resistance by using the known geometry and bulk resistivity (0.6 Ω·cm)
provided by the manufacturer. When connected to a circuit and providing supply voltage,
(depending on the loading applied) the strain gauge will deform, and the resistance will
change according to the geometry. When the gauge is strained, it will produce an output
voltage variation that can be used to quantify the sensitivity of the embedded strain gauge.
Three control factors were selected to examine the effects that geometry has on linearity,
hysteresis, and repeatability to tensile load of the strain gauge specimen. These factors were
the number of end loops, strand width, and thickness. In addition, due to the inconsistency
of being able to print the complete strain gauge with one layer; different build orientations
were explored to investigate the effects of conductive material through multiple layers. To
validate the experimental data, finite elemental analysis (FEA) simulations were conducted.
Results indicated that there was a difference between the FEA and the fabricated measured
values due to inconsistent extrusion.

3.2. DLP/SLA Based 3D Printed Embedded Sensors

Photopolymerization-based 3D printing includes four types of technologies: stere-
olithography (SLA), digital light projection (DLP), PolyJet and two-photon polymerization
(2PP) [82]. SLA uses a UV laser to cure resins layer by layer leading to 3D objects. DLP
uses a projector (also referred to as digital light processing unit) that exposes UV light
and cures a full layer of resin. PolyJet, developed by Stratasys Objet Geometries Co, Ltd.,
Rheinmünster, Germany, uses micronozzles that jet photopolymer resin droplets while
simultaneously curing with UV light. 2PP is based on the simultaneous absorption of
two photons in a photopolymer material.

When it comes to embedded sensors, photopolymerization technology has a few
limitations. Recently this AM process has facilitated the 3D printing of sensors. Initially,
only single-material, rigid parts could be printed and photopolymerization primarily was
used to fabricate molds in order to cast sensors. Ragones et al. fabricated a rigid mold
via SLA which was then used to cast a PDMS chip that was used as the substrate for a
biosensor [83] as shown in Figure 5. The trenches made on the casting based on the mold
where then filled with conductive ink. Figure 6 details the fabrication process. In this
study, a sensor capable of allowing a vertical detection approach on small volumes of
cells and tissues without the need for transferring or removing the examined samples was
successfully fabricated [2,83].
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The most common type of sensors fabricated via photopolymerization are those that
function via previously printed channels, also known as hybrid 3D printing. Figure 6
depicts the fabrication of tactile sensors via DLP technology with the usage of conductive
ink in printed channels [82] represented in Figure 7. 3D molds were printed through stere-
olithography to integrate flexible antenna- based pressure sensor with high sensitivity [54].
Hossain et al. also integrated flexible chip less RFID temperature memory sensor into 3D
printed molds [84].

A more recent and growing DLP/SLA process for sensing is to manufacture sensors
through multi-material printing. Before it was impossible due to the nature of this AM
technology, however, in recent years new printers that have two vats and other ways to
achieve this have matured. Some multi-material methods in Vat Photopolymerization
include [85]:

(a) Manually stopping the print and changing vats/resins, as shown in Figure 8
(b) Injecting material for each layer
(c) Mechanical system changes vats/resins
(d) Printing material around a complex, preexisting 3D structure



Nanomaterials 2023, 13, 3148 11 of 32

Nanomaterials 2023, 13, x FOR PEER REVIEW 11 of 32 
 

 

[54]. Hossain et al. also integrated flexible chip less RFID temperature memory sensor into 
3D printed molds [84]. 

 
Figure 7. Indirect fabrication of sensors via printed channels: (a) sensor body with support material 
in channels space, (b) removal of supports to leave empty channels, (c) piezoresistive ink injections 
or direct ink writing [54]. Copyright 2018, MDPI. 

A more recent and growing DLP/SLA process for sensing is to manufacture sensors 
through multi-material printing. Before it was impossible due to the nature of this AM 
technology, however, in recent years new printers that have two vats and other ways to 
achieve this have matured. Some multi-material methods in Vat Photopolymerization in-
clude [85]: 
(a) Manually stopping the print and changing vats/resins, as shown in Figure 8 
(b) Injecting material for each layer 
(c) Mechanical system changes vats/resins 
(d) Printing material around a complex, preexisting 3D structure 

 
Figure 8. Examples of multi-material printing via Vat Photopolymerization technology: (a) manu-
ally switching vats(I) free surface and (II) constrained surface SLA system, (b) manually changing 
resins by injecting layer-by-layer [85]. Copyright 2021, American Chemical Society. 

Wang et al. successfully 3D printed functional sensors with incorporated channels 
with DLP technology that were then injected with Galinstan metal [46]. The sensor struc-
ture was fabricated by multi-material printing of the sensor. First, the substrate with pho-
tosensitive resin was cured into the shape of a base structure with microfluidic channels. 
Then, the resin vat was changed to print a convex structure as the cover of the channels 
with a different photosensitive material. After the manufacture of the 3D printed part of 

Figure 7. Indirect fabrication of sensors via printed channels: (a) sensor body with support material
in channels space, (b) removal of supports to leave empty channels, (c) piezoresistive ink injections
or direct ink writing [54]. Copyright 2018, MDPI.

Nanomaterials 2023, 13, x FOR PEER REVIEW 11 of 32 
 

 

[54]. Hossain et al. also integrated flexible chip less RFID temperature memory sensor into 
3D printed molds [84]. 

 
Figure 7. Indirect fabrication of sensors via printed channels: (a) sensor body with support material 
in channels space, (b) removal of supports to leave empty channels, (c) piezoresistive ink injections 
or direct ink writing [54]. Copyright 2018, MDPI. 

A more recent and growing DLP/SLA process for sensing is to manufacture sensors 
through multi-material printing. Before it was impossible due to the nature of this AM 
technology, however, in recent years new printers that have two vats and other ways to 
achieve this have matured. Some multi-material methods in Vat Photopolymerization in-
clude [85]: 
(a) Manually stopping the print and changing vats/resins, as shown in Figure 8 
(b) Injecting material for each layer 
(c) Mechanical system changes vats/resins 
(d) Printing material around a complex, preexisting 3D structure 

 
Figure 8. Examples of multi-material printing via Vat Photopolymerization technology: (a) manu-
ally switching vats(I) free surface and (II) constrained surface SLA system, (b) manually changing 
resins by injecting layer-by-layer [85]. Copyright 2021, American Chemical Society. 

Wang et al. successfully 3D printed functional sensors with incorporated channels 
with DLP technology that were then injected with Galinstan metal [46]. The sensor struc-
ture was fabricated by multi-material printing of the sensor. First, the substrate with pho-
tosensitive resin was cured into the shape of a base structure with microfluidic channels. 
Then, the resin vat was changed to print a convex structure as the cover of the channels 
with a different photosensitive material. After the manufacture of the 3D printed part of 

Figure 8. Examples of multi-material printing via Vat Photopolymerization technology: (a) manually
switching vats(I) free surface and (II) constrained surface SLA system, (b) manually changing resins
by injecting layer-by-layer [85]. Copyright 2021, American Chemical Society.

Wang et al. successfully 3D printed functional sensors with incorporated channels with
DLP technology that were then injected with Galinstan metal [46]. The sensor structure was
fabricated by multi-material printing of the sensor. First, the substrate with photosensitive
resin was cured into the shape of a base structure with microfluidic channels. Then, the
resin vat was changed to print a convex structure as the cover of the channels with a
different photosensitive material. After the manufacture of the 3D printed part of the
sensor, Galinstan liquid metal was injected into the microchannels as shown in Figure 9.

The tactile sensors were tested to sense different forces and temperatures. The applied
forces increased consecutively between 0 N to 10 N under temperatures ranging from 20 ◦C
to 60 ◦C [46] shown in Figure 10. The output voltages showed a linear increase for different
temperature groups applied with the same forces. Furthermore, the resistance of the sensor
increased as the temperature increased. An additional long-term multiple cyclic tests were
conducted along with cyclic heating and cooling and cyclic loading and unloading tests.
Wang et al., conducted 200 cycles that lasted 2400 s each with a loading force of 7.5 N and a
frequency of 0.08 Hz.
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3.3. Direct Ink Write Technique

Direct Ink Writing (DIW), also known as Robocasting, is a method associated with the
material extrusion group. This method is generally used for non-Newtonian viscous slurry



Nanomaterials 2023, 13, 3148 13 of 32

with composed rheological properties, as printing takes place at room temperature [86]. The
DIW technique mainly contains two pieces of equipment, one is the software system that
designs the structure, and the other is the output device that receives the motion instructions
to complete the fabrication process. The dispenser or extruder moves according to the
software, and materials are extruded through the nozzle generating the final part of the
build platform. DIW has shown great potential for the development of 3D printed sensors
with superior functional properties. The DIW method has some unique sets of advantages.
For creation of embedded sensor technology, instead of competing with other traditional
methods (casting, CNC machining, hot pressing, and molding approaches), this method
complements them and can form a hybrid approach [16]. By using this process, the solid
content in the final printed part can be higher compared with other AM processes [87].
Materials with properties similar to solid such as metals [88], ceramics [89] or wood [90]
can be transformed into ink and printed. The number of research groups using DIW has
expanded worldwide beyond the structural ceramics field into other areas, such as 3D
bioprinting [91–93], energy [94–96], composites [97,98] sensors [22,99] robots [100]. Most
sensors generally consist of multiple types of materials. Thus, a 3D printing method that can
print different types of components, such as conductors [17], piezoelectric/dielectrics [16],
flexible [101], and stiff materials [88], is key to the 3D printing of sensors [87]. DIW is
perfect in this regard as with this technique, multiple types of materials can be printed in a
single step with each having different parameters. There has already been a lot of research
where DIW has been used to print embedded sensors. Vatani and his team adopted the
method of DIW and were able to fabricate layered resistance sensors [102]. The team
achieved the first 3D printed sensing arrays with CNTs inks where the 3D printed part
was encapsulated in photocurable resin and PET to assemble the sensors. As a result, high-
quality soft and flexible sensors with consistent sensing capabilities could be manufactured
repeatedly with printable inks [49,103]. Kim and his team, directly printed a glove-type
sensor that contained 10 strain gauges to measure flexion and extension of the five fingers,
thus presenting a compact sensor system [99] and short production time. Shi and his team
prepared aqueous ink mixing with polydimethylsiloxane (PDMS) sub microbeads/GO
nanocomposite, which enabled high-resolution 3D DIW of strain sensors.

3.4. Laser Powder Based 3D Printed Embedded Sensors

Laser Powder Bed Fusion (LPBF) is an AM process that relies on fusing powders
together through high energy lasers. The most common materials used are metals, like
stainless steel, titanium, and Inconel, and polymers, like nylon [50]. There are a few differ-
ent processes that have been researched to integrate sensors with LPBF. Oak Ridge National
Laboratory reported efforts to embed thermocouples in stainless steel for the application of
monitoring next-generation nuclear reactor temperatures [50]. Rather than embedding the
sensors mid-print, channels on the build plate were machined using electrical discharge ma-
chining. Channel width and depth were varied to investigate the quality of the embedding
process. Thermocouples were placed in these channels, spot welded, and sheathed using
stainless steel (SS). After this, printing began to embed the thermocouples. To ascertain the
sensor functionality, the thermocouples were exposed to thermal testing. This evaluation
consisted of inserting the embedded sensors (along with a nonembedded control sensor)
into a controlled furnace, and setting the temperature to 100 ◦C. The temperature increased
by 100 ◦C increments to 500 ◦C, while holding the temperature for 1 h for each increment.
The embedded sensors performed consistently to the nonembedded control sensor despite
slight variation. At the beginning of the experiment, the embedded sensors recorded a
lower temperature than the control. Later, the embedded sensors eventually recorded a
higher temperature towards the end of the experiment when the control sensor began to
match the embedded sensors. This discrepancy can be attributed to the time constant of
heating the SS block that holds the sensors. The researchers predicted that, if all sensors
were allowed to reach a steady state, the sensors would read the same temperature.
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Embedded sensors introduce novel non-destructive testing methods. Stoll et al. in-
tegrated embedded eddy current (EC) sensors to enable structural health monitoring of
SS 316 [104]. The study proves that embedded ECs can be utilized to observe crack propa-
gation and determine damage severity over an extended period. SS 316 was chosen due
to its low magnetic permeability, which coincides with the working principles of the EC,
which utilizes magnetic fields for operation. Rather than embed the sensors during the
AM process, a cavity was included in the CAD model, where the sensor was placed after
selective laser melting (SLM). After pressing the sensor towards the bottom surface of the
cavity, the entire cavity was filled with resin, as shown in Figures 11 and 12.
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Figure 12. Sensor integration process for EC sensors: (a) powder removal, insertion of heat shrink
tubes as wire protection and leading of wires through heat shrink tubes; (b) integration of the
EC sensor into the cavity; (c) LPBF test specimens with soldered cables, ready to be tested [104].
Copyright 2021, Springer Link.

Fiber optic sensors have also been embedded using SLM technology. Havermann
et al. manufactured SS 316 embedded sensors on a SS 316 substrate to determine strain
levels, plastic deformation, and elastic deformation while using bare SS 316 samples to
compare [51]. The embedding process includes a groove in the part, where the nickel
coated Fiber Bragg Grating (FBG) sensors are placed. These sensors are covered by a layer
of SS 316 powder, and are subsequently melted to the substrate, embedding the sample.
Long-term elastic stability was investigated with this sensor. The sample was plastically
deformed initially, but not in the later cycles.
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Placing the sensor in a pre-cut cavity and embedding during the printing process
proves to be a popular method. H. Hyer and C. Petrie utilized SS 316 powders to embed
a thermocouple and an optical sensor to measure strain. Embedding the sensors was a
meticulous operation. Because the embedded thermocouple’s surface roughness and gaps
needed to be minimized to reduce sensor response time, and the optical sensor requires
near perfect embedding to sense strain [105]. With this, it also requires an embedded fiber
and a floating fiber to separate the optical sensor’s ability to detect temperature and strain.
Detecting the strain and temperature response is paramount in assessing the feasibility of
integrated sensors. In the embedded region, the strain response is well observed. Adequate
bonding is also documented, as the response is sensitive to strain while being independent
of the temperature response during temperature testing.

Jung et al. demonstrates an embedding method wherein integrated circuit chips are
embedded into an Inconel 718C turbine in a SLM process to measure temperature and
three-dimension vibration [57]. The turbine is printed in three steps: one which leads
up to the embedding area, where the IC is embedded with the protective layer, a film.
Next, the sensor is placed, and the third step consists of the SLM process continuing
the part until it is finished, as displayed in Figure 13. Similar method called ‘stop and
go’ has been demonstrated to integrate PZT sensors during EB-PBF AM technique by
Terrazas et al. [106].
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of parts for the intermittent SLM process. (b) Three primary steps and details of the SE-SLM
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The performance of the embedded sensor was compared to a control sensor. The
embedded sensor, despite having a different heating rate, reaches the same temperature
as the bare sensor. This can be observed in each temperature elevation in Figure 14. The
embedded and bare sensors also share the same amount of noise, around ±0.15 ◦C. These
trends extend to the accuracy of the vibrational detection (Figure 15), although there is
no control parameter of a bare sensor for comparison. Here, Jung et al. noted that the IC
operates on Bluetooth, with a connection range of more than 100 m.
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bare temperature sensor. (a) Data reading set-up for monitoring the in-situ temperature of SE-SLM
SUS316L. (b) Temperature profile comparison (c) Temperature increment slope profile (d) Noise level
comparison [57]. Copyright 2020, Elsevier.
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Figure 15. PCB-based IC component embedding in metal. (a) Setup for data reading from IC chip
embedded in metal component. (b) IC chip-embedded Inconel 718 turbine vane. (c) Remote wireless
monitoring of turbine vane temperature. (d–f) Recorded acceleration data for each axis vibration
input ((d) X-axis, (e) Y-axis, and (f) Z-axis) [57]. Copyright 2020, Elsevier.

3.5. DED Based 3D Printed Embedded Sensors

Directed energy deposition (DED) is an AM process that uses a laser or electron beam
to fuse material together as it is being deposited as shown in Figure 16 [107]. The material
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feedstock available for DED includes polymers, ceramics, and metals, but metals are the
material that is mostly used in this approach and can be supplied as wires or powder [108].
One of the main issues that are prevalent when AM embedded sensors using DED is
protection of the sensor from damage due to laser exposure and temperature damage.
Juhasz et al. introduces a way to print embedded temperature-resistant strain sensors for
metal dog bone specimens using DED [34]. The embedded sensors were printed into a
thick sheet of high temperature resistant materials and multiple trials varied thickness of
the sheet to monitor temperature degradation and damage to the sensor. The sensor sheets
were placed during DED operation and in-situ interruption was programmed to embed
the sensor into the dog-bone. To 3D print the dog bone specimens, a laser power of 375W,
a mass flow rate of 3.23 g/min, a laser spot size of 1.7 mm and layer height of 1.02 mm
were applied. The thickest 3D printed strain gauge sensor was the only to survive the DED
process and had the ability to produce an output response when tensile stress was applied.
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Kim et al. used DED to embed optical fiber sensors into a turbine blade for temperature
scanning [109]. The significant elements that were investigated in this work was the
optimization of printing parameters and implementing a material that is sensitive to detect
the actual temperature. To prevent thermal damage to the sensor, they coated the fibers with
Ni-alloy and implemented a print-and-stop procedure to allow heat to dissipate after each
printed layer. The final wind turbine design was tested in extreme temperature conditions
to test the detection ability of the sensors. Preliminary tests were done prior to ensure there
were no defects during printing.

3.6. Inkjet Based 3D Printed Embedded Sensors

Inkjet 3D printers work by utilizing piezoelectric inkjet technology in order to release
droplets of material on a bed. Each material layer deposited is cured before the following
layer. Inkjet printing can be operated with two different methods: drop-on-demand (DoD)
and continuous inkjet printing (CIJ) [110]. Based on this technology, two multi-material
technologies were created: PolyJet (Stratasys Objet Geometries Co) (Figure 17A) and Multi-
Jet (3D Systems) (Figure 17B). PolyJet and MultiJet use micronozzles that jet photopolymer
resin droplets, liquid plastic material, or casting wax materials while simultaneously curing
with UV light [111]. Gel-like support is used with both of these technologies. The key
difference between these technologies is the print heads. MultiJet can have a maximum of
two printheads. On the other hand, PolyJet can be comprised of two or more print heads.

Andò et al. successfully developed a flexible electromagnetic driven actuator using
a low-cost Inkjet printer [112]. They additively manufactured a conductive coil onto a
substrate made of polyethylene terephthalate (PET) and an external magnet. In addition, a
strain gauge was 3D printed onto the PET beam which connects the magnet and coil to a
patterned printed circuit board (PCB). Pinto et al. used PolyJet technology to manufacture
stretchable conductors and pressure sensors. They aimed to create a rapid-manufacturing
technique of microfluidic substrates embedded with liquid metals. In order to create the
microchannels, the J750 (Stratasys) PolyJet printer and the Agilus30 (Stratasys) UV-cured
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resin were used. The 3D printing process was the following: first, fabricating the bottom
substrate with channel cavities; second, filling the channel cavities with support liquid, and
lastly, fabricate the top substrate directly on top of the bottom substrate. The flexible printed
microfluidic substrate was then filled with EGaIn liquid metal [113]. Mieloszyk et al., using
MultiJet printing, fabricates a polymeric structure with embedded fiber Bragg grating
(FBG) sensor [114]. FBG sensors have many applications such as strain and temperature
measurements, in addition to vibration-based methods. The material used was a rigid
polymer that was manufactured into dog-bone structures in order to test the sensor. Based
on these experiments, InkJet technology has proven to be a good additive manufacturing
method for both flexible and rigid polymer-based embedded sensors that can be used in
many applications.
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4. Integrated Physical Sensors and Their Applications
4.1. Piezoelectric Sensor

Piezoelectricity is a phenomenon that occurs in non-centrosymmetric crystals. When
stress is applied to the material, it induces an electric polarization (charge). Conversely,
when an electric field is applied, it induces a strain that is proportional to the field strength
which is known as the converse effect and is used for actuation. The direct effect, on the
other hand, is used for sensing changes in dynamic pressure, acceleration (from vibration
or shock), and force [115]. Piezoelectric sensors are extensively utilized in various fields,
including biomedical applications, ultrasonic imaging [116], energy harvesting [117–119],
sensors [80], military and marine applications [120], automobile industry, and electronic
devices [121] due to their remarkable mechanical, piezoelectric, and acoustic properties,
making them ideal for everyday applications. Piezoelectric materials offer a new alternative
for rapidly developing advanced electronic devices to replace traditional materials. As
an example, in a study conducted by Zeyu et al., a 3D printed BTO-based piezoelectric
ultrasonic transducer was developed which was able to focus energy and sense ultrasonic
waves up to 6.28 MHz. The team successfully visualized the structure of a porcine eyeball
using this transducer [122]. Tariverdian et al. conducted a study where they created 3D-
printed scaffolds made of a composite material comprising barium strontium titanate (BST)
and β-tricalcium phosphate (β-TCP) with interconnected macropores. These implantable
materials were further analyzed to determine their ability to promote bioactivity and
piezoelectricity, which are essential for bone healing [123]. Wen-Yang et al. developed a
flexible piezoelectric pressure sensor for microfluidic applications. The sensor was made of
PVDF sheets and PDMS and used microelectromechanical systems (MEMS) technology to
create sensing patterns on the PVDF sheets. A molding transfer was designed to form the
microfluidic channels of the PDMS, which were then integrated together (Figure 18). The
piezoelectric microfluidic sensor could measure impulse pressure and flow rates resulting
from electric charges generated when the sensor was mechanically deformed [124].
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Figure 18. (i) The electric charge of the piezoelectric PVDF effect results from a deformation of the
crystal lattice by changing the distance d when applying the pressure, producing a dipole moment.
(ii) The results of PVDF microfluidic experimental data acquisition by LabVIEW software. (a) The
capacitance values with the air flow impulses at differential pressures. (b) The voltages transfor-
mation from capacitance by a charge amplifier. (c) The different frequency amplitudes with flow
rates. (d) The output amplitude of the flow rates of frequency response versus the flow rate under
different curvature radii [124], Copyright 2008, IEEE.

4.2. Piezoresistive Sensor

The working principle of piezoresistive sensors is that of the change of the material’s
electrical resistance caused by the application of mechanical stress. Piezoresistive sensors
have been mentioned to be the sensors that are most vastly used on micro-scale and macro-
scale devices [125] The materials mostly used for these types of sensors are semiconductors
such as silicon, germanium, and polymers, which exhibit piezoresistive characteristics.
These materials are mostly seen in microelectromechanical system (MEMs) devices (i.e.,
pressure sensors, microfluidic devices, accelerometers), where the substrate is often a rigid
silicon that can be small and precise. Pagliano et al. successfully additively manufactured a
functional MEMs accelerometer using two-photon polymerization with metal evaporation
that is shown in Figure 19. This accelerometer successfully resembled the working principle
of a piezoresistive sensor, therefore, the bending of the 3D printed cantilevers leads to the
strain of the metal strain gauges and to the expected change of the electrical resistance of
the strain gauges [126].
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Springer Nature.

Recently, alternative materials, mostly composites such as carbon-based inclusions
and metal nanoparticles infusions, have been developed for this application. These new
composite materials allow for the fabrication of flexible piezoresistive sensors. The ability
to additively fabricate flexible piezoresistive sensors has proven to be beneficial in different
applications. Some applications include embedded pressure sensors in tires [127], wearable
electronics [82], airflow sensors [128], food monitoring [129], and pneumatic actuators [130]
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among many others. In 2020, Fekiri et al. 3D printed flexible piezoresistive pressure sensors
using a composite fabricated with a dispersion of multi-walled carbon nanotubes in poly-
dimethylsiloxane (MWCNT-PDMS composite) via direct ink write (DIW) AM process [131]
represented in Figure 20. They showed the feasibility of attaching their 3D printed sensors
to non-conformal surfaces in addition to its flexibility and bendability [126]. The appli-
cations of piezoresistive sensors mentioned successfully show the many attributions that
these sensors offer to advancement in different technologies. Piezoresistive sensors pro-
vide a means of converting mechanical changes into electrical resistance changes creating
electrical signals, all in cost-efficient, compact parts.
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The main function of magnetic sensors is to detect the strength, prescence, or direc-

tion of magnetic fields. The most common technique regarding additive manufacturing 
and embedding of magnetic sensors is by using Hall effect sensors, which generate a dif-
ference in voltage when exposed to magnetic field parallel to current flow [132]. Sensing 
devices are invaluable to the medical industry. Whenever there is an opportunity to per-
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catheter tip for minimally invasive surgery, replete with a magnetic sensing tip [133]. 
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4.3. Magnetic Sensor

The main function of magnetic sensors is to detect the strength, prescence, or direction
of magnetic fields. The most common technique regarding additive manufacturing and
embedding of magnetic sensors is by using Hall effect sensors, which generate a difference
in voltage when exposed to magnetic field parallel to current flow [132]. Sensing devices are
invaluable to the medical industry. Whenever there is an opportunity to perform invasive
surgery, it is usually beneficial to do so. Chatzipirpirdis et al. fabricated a catheter tip for
minimally invasive surgery, replete with a magnetic sensing tip [133]. Chatzipiripiridis
et al. utilized 3D printing to develop a sensor base, which the magnetic sensor was
embedded into, all encapsulated with a biocompatible PDMS tube. The magnetic sensor
was calibrated to output newtons, all in an effort to either log forces undertaken by tissue
or to characterize tissue for diagnosis. The development of the integrated sensor was
successful, demonstrated by the sensing of the resistant force by raw beef.

Olivas et al. also utilized Hall effect sensors in the creation of their 3D printed
magnetic flux sensor system [134]. This approach combined additive manufacturing and
micro dispensing, leading to very fine details in conductive traces. The researchers detail
iterations of the magnetic flux sensing system, elucidating the decrease in package size.
This work results in placement of electronics on curved surfaces, three-dimensional sensing,
and surface-mount packaged electronic devices.

Using an alternative approach, Zhang et al. demonstrated the capability of magnetic
hall sensors by fabricated a polymeric magnetic sensor based on a Mach-Zahnder interfer-
ometer [53]. The initial step in the creation of this sensor entailed the 3D printing of the
device- a structure with a hollow cavity and two open channels that connect. After printing,
the channels are infiltrated with magnetic fluids and sealed. When the magnetic field of the
magnetic fluid varies, the refractive index of the fluid also changes, allowing an opportunity
for detection. Ultimately, the researcher’s data supports sensing capabilities finer than Hall
effect sensors in the nT range with anti-electromagnetic interference capabilities.

4.4. Capacitive Sensor

The utilization of capacitive sensors within the realm of 3D printing presents a promis-
ing avenue for integrated sensor technology. A variety of applications have emerged that
harness the potential of 3D printed capacitive sensors. For instance, in 2013, Shemelya and
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colleagues engineered touch capacitive sensors using Fused Deposition Modeling (FDM)
technology, demonstrating the capability not only to detect touch but also to differentiate
between various materials. These sensors find practical use in diverse domains, including
biomedical sensing, human-machine interfaces, material analysis, electronics characteri-
zation, and environmental monitoring [27]. Moreover, researchers Lokesh Saharan and
Toluwalase Agbesoyin ventured into 3D printing to develop capacitive sensors tailored
for biomedical applications [135]. Gianni Stano and his team introduced an innovative
method for single-step Additive Manufacturing, creating cost-effective capacitive sensors
designed for liquid level measurement. Their work underscored the potential of FDM
technology, achieving high sensor performance at an astonishingly low manufacturing
cost of 0.38 € [136]. In addition, Chao Zhang and associates explored Digital Light Process-
ing (DLP) 3D printing to craft versatile building blocks that could be configured into 3D
flexible tactile sensors. These sensors included gyroid-based piezoresistive and gap-based
capacitive sensors, exemplifying the adaptability of 3D printing in sensor creation [137].
These applications collectively highlight the diverse and transformative potential of 3D
printed capacitive sensors across various sectors.

4.5. Gas Sensor

Gas sensors have gained attention due to the health concern posed by hazardous gases
in society. Therefore, fabricating a gas sensor that is sensitive to a specific gas is essential.
Applications for gas sensing include national defense, chemical process control to industrial
manufacturing, and indoor/outdoor air quality control [138]. Gas sensing materials such as
metal oxides have been extensively studied and the mechanism is well defined. The primary
sensing mechanism involves gas adsorption induced charge transfer [55] and doping [105].
Commercial metal oxide sensors require high temperature for optimum selectivity and
sensitivity performance. Therefore, integrated joule heating elements are used to reach
high temperatures. In AM, Khan and Briand manufactured a fully printed metal-oxide gas
sensor on a polyimide substrate by using aerosol jet and inkjet technologies. The all-printed
metal-oxide gas sensor was able to obtain acceptable chemo-resistive response for CO and
NO2 (Reducing, and oxidizing) compared to conventional metal-oxide gas sensor response.
This work demonstrates future application of metal oxide gas sensors in portable smart
printed electronics, and disposable systems [139].

4.6. Particle Sensor

Particle sensors have the ability to detect particulate matter in the atmosphere and can
be considered as tool for assessing pollutants [140]. This type of sensors can be successfully
fabricated with AM by incorporating channels. A variety of applications can come to
be by incorporating sensors to 3D printed channels, such as collection and detection of
particles, health diagnostics, pharmaceutical manufacture, and environmental applications.
Microfluidic devices have been researched and fabricated recently for particle sensing [59]
shown in Figure 21. These microfluidic devices can be used for cell counting and synthesis
applications. Hampson et al. successfully manufactured a microfluidic particle counter
with stereolithography (SLA) technology with three different build directions [46]. This
particle sensor was able to count particles up to a certain size and the different sizes that
could be found in a mixture. It has been shown that successful particle detection can also be
achieved with these sensors. Wang et al. 3D printed a miniature sensor with microchannels
(as displayed in Figure 22) that function as virtual impactor and sort airborne particles by
size and mass [141]. They used digital light projection (DLP) technology for this research.
The particle detection happens by capacitive sensors. This miniature sensor proved to be a
system that can be used in daily personal health monitoring.
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4.7. Tactile Sensor

Tactile sensors are used to measure force or receive contact information such as strain,
pressure, humidity, sound, and temperature, by outputting an electrical signal upon ex-
citation [109]. Tactile sensors have four types of working mechanisms: piezoresistive,
piezocapacitive, piezoelectric, and triboelectric [142]. The applications for this type of
sensors range between intelligent systems (i.e., biometric devices and programs, automated
systems), robotics and AI, object manipulation, human-computer interactions, health-
care, and biomedical engineering. With the benefits of AM, these sensors were able to
be fabricated with soft and/or flexible materials in order to achieve higher commodity
and feasibility of usage. Tactile sensors have been mostly used recently in soft robotic
applications, mainly in robotic hands or grippers sensors [142–145]. James et al. success-
fully incorporated a commercial 3D printed tactile sensor to a three-dimensional-printed,
three-fingered tactile robot hand. It was demonstrated that this robotic hand was able to
distinguish and classify objects just by using tactile information that is stored and processed
through a neural network. Ntagios et al. 3D printed their own tactile sensors which were
later embedded on a 3D printed hand [143]. These tactile sensors where tested and proved
that they can detect pressures as low as 1 kPa. Visual expression of these sensors are in
Figure 23. Michaelis et al. have shown highly reproducible, hysteresis-free, flexible strain
sensor fabrication by inkjet printing technology [24].

By fabricating flexible tactile sensors, the use of these structures has grown in health-
care and biomedical applications [61,146]. Chen et al. 3D printed flexible smart fibers and
textiles to serve as e-skin. E-textiles have been previously applied to prostheses; however,
e-skin is a new technology that strives to combine sensor and human skin directly shown
in Figure 24 [47]. This e-skin was manufactured via DIW with the use of two mixtures:
PDMS and graphene and PDMS and PTFE. A triboelectric effect was used to achieve the
function of a tactile sensor.
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4.8. Biosensors

Biosensors are devices designed to measure biological reactions by generating a pro-
portional signals to the concentration of the analyte [147]. The “analyte” is the substance
that is to be detected. Many components are included within a biosensor, such as a biore-
ceptor, which is a molecule that recognizes the analyte. A transducer is needed to convert
this bioreaction to an electrical reaction shown on an electrical display. AM provides a
host of benefits to this phenomenon, such as freedom of design, rapid manufacturing for
point-of-care testing, and fine features to a micro level. Pregnancy tests and recent rapid
COVID-19 tests are prominent examples of biosensors. Suvanasuthi et al. demonstrated a
3D printed biosensing prototype that detects and discerns dengue virus serotypes [148].
Dengue is a mosquito-borne disease most prevalent in sub-tropical environments, with
symptoms ranging from mild to severe. The need to detect various Dengue virus types
is great, as DENV− 2 or DENV− 3 increases the chances of life-threatening disease. The
researchers have printed a sensor integrated in a structure with two types of printing
methods- material extrusion and vat photopolymerization. Material extrusion was used
to print PLA and wax microfluidic paper-based analytical devices, where vat photopoly-
merization was utilized to fabricate the fluidic chip. RNA toehold switches served as
the inspiration for the detection reaction for these sensors, where the switch would bind
sequences of each dengue virus serotype. These triggers were embedded in the 3D printed
papers. The fluidic chip helps prevent the sample from flowing to the absorption pads,
giving enough time for the reaction. This housing is concise, as seen in Figure 25. The
sensors proved to be very specific regarding their ability to discern between the serotypes,
as shown in Figure 26.
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from the cell-free reactions containing the RNA toehold switches (DENV-1 to DENV-4) that were
exposed to 5 µM Trigger-DENV-1 to Trigger DENV-4 and HPV16 (negative control) [148]. Copyright
2021, Elsevier.

4.9. Chemical Sensor

Chemical sensors are very similar to biosensors, but rather than detecting biological
information, they detect chemical information. Like biosensors, they also rely on the
interaction of the analyte and receptor. This reaction is transduced to an electrical signal
and then interpreted by the user. Common uses of chemical sensors include household
carbon monoxide sensors and breathalyzers [149].

Bao et al. developed a 3D-printed integrated neuromorphic sensor that mimics sensing
in an organism. All components were 3D printed and assembled, including the sensor,
oscillator, and transistor. This system can detect ion concentrations and was applied to
discern low nutrient concentrations in soils. This complex system required the use of
multiple printing processes, from material extrusion for the substrates to direct ink write
for the inductors, capacitors, and resistors. The integrated system, seen in Figure 27, is
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assembled in three different layers, starting with the bottom capacitors, then the inductors,
and finally the resistors [150]. The system began to monitor K+ ion concentrations in soil,
as seen in Figure 28.
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5. Challenges and Future Prospects

AM of integrated sensors offers many benefits including customization, cost savings,
and faster production. Nevertheless, there are several challenges within 3D printing inte-
grated sensors. Ensuring accurate and repeatable sensing performance from 3D printed
sensors is difficult and needs careful control of the printing process and material selec-
tion. Selection of the right material for 3D printing that has the necessary electrical and
mechanical properties for sensors can be challenging. A 3D printed sensor’s sensitivity and
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response time could not be as high as a conventional sensor’s, which could restrict their
applications in some areas. Over time, 3D-printed sensors can experience performance
deterioration due to issues such as material aging or exposure to harsh environments.

The future of 3D-printed integrated sensors is bright despite these difficulties. New
materials are being created that offer better performance and stability as technology ad-
vances. The accuracy and dependability of 3D-printed integrated sensors are projected
to increase as 3D printing technology develops, increasing their utility in a range of ap-
plications. 3D printing can minimize the cost of producing sensors by eliminating the
requirement for specialized tooling and machinery. New sensors and products may launch
faster due to 3D printing’s quicker production rate. The possible uses of 3D printed inte-
grated sensors are further increased by the customization abilities of 3D printing, which
enable the development of sensors with special and distinctive functionality. Integrated
sensors are the increasing trend towards the use of artificial intelligence (AI) and machine
learning (ML) techniques to improve sensor performance. AI and ML algorithms can
analyze large amounts of data collected by integrated sensors and identify patterns and
trends that might not be immediately apparent to human observers. This can help to
improve the accuracy and reliability of sensor readings, as well as identify potential issues
or problems before they become more serious. Additionally, an important development in
the field of integrated sensors is the growing use of wireless communication technologies.
Many integrated sensors are now capable of transmitting data wirelessly, allowing for
real-time monitoring and analysis. This can be particularly useful in applications such as
environmental monitoring or industrial automation, where it may not be practical to physi-
cally connect sensors to a centralized data collection system. Overall, despite having few
challenges, 3D-printed integrated sensors have promising futures and can revolutionize
the sensor industry.

6. Conclusions

This review discussed 3D-printed integrated sensors on structures during AM tech-
nology. Various materials and their 3D printing methods during the integration of sensors
have been broadly analyzed. Different 3D printing methods for sensor integration and the
application fields have been reviewed in this article. Future 3D printing with integrated
sensors has a wide range of exciting potential. Targeted medicines can be delivered using
3D-printed sensors in medical implants and gadgets that monitor vital signs and follow
the healing process. By adding 3D printed sensors to robots and AI systems, their sensory
capacities can be improved, making them more agile, intelligent, and responsive. Real-time
data transmission and data collection are possible using 3D printed sensors in a range of
Internet of Things (IoT) applications, including smart homes and industrial automation.
3D-printed sensors can be used to gather information on air quality, temperature, humidity,
and other environmental variables in distant or challenging areas. Additionally, 3D-printed
sensors can be incorporated into materials and constructions to track their performance
and collect crucial information for design and optimization. These are only a few instances
of the integrated sensor with 3D printing possibilities. Future applications for 3D-printed
sensors are likely to be much more creative as technology progresses.
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