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Abstract: Selenium is an important dietary supplement and an essential trace element incorporated
into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However,
different compounds of selenium usually possess a narrow nutritional or therapeutic window with a
low degree of absorption and delicate safety margins, depending on the dose and the chemical form
in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging
as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance
the biological properties of Se-based compounds. Consistent with the exciting possibilities offered
by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools
in current biomedical research with exceptional benefits as potential therapeutics, with enhanced
bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-
mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and
high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible
side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a
reference in its kind by providing the readership with a thorough and comprehensive review that
emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical
field and the promise they hold among selenium-derived products to, eventually, elicit future
developments. First, the present review recalls the physiological importance of selenium as an
oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic
properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological
activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it
discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized
nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing
context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
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1. Introduction

Nanotechnology deals with the design of particles, tools and devices in the range
between 1 and 100 nm in size with specific functions at the cellular, atomic and molecular
levels [1,2]. Nanomedicine is a relatively new but fast-developing field that can potentially
elicit a major impact on human health by combining nanotechnology-based techniques and
methods with biomedical and pharmaceutical sciences [3–7]. Thus, nanotechnology can
remarkably assist the therapy, diagnosis, monitoring and control of biological systems for
future development of personalized medicine with tailored and optimized treatments [8–10].
Nanomedicine embraces nanopharmaceuticals, nanoimaging, sensing, plus diagnostics and
therapy, also known as theranostics [11–17]. The interdisciplinary fields of nanotechnology
and nanomedicine have been propelled to the forefront in investigations from academia,
the pharmaceutical industry, clinical organizations, and several national and international
funding and regulatory agencies [18,19].

Nanoparticles (NPs) exhibit unique properties over bulk materials, such as small
size, high surface area, low polydispersity, colloidal stability, tunable surface charge and
chemistry, easy modification, and multi-functionality (Figure 1) [20–23]. In recent years,
NPs have been developed to harness their biological interactions at the molecular and
cellular levels with a high degree of specificity towards diagnosing and treating several dis-
eases [24–30]. The utilization of NPs has opened new therapeutic opportunities for agents
which otherwise cannot be used effectively as traditional drug formulations due to their
poor bioavailability and instability [31]. In particular, inorganic NPs, with their superior
intrinsic chemical, biological, and magnetic properties, have been designed for several
diagnostic [32–34], therapeutic [35,36], health [37], and agricultural [38,39] applications.
Several nanomaterials hold great promise for integrating diagnostic and therapeutic appli-
cations, such as monitoring the biodistribution and accumulation at target site, observing
and quantifying drug release, and longitudinally evaluating therapeutic efficacy [32,40].
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Figure 1. Main advantages of nanoparticles in biomedicine. Explored nanoplatforms in the biomedi-
cal field might be organic, inorganic, or hybrid. Inorganic NPs might be of different compositions,
such as core-shell quantum dots and passivated inorganic NPs by an organic/polymeric layer, and of
various shapes, such as spheres and nanotubes. Liposomes, polymeric NPs, and biopolymer-based
NPs are some examples of organic NPs.
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Selenium nanoparticles (SeNPs) have attracted special interest since selenium is an
essential micronutrient for the proper functioning of human and animal organisms in trace
amounts [41]. Selenium is an important dietary constituent of at least 25 human selenopro-
teins and enzymes containing selenocysteine [41–43]. In the environment, selenium, whose
chemical symbol is Se, exists under various oxidation states (2−, 0, 2+, 4+, 6+) and forms,
such as selenate (Na2SeO4), selenite (Na2SeO3), selenomethionine (SeMet), selenocysteine
(SeCys), and solid-state, zerovalent Se (Se0) [44,45]. Nanoscale selenium has attracted a
great deal of interest worldwide due to its high degree of absorption, great bioactivity,
low toxicity, and high efficiency in preventing oxidative damage compared to its organic
and inorganic counterparts [46,47]. SeNPs possess remarkable anticancer [48–50], antiox-
idant [51], antidiabetic [52,53], antibacterial, and antibiofilm properties [54–56]. Equally
noteworthy are the diagnostic applications of SeNPs in nanosensors, cellular imaging,
epigenetics, and immunochromatography [34,57,58]. SeNPs can be fabricated through
different physical, chemical, and biological techniques [59]. Nevertheless, the biological
synthesis route, which relies on bacteria, yeast, plants, and microalgae, constitutes a widely
explored green alternative that has witnessed tremendous developments and is especially
suitable for SeNPs [42,60–63]. Bionanotechnology, a subset of green nanotechnology, is
described as a set of methods that eliminate or reduce the utilization of toxic substances,
resulting in cost-effective and eco-friendly alternatives [64,65]. In this sense, biogenic SeNPs
are highly biocompatible and stable, due to natural coatings provided by biomolecules that,
besides avoiding the use of chemical stabilizers, prevent the aggregation of the particles,
improve their pharmacological activity, and protect them against physical and chemical
degradation [66–69].

The translation of Se-based nanotechnology into clinical applications requires not only
the development of safe, simple, sustainable, and cost-effective methods for the synthesis of
SeNPs, but also a thorough understanding of their relevant physicochemical and biological
properties that, in turn, might impact their in vitro and in vivo effects, safety control mech-
anisms, pharmacokinetics and pharmacodynamics, and potential biomedical applications.
Research progress in biogenic SeNPs has implemented a safe-by-design principle, ensuring
safety for both human health and the environment. However, this body of research that en-
compasses research articles and reviews has only discussed individual aspects of biogenic
SeNPs, such as the synthesis, properties, and specific biomedical applications. Therefore,
this study aims at filling this gap by providing a comprehensive and up-to-date review of
the theranostics applications of biosynthesized SeNPs and their potential in translational
nanomedicine. Furthermore, the properties, synthesis, and pharmacological activity of
SeNPs focused on the molecular mechanisms, cellular interactions, and roles of seleno-
proteins are presented. Additionally, examples of biocidal and biomedical applications of
biogenic SeNPs are detailed. Finally, key aspects that should be addressed to pave the way
for clinical applications of biogenic SeNPs are discussed.

2. Selenium and Nanoselenium: General Information

Nanotechnology is emerging as an extraordinary platform of technical solutions for
complex medical challenges. Nanomedicine involves nanotherapeutics [2], nanopharma-
ceuticals [70], nanoimaging [71], and theranostics [36]. Compared to conventional medicine,
precision nanomedicine offers great physical and biological benefits, such as enhanced
efficacy, improved pharmacokinetics and safety, reduced toxicity, and increased tissue
selectivity of drug formulations [4,72]. Particularly, the major issue, in the case of Se, in the
translation from bench to bedside, is the narrow window from therapeutic effect to toxicity
due to the small margin of dosage error [73]. As mentioned above, selenium is an essential
micronutrient, playing an important role in endocrine, reproductive, cardiovascular, and
immune processes. It also acts as a pleiotropic agent associated with biotherapy and drug
delivery for a better immune response and cancer prevention [74].

In addition to its above-mentioned inorganic and organic forms, Se is the principal
constituent of some selenoenzymes, such as glutathione peroxidases (GPXs), thioredoxin
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reductases (TrxR), and deiodinases (DIO), which are essential in biochemical reactions of
biological defense systems, including antioxidant activity [75]. Se-biogenic compounds
can be found in living organisms in the form of methylated species, selenoamino acids,
selenoproteins, selenium peptides, selenoenzymes, selenoamino carboxylic acids, and
selenium derivatives of pyrimidines, purines, coenzyme A, cholines, and steroids, among
others [76]. Most of these molecules play an important role in the organism’s defense
against oxidative stress [77]. They also exhibit remarkable antioxidant and pro-oxidant
effects limited by the dose, life span, chemical form of Se compound, route of administration,
and oxidation state [78]. Table 1 classifies selenium compounds.

Table 1. Classification of selenium compounds based on structural features. Adapted from Ref. [79]
under Creative Commons Attribution license. 2012, MDPI AG.

Selenium Compound Type

Selenoamino acids

Selenomethionine (SeMet)

Methyl selenocysteine (MeSeCys)

Selenocysteine (SeCys)

Selenocystamine

Se-heterocyclic compounds

1,3-Selenazolin-4-one derivatives

2-Phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen)

2,5-Bis(5-hydroxymethyl-2-selenienyl)-3-hydroxymethyl-N-methylpyrrole (D-501036)

1,2-[Bis(1,2-benzisoselenazolone-3-(2H)-ketone)] ethane (BBSKE)

2-Cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA)

2-Buthylselenazolidine-4-(R)-carboxylic acid (BSCA)

Selenocyanates

Isatin analogs

Diphenylmethylselenocyanate

1-4-Phenylenebis(methylene) selenocyanate (p-XSC)

Temozolomide (TMZ)-Se

5-Phenylcarbamoylpentyl selenocyanide (SelSA-2)

Selenides

Methylimidoselenocarbamates

5-Phenylselenyl-methyl-2′-deoxyuridine (PhSe-T)

5-Methylselenyl-methyl-2′-deoxyuridine (MeSe-T)

β-Selenium amine derivatives

Se,Se’-1,4-phenylenebis(1,2-ethanediyl) bisisoselenourea (PBISe)

Di-selenides

Bis(4-aminophenyl) diselenide

Bis(5-phenylcarbamoylpentyl) diselenide (SelSA-1)

Diselenodipropio nic acid (DSePA)

2-Selenium-bridged β-cyclodextrin (2-SeCD)

Se(IV) compounds

Sodium selenite (Na2SeO3)

Selenous acid (H2SeO3)

Methyl selenic acid (MeSeA)

Selenium dioxide (SeO2)

Usually, conventional selenium dietary supplements exhibit a low degree of absorption
and enhanced toxicity [58]. Therefore, selenium is viewed as a controversial nutrient since
high doses are toxic, provoking death, whereas selenium deficiencies can yield chronic and
fatal health issues, such as diabetes, thyroid dysfunction, arthrophyma, Keshan disease, and
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cognitive problems [74,80]. Selenium toxicity has been tracked for decades, showing that
low levels elicit efficacious anticarcinogenic activity while high levels can generate carcino-
genesis, cytotoxicity, and genotoxicity (Figure 2) [81,82]. Indeed, there is some scientific
consensus that the high pro-oxidant property of different redox-active forms of selenium
compounds is the key factor to efficiently and selectively combat cancer [82–85]. For ex-
ample, methyl selenocysteine (MeSeCys) and methyl selenic acid (MeSeA) were found to
be potential anticarcinogenic selenocompounds with little toxicity and high bioavailabil-
ity as indicated by the increased glycoprotein selenoprotein P (SEPP) biosynthesis [86].
Cao et al. reported the remarkable antitumor activity of MeSeCys in preclinical trials when
combined with four different cytostatic drugs (cyclophosphamide, cisplatin, oxaliplatin,
and irinotecan), offering protection against organ-specific toxicity [87]. Moreover, seleno-
cysteine, a naturally occurring selenoamino acid, may be a promising anticancer candidate,
as it enhances the apoptosis of the A375 human melanoma cell line when combined with
5-fluorouracil [88].
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To date, the anticancer activity of selenium is not yet fully demonstrated, especially its
in vivo therapeutic efficacy. The main challenge lies in delivering specific concentrations of
redox-active selenium directly to the target site (tumor or metastatic cells) to bring about the
cytotoxic effect [89]. In the quest of innovative systems to upgrade the bioavailability and
the controlled release of selenium, much attention has been focused on SeNPs, which have
appeared as the answer to the toxicological concerns due to their novel properties, including
high specific surface area, high degree of absorption, and low toxicity when compared to
their inorganic and organic analogs [46,58]. As the alternative to elemental zero-valent
selenium (Se0), nanoscale selenium offers the advantage of a significantly low toxicity
without affecting its ability to upregulate selenoenzymes at nutritional levels and induce
phase II enzymes at supra-nutritional levels [90]. Nanoscale selenium is bright red, highly
stable, and soluble; it has been processed for pharmaceutical and medical applications
due to its anticancer, antimicrobial, antioxidant, and antidiabetic activity [62,91]. When
released from the NP surface, the unstable Se0 atoms are readily oxidized to inactive forms.
To prevent this instability, proteins and polysaccharides are mainly used as nanocarriers;
these include chitosan [51,92], egg white lysozyme [93], β-lactoglobulin [94], acacia gum,
and carboxymethyl cellulose [95].

SeNPs have been integrated in simultaneous treatments involving immunotherapy,
chemotherapy, and radiotherapy because they not only possess a sensitive response to
radiation stimuli but also exhibit excellent anticancer activity and immune checkpoint
inhibitor effect [96]. Indeed, SeNPs deliver the chemotherapeutic drug doxorubicin (DOX)
to tumor sites by systemic administration, thereby exerting immunomodulatory activity by
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enhancing natural killer (NK) cell function [96]. Moreover, SeNPs can effectively increment
the persistence of cytokine-induced killer (CIK) cells in peripheral blood in the body. For
instance, the combination of SeNPs and CIK cells induces natural killer cells to infiltrate into
tumors, and shapes tumor-associated macrophages to trigger powerful immune responses
for effective cancer immunotherapy [35]. In addition, SeNPs enable signal transduction
from the lysosomes to the nucleus and further potentiate γδ T cell anti-tumor cytotoxicity,
promote the production of surface receptors present at the immune cells, typically NKG2D,
CD16, CD44, and IFN-γ, and inhibit the expression of PD-1 receptors [97].

The effects of SeNPs at the cellular and tissue levels have been thoroughly investigated
in, for example, type 2 diabetes mellitus (T2DM) treatment [73], immune and antioxidative
responses [98,99], atherosclerosis treatment [100], and semen quality and testis ultrastruc-
ture studies [101]. In addition, several studies indicate that nanostructured selenium is
gaining attention among dietary supplements and therapeutic agents [76]. In addition, its
immunostimulatory [63] and protective effects against heavy metal intoxication [102–104]
are well-documented. For instance, Sheiha et al. reported the effects of nanoscale selenium
supplementation on the growth performance, kidney and liver functions, carcass traits,
antioxidant indices, and inflammatory cytokines of growing rabbits subjected to thermal
stress [105]. Moreover, Tran et al. combined the carcinostatic activity of Se nanoclusters with
the mechanical properties of titanium to build a new anticancer bone implant [106]. Fur-
thermore, Bartůněk et al. evaluated the use of PEGylated SeNPs for specific antimicrobial
coatings [107]. Lastly, SeNPs were used as coatings to inhibit biofilm formation [56,108,109].
Figure 3 summarizes key properties and applications of SeNPs [58].
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3. Selenium Nanoparticles: Methods of Synthesis

Owing to their unique surface activity and particle dispersion, SeNPs offer several
advantages over bulk selenium-based materials, such as larger biological activity, higher
catalytic efficacy, greater bioavailability, and lower toxicity [42]. The ultimate outlook of
precision nanomedicine has consisted in designing and constructing smart NPs for clinical
translation. However, the ability to fabricate NPs free of any toxic or hazardous substances
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is very challenging, especially for applications in nanomedicine. This quest has driven the
evolution of different approaches to synthesize SeNPs.

3.1. Physical Methods

Physical techniques include, to name a few, microwave irradiation, ultraviolet irra-
diation, laser ablation, and ultrasonic field treatment [91]. Bright red selenium nanoballs,
nanotubes and multi-armed nanorods, with diameters ranging from 20 to 130 nm, were
obtained via a microwave approach in which the L-asparagine/H2SeO3 concentration ratio
and the irradiation time controlled the NP diameter and morphology [110]. Using a similar
method, pure hexagonal phase SeNPs were obtained with selenium tetrachloride as the
precursor under microwave irradiation [111]. Relying on γ-rays, water-stable SeNPs are
produced in the presence of various natural macromolecules, such as citrus pectin, sodium
alginate, chitosan, and aqueous extract of fermented fenugreek (Trigonella foenum-graecum)
powder [112]. Moreover, SeNPs were synthesized via nanosecond pulsed laser ablation by
irradiating selenium pellets while chitosan acted as the capping agent [113]. Other studies
reported the fabrication of selenium nanostructures via laser ablation and discussed their
antibacterial activity [114–116]. Moreover, cubic-like SeNPs were fabricated by employing
a self-assembly process [117]. In addition, SeNPs were obtained via sonochemistry [118].
Physical procedures offer advantages over chemical ones since the latter may require a final
calcination step that makes them unsuitable for targeted applications [58].

3.2. Chemical Methods

The chemical synthesis of SeNPs is the most conventional and widespread method,
which comprises the reduction of metal salts using chemical reducing agents in aqueous
or organic media [59]. In addition, the inclusion of stabilizers (e.g., polysaccharides) in
the reaction mixture enables the size and shape control of the NPs, ensures their colloidal
stability, and avoids their aggregation; hence, the stabilizing molecules are of paramount
importance [119]. Basically, chemical methods constitute a time-saving strategy but can
be highly expensive and environmentally harmful. Several studies have detailed the
chemical synthesis of SeNPs [48,54,120]. For instance, a solution-phase approach yielded
monodisperse spherical SeNPs of 20 nm by reducing selenous acid solution using ascorbic
acid and water-soluble polysaccharides, such as chitosan, konjac glucomannan, acacia
gum, and carboxymethyl cellulose [95]. Size-controlled, stable, and positively charged
SeNPs, with sizes ranging from 30 to 150 nm, were fabricated using selenous acid and
chitosan to build special chain-shaped intermediates to enhance the cellular uptake and
anticancer activity [121]. Another study yielded uniform spherical SeNPs of 103 nm through
the reduction of selenic acid with ascorbic acid in the presence of chitosan [92]. These
nanostructures continuously grew via a “bottom–up” approach and “top–down” shrinkage
processes, generating a stable nanosystem towards pH and enzyme treatment. On the
other hand, Chung et al. reported on the synthesis of bovine serum albumin (BSA)-coated
selenium nanoparticles (BSA-SeNPs) of 20–800 nm through a one-step reaction relying
on sodium selenite, ascorbic acid, and BSA [122]. During the fabrication process, the
agitation speed (100 rpm, 400 rpm, and 600 rpm) and sodium selenite to ascorbic acid molar
ratios (1:2, 1:4, 1:5, 1:6) impacted the NP size. Another study described the concomitant
reduction of sodium selenite by glutathione, and the formation of SeNPs with an effective
antibacterial activity of over 99% when coating polyvinyl chloride endotracheal tube
substrates [123]. Monodisperse, spherical SeNPs of 46 nm in size were obtained by reducing
SeCl4 in the presence of ascorbic acid [124]. A facile and versatile electrochemical approach
produced spherical SeNPs of 43–85 nm in size using selenium powder doped-carbon paste
electrode [125]. A simple wet chemical method relying on sodium selenosulfate in ionic
liquid resulted in spherical SeNPs of 76–150 nm in diameter [126].

The use of chitosan (CTS) as an effective material to promote NP production has been
extensively investigated owing to its exceptional properties in terms of biocompatibility,
biodegradation, and enzymatic resistance [127]. This enables its various applications in
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the biomedical field, such as in tissue engineering, drug delivery, wound healing, and
gene therapy [128]. For example, spherical SeNPs were embedded into CTS microspheres
through a spray-drying method for selenium oral delivery with a high efficiency and good
biosafety [129]. Selenium nanoencapsulation within CTS networks exhibited decreased
toxicity, enhanced antioxidant activity, and controlled in vitro release [130]. The effects of
selenium-loaded CTS nanoparticles were assessed in terms of cellular selenium retention,
cell survival, and DNA damage in response to selenium exposure, giving rise to novel
selenium delivery systems with high specificity and low toxicity for dietary and therapeutic
applications [127]. To highlight the promise of SeNPs in cancer treatment, 105-nm SeNPs
modified with ferulic acid were synthesized via a simple, low-cost approach to investigate
their antitumor activity and DNA-binding affinity [131]. Lastly, a novel, potentially scalable
room-temperature procedure allowed the fabrication of SeNPs using selenium oxide as the
precursor and lignosulfonate as the stabilizer [132].

3.3. Biological Methods

The synthesis of SeNPs via biological methods is receiving increased attention. This
green and sustainable synthesis overcomes several drawbacks, including the cost, complex-
ity, and toxicity concerns, and improves the effectiveness of the process [60]. In this regard,
several organisms, such as plants, algae, fungi, and bacteria, have been examined in the
biogenesis of SeNPs. For example, Medina et al. fabricated spherical SeNPs of 90–150 nm
using Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli and
Pseudomonas aeruginosa, and found that the antibacterial potential of SeNPs made using a
specific bacterium was more efficient against the same bacterial species [133]. Lampis et al.
used Stenotrophomonas maltophilia to synthesize SeNPs of 160–250 nm, depending on the
age of the cultures [134]. Kora et al. isolated the selenite-reducing bacterium Bacillus cereus
from a lake contaminated by industrial waste to fabricate amorphous and spherical SeNPs
of 93 nm [135]. Khoei et al. produced biogenic SeNPs via intra- and extra-cellular pathways
using two strains of Burkholderia fungorum; this formation was attributed to cytoplasmic
enzymatic activation mediated by electron donors [136]. In addition, Kamnev et al. detailed
the extracellular production of SeNPs through selenite reduction by living biomass of the
rhizobacterium Azospirillum brasilense [137].

In the same vein, fungi are also efficient Se-reducing organisms, able to synthesize Se0

as well as Se-methylated compounds [60,138,139]. Various fungi have been explored for
the green fabrication of SeNPs [140–145]. For instance, Pleurotus ostreatus-treated aqueous
extract of fermented powdered fenugreek seeds was an effective capping and reducing
agent to produce SeNPs due to the high amounts of amino acids, proteins, and other
reducing agents [112]. Another study reported that the cell wall, cytoplasm, and proteins
of Mariannaea sp. provided templates for the reduction of Se(IV) to Se(0) through various
detoxification mechanisms [146]. Mycogenic SeNPs were obtained from three fractions of
Trichoderma atroviride: namely, culture filtrate, cell lysate, and cell wall debris; these NPs
exhibited antifungal activity against several phytopathogens [147]. A simple and efficient
method relying on Cordyceps sinensis exopolysaccharides yielded well-dispersed and stable
SeNPs [148]. Monodispersed SeNPs of ~22 nm in size, synthesized by P. chrysogenum
filtrate, were incorporated within carbon nanotubes under γ-irradiation [108]. Similarly,
the aqueous extract of Aspergillus oryzae-fermented lupin was found to reduce Se ions into
spherical, isotropic, and poly-dispersed SeNPs under γ-irradiation [149].

On the other hand, some researchers favor yeast-mediated biosynthesis of metal NPs
since yeast biomass production is simple, easy to obtain and scalable [60]. For example, several
strains of Saccharomyces reduced selenium anions to subsequently form SeNPs [150–152]. A
suitable green analytical procedure using the yeast S. boulardii enabled the direct monitoring
of SeNPs synthesis yield [151]. In the same vein, the genetically engineered metal-resistant
strain of Pichia pastoris is an efficient nanofactory for intracellular SeNP biosynthesis [153].
Finally, the yeast Nematospora coryli gives rise to intracellular spherical SeNPs of 50–250 nm
that display potential anti-Candida and antioxidant activities [154].



Nanomaterials 2023, 13, 424 9 of 70

Plants have been extensively used for SeNP biosynthesis [155–159]. For instance,
Withania somnifera possesses constituents, such as alkaloids, flavonoids, phenolics, tannins,
and terpenoids, which act as good bio-reductants and capping agents for the synthesis
of SeNPs [160]. Phenolic and alcoholic compounds present in guava (Psidium guajava)
leaf extract are responsible for the synthesis of SeNPs and their stabilization [161]. Cassia
auriculata leaf extract reduces selenite ions into SeNPs [162]. Lemon [163], prickly pear [164],
Abelmoschus esculents [165], orange peel [166] Macleaya cordata [167], and Hibiscus sabdar-
iffa [168], are examples of plants involved in the biosynthesis of SeNPs. In addition, a facile
single-step and green in situ method relying on the novel RTFP-3 polysaccharide, extracted
from Rosa roxburghii fruit, enabled the production of size-controlled and stable SeNPs [169].
In addition to some of the previously mentioned biological properties, biogenic SeNPs
synthesized using Clausena dentata leaf extract exhibit a strong, dose-dependent mosquito
larvicidal activity [170].

4. Properties of Selenium Nanoparticles

The morphology, size, and properties (i.e., physical, chemical, biological) of nano-
materials are determined by different factors and reaction parameters, such as synthesis
techniques, starting materials, specific surfactants or additives, pH, reaction time, reac-
tion temperature, and the nature of the solvent [171,172]. This section reviews several
physicochemical, optoelectronic, catalytic, and biological properties of SeNPs that will help
understand their biomedical applications.

4.1. Physicochemical Properties

Selenium (Se) is a metalloid that possesses intermediate properties between a metal
and a non-metal. It is stable and is not oxidized at room temperature [43]. Selenium
shares several chemical and physical properties with its other non-metal counterparts
found in the oxygen family (group 16 of the Periodic Table): sulfur and tellurium. Its outer
electronic configuration is 4s24p4. The atomic number and weight of Se are 34 and 78.96,
respectively [173]. Selenium possesses over 20 different isotopes, among which only 6 are
stable: 74Se, 76Se, 77Se, 78Se, 80Se, and 82Se [174]. Its melting point is relatively low (~217 ◦C)
and its photoconductivity is high (~8 × 104 S·cm−1) [175]. Moreover, selenium shows
a catalytic activity toward organic hydration and oxidation reactions, intrinsic chirality,
high refractive index, large birefringence, and relatively large piezoelectric, thermoelectric,
and nonlinear optical responses [176,177]. In terms of allotropy, selenium can exist in
amorphous (a-Se) and crystalline varieties (c-Se): gray (trigonal) selenium (containing Sen
helical chain polymers) known as “metallic” selenium; rhombohedral selenium (containing
Se6 molecules); three deep-red monoclinic forms: α-, β- and γ-selenium (containing Se8
molecules); amorphous red selenium, and black vitreous selenium [178]. Crystalline
selenium is thermodynamically the most stable structure, exhibiting an atomic radius of
1.17 Å [179]. Several studies indicate that the phase transition between c-Se and a-Se occurs
in the charge/discharge process [44,180,181]. a-Se is an efficient photoconversion material,
frequently used in several imaging applications, including ultrahigh-sensitivity pickup
tubes [182] and solid-state image sensors [183]. Nevertheless, a-Se has a poor spectral
response at long wavelengths and requires a high operation voltage [184].

c-Se structure appears as an alternative to a-Se in the photoconversion layer of solid-
state image sensors. Crystalline selenium, its most stable form, consists of a long helical
chain arranged in a hexagonal array [184]. Several reports detailed the synthesis and
properties of c-Se. For instance, Takiguchi et al. fabricated single crystals of trigonal
Se with a cylindrical shape and a diameter of about 8 mm [185]. Liu et al. studied the
photoconductance of single-crystalline selenium nanotubes (SC-SeNTs) under a 633 nm
illumination of various intensities; their results suggest that SC-SeNTs are potentially good
photo-sensor materials as well as very effective solar cell materials [186]. Moreover, the
synthesis of uniform nanowires of c-Se with uniform lateral dimensions in the range of
10–30 nm was documented [175]; these nanowires can potentially be converted, under
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adequate conditions, into other functional materials, such as ZnSe and CdSe. Another
study assembled c-Se films via doping with different amounts of various halogens, such as
chlorine (Cl): 0.50 and 500 ppm; bromine (Br): 50 ppm; and iodine (I): 50 ppm, to investigate
the concentration effect on surface enhancement [184]. This technology is suggested to help
in the design of super-high-definition imaging systems.

The physicochemical properties of SeNPs have been extensively explored. Chen et al.
indicated that in the case of chitosan-stabilized SeNPs the molecular weight of chitosan
regulates the Se biological and physicochemical properties, including crystallinity, surface
charge density, and hydrophobicity [187]. Zhang et al. proved that chitosan-selenium
nanoparticles (CTS-SeNPs), of 80–120 nm in size and different weights, exhibited excellent
physicochemical stability after 30 days of storage [92]. Yu et al. showed that CTS-SeNPs,
with a particle size smaller than 180 nm, remained stable for 60 days [121]. In addition,
Hageman et al. studied the effects of pH (6–9) and temperature (20–50 ◦C) on the structure,
morphology, and stability of biogenic SeNPs using scanning electron microscopy, X-ray
diffraction, and light microscopy [188]. As a result, selenium particle crystallinity, shape,
and color can be controlled by temperature and pH; for instance, gray crystalline hexagonal
acicular SeNPs form at mild temperatures or high pH, whereas red amorphous nanospheres
prevail at low temperatures and low pH.

4.2. Optoelectronic Properties

Owing to their inherent quantum confinement, SeNPs have distinct, striking shape-
and size-dependent physical properties. Selenium is a typical semiconductor with a band
gap of 1.6 eV (775 nm) [189]. Due to its ability to absorb X-rays and its high resistivity, rang-
ing from 1012 to 1014 Ω, Se has been considered as an outstanding option for photodetectors
and xerographic photoreceptors with ultra-low dark current and high sensitivity [190–193].
Since selenium is one of the primary substances that possess photoelectric conductivity [57],
potential detection applications of a-Se have been investigated, mainly due to its ultra-high
photosensitivity, by using avalanche multiplication inside the solid, for example, in imaging
photodetectors using low-dose X-rays [194,195], X-ray photoelectron spectroscopy (XPS)
and Raman spectroscopy [196], nitrogen (N)-doped diamond cold cathode [197], or driven
by a diamond cold cathode [198]. On the other hand, c-Se possesses lower concentrations
of selenium than a-Se, thus exhibiting less non-radiative recombination loss. Besides being
low cost and highly scalable [199], c-Se has been employed to fabricate solar cells [179,200].
Moreover, Sharma et al. used a genetic algorithm-based code, which consists of universal
structure prediction evolutionary xtallography (USPEX) and molecular dynamics, to obtain
at least 70 distinct equilibrium geometries for each selenium cluster [201]. The authors
analyzed the structural features of Se clusters, including the bond length, bond angle, point
symmetry, and shape of the geometries, demonstrating that the lowest energy geometries
are one-dimensional rings (buckled or distorted) with each atom possessing only two
nearest neighbors.

The optical properties of nanomaterials are highly influenced by multiple factors, such as
the size, shape, surface modification, doping, and interactions with other materials [202–204].
Unique features, such as the nanoscale dimension, increased energy level spacing (quantum ef-
fect), and surface plasmon resonance, determine the size-dependent optical properties, enabling
several applications in the biomedical field, energy, catalysis, and environment [174,205]. The
NP size distribution can be estimated by optical absorption and luminescence spectra generated
by quantum confinement effect [206]. For instance, Rajalakshmi and Arora found that a 0.235 eV
blueshift appears in the optical absorption and photoluminescence (PL) energy of SeNPs, which
is useful to estimate the particle size [207]. Lesnichaya et al. showed that SeNP polydispersity
broadens the absorption and excitation-dependent luminescence spectra [206]. In addition,
laser irradiation reduces the size of spherical β-SeNPs (69 nm) below 3 nm and converts them
into more closely packed α-Se quantum dots (QDs); then, surface defect density and electron
trap level of QDs increase with irradiation time, which decreases energy levels [208]. Another
study used optical spectroscopy to show a usual blue shift in the optical spectra of α-monoclinic
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SeNPs of the order of 40 Å, demonstrating a band gap widening [176]. This blueshift in the
band gap energy of Se in comparison with its bulk counterpart appears when the particle size
is smaller than its Bohr excitation radius; thus the bandgap is enlarged due to the quantum
confinement effect [189]. In this connection, biomolecules, such as proteins and amino acids,
absorb light and provide thermodynamic stability [209,210]. Fourier transform infrared (FTIR)
analysis suggests that a strong interaction between Se atoms and proteins present in P. alcaliphila
may be responsible for a drastically decreased intensity of spectral peaks of SeNPs [211]. The
optical properties can promote light-induced release of drugs either covalently bonded to or
encapsulated with SeNPs [57].

4.3. Catalytic Properties

Selenium has been used as a platinum-free, methanol-tolerant cathode material with
great stability and electrocatalytic activity, generating chemical resistance to oxidation and
hydrolysis [212,213]. In recent years, SeNPs have attracted special attention, particularly
due to their unique redox properties, large surface areas, efficient catalytic activity, and
low toxicity [214]. Relying on UV–Visible spectroscopy, Dumore and Mukhopadhyay
employed the 1-diphenyl-2-picrylhydrazyl free radical scavenging (DPPH-FRS) reaction as
a model to monitor the catalytic activity of aqueous selenium nanoparticles (Aq-SeNPs) at
different pH (6, 6.5, 7 and buffered 7) [215]. Following pseudo-first-order kinetics, the FRS
reaction depended on DPPH concentration since the rate of DPPH-FRS reaction increased
proportionally with the amount of Aq-SeNPs, proving that the catalytic reaction occurs
at the NP surface. Likewise, other studies have reported on the excellent electrocatalytic
performance of selenium-containing compounds, either as a counter-electrode material for
dye-sensitized solar cells [216] or as a cathode catalysts for methanol fuel cells [217].

Semiconductor chalcogens, such as those made of selenium, have a direct bandgap,
and can be potentially used for the degradation of dyes due to their thermoconductivity,
anisotropy, and high photoconductivity [218–227]. For instance, Ameri et al. described
the photocatalytic discoloration of the anionic triphenylmethane dye, bromothymol blue
(BTB), using biogenic SeNPs under ultraviolet (UV) illumination (15 W) for 60 min [228].
Another study showed that single-crystalline Se nanorods (SeNRs) were able to degrade
methylene blue (MB) in the dark after a short period of irradiation [229]; the superb catalytic
performance of SeNRs over commercial nanoparticles was due to the efficient interior charge
carrier transfer, and thus the enhanced carrier utilization efficiency. Likewise, Tripathi et al.
evaluated the photocatalytic activity of biogenic fluorescent SeNPs in MB decomposition
under UV irradiation [230]. Zhang et al. demonstrated the visible light-driven photocatalytic
capacity of super-long single-crystalline t-SeNRs for methyl orange (MO) degradation [231].
A similar study reported that monoclinic, spherical SeNPs degraded rhodamine B (RhB)
in the presence of H2O2 more efficiently than t-SeNRs by comparing to results published
by another group [232]. This investigation highlights the mechanism of the remaining
photomemory effect mechanism of pre-irradiated spherical SeNPs in the dark.

Furthermore, when doped with selenium, bismuth sulfides increased the degradation
rate of MB under visible-light irradiation [233]. These improvements were presumably
caused by photoelectrons and holes generated by Se dopants in Bi2S3 photocatalysts.
Moreover, Se-doped copper oxide NPs (Se-doped CuO NPs) were used to build a photo-
Fenton based degradation system for 4-bromophenol under UV irradiation for 90 min in
the presence of H2O2, achieving a rate of 0.057 min−1 [234]. Therefore, doping Se confers
extraordinary photo-absorption properties, increases NP surface area, and enhances the in
situ generation of hydroxyl radicals. In addition, biosynthesized SeNPs using W. somnifera
leaf extract exhibit excellent photocatalytic activity in the gradual degradation of MB from
deep blue to colorless dye solution under sunlight; besides holes, superoxide and hydroxyl
radicals were identified to be involved in this process [160].

SeNPs, obtained using the proper reducing agents, such as ascorbic acid, have proven
to be a suitable adsorbent for the removal of copper cations from aqueous solution [235,236].
Further, biogenic SeNPs have been employed as effective and fast adsorbents for zinc ions,
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mainly through inner-sphere complexation [237]. Another study showed that negatively
charged biogenic SeNPs, produced by aerobic granular sludge in a sequencing batch reactor
(SBR), efficiently removed Cd(II) [238]. The resulting monolayer maximum adsorption
capacity was 59.7 mg g−1, enhanced by increasing pH but decreased by increasing adsor-
bent dosage. In addition to this, selenium combined with ruthenium NPs increased the
electrocatalytic oxygen reduction reaction (ORR) by enhancing the oxygen adsorption site
and via the electron bridge features of selenium [239].

4.4. Biological Properties

As an essential micronutrient, selenium is integrated into 25 selenoproteins in the
form of the amino acid selenocysteine (SeCys). In addition, selenium modulates a myriad
of key biological processes, such as the cellular response to oxidative stress, cellular dif-
ferentiation, immune response, redox signaling, and protein folding [75,240]. Moreover,
selenium plays important biological roles in maintaining thyroid activity, immunity, and
homeostasis through the production of oxidoreductases, such as glutathione peroxidases
(GPX), iodothyronine deiodinase (DIO) and thioredoxin reductase (TrxR), and the plasma
selenium transport protein (SePP1) [75,80], and preventing several pathologies, such as can-
cer, diabetes, and aging-related diseases, to name a few [241–243]. The main selenoprotein
families are GPXs that include (i) five Se-dependent members and other non-Se-dependent
GPX isoenzymes, which have oxidoreductase functions and also regulate the immune
response; (ii) DIOs that catalyze the conversion of T4 (thyroxine) to T3 (triiodothyronine)
and rT3 (reverse T3); and (iii) TrxR, which modulates the transcription and signal transduc-
tion functions [244,245] (Table 2). To investigate its biomedical applications, the biological
properties of selenium need to be understood; however, they are not yet fully unraveled.
Hence, the present critical review outlines some key biological features of SeNPs.

Table 2. Main types of selenoproteins and their functions.

Selenoproteins Abbreviation Localization Function Ref.

Glutathione
peroxidase GPX Protection against oxidative stress. Catalytic

reduction of H2O2

[75,246]
Cytosolic GPX1 GPX1 Cytoplasm, ubiquitous Antioxidative defense

Extracellular GPX GPX3 Plasma and thyroid follicle Anti-inflammatory activity

Phospholipid GPX GPX4 Mitochondrial membrane Reduction of the phospholipid hydroperoxides.
Membrane antioxidant

Thioredoxin
reductase TrxR Oxidoreductase activity with NADPH as the cofactor

[244]
Cytosolic TrxR TrxR1 Mainly cytosolic, ubiquitous

Main antioxidant “weapon” at the cellular level.
Inhibition of apoptosis and redox state of

transcription factors

Mitochondrial TrxR TrxR2 Mitochondrial, ubiquitous Regulation of cell proliferation

Mitochondrial TrxR TrxR3 Mainly mitochondrial, ubiquitous Regulation of apoptosis and signaling pathway

Iodothyronine
deiodinase DIO Catalytic conversion of T4 and T3

[247]

Type I DIO DIO1 Liver, lung, eyes, kidney, thyroid,
pituitary, CNS * Conversion of T4 into T3, T4 into rT3, and of T3 into T2

Type II DIO DIO2 Local (intracellular) production of T3 from T4 and T2
from rT3

Type III DIO DIO3 Placenta, fetus, liver, gravid uterus, fetal
and neonatal brain, skin Production of T2 from T4 and rT3 from T4

Selenoprotein P SePP Thyroid and blood Selenium transport and storage,
endothelial antioxidant [248]

* NADPH: nicotinamide adenine dinucleotide phosphate (reduced form of the redox coenzyme nicotinamide
adenine dinucleotide phosphate); CNS: Central nervous system; T2: diiodothyronine; T3: triiodothyronine; rT3:
reverse T3; T4: thyroxine.
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4.4.1. Antioxidant Properties

An antioxidant is a substance that greatly inhibits or delays the oxidation mechanism
while the antioxidant activity measures the inhibition rate of the oxidation process [249].
The antioxidant activity of SeNPs is principally associated with the mammalian selenoen-
zymes GPX, TrxR, and IDO [250]. Selenium, as part of the antioxidant defense system in the
liver, plays an essential role against oxidative stress. It has been demonstrated that Se sup-
plementation can enhance enzyme levels, such as GPX, that prevent reactive oxygen species
(ROS) accumulation and decrease cellular damage [251,252]. GPXs are able to actively
detoxify a variety of peroxides, such as H2O2, phospholipid and fatty acid hydroperoxides,
and hydroperoxyl groups of thymine [174]. TrxRs exhibit a detoxifying action by forming a
redox system with its substrate, thioredoxin. These metabolic processes produce the most
common free radicals in nature: reactive nitrogen species (RNS) and ROS. ROS derive from
oxygen and include peroxyl radical, superoxide radical, perhydroxyl radical, hydroxyl
radical, and non-free radical species, such as hydrogen peroxide and singlet oxygen. RNS
and ROS are highly unstable, as their outermost electron shell is occupied by an unpaired
electron; this leads to the removal of electrons from other compounds to attain stability,
which yields a chain reaction cascade that may produce more reactive species.

Research has demonstrated that excessive levels of ROS may cause oxidative stress
and redox imbalance in the cell [253]. This can disrupt or damage proteins, DNA, and
lipids, resulting in cardiovascular and neurodegenerative diseases, e.g., Parkinson’s and
Alzheimer’s [254]. Selenium has attracted attention because its antioxidant properties are
predominantly exerted owing to its incorporation into selenoproteins that can catalyze the
reduction of disulfide bonds in proteins and peptides [255,256]. Indeed, Se is the main
component of the antioxidant enzymes glutathione peroxidases (GPXs), thioredoxin re-
ductases (TrxRs), and iodothyronine deiodinases (DIOs) that protect cells from oxidative
stress. For example, selenite, which is an essential dietary supplement for mammals, is
present in the active center of the antioxidant enzyme GPX and protects membrane lipids
and macromolecules from oxidative stress [257]. Notably, in vitro and in vivo investiga-
tions have demonstrated that all selenium compounds under different oxidation states
(2−, 0, 4+ and 6+) enhance selenoprotein expression; thus, selenium compounds under
different oxidation states have shown great bioavailability as precursors for selenoprotein
biosynthesis [89,258]. For instance, Tobe and Mihara found that selenide is involved in syn-
thesis of selenophosphate synthetase (SPS), which consequently produces selenophosphate
(SeP), the key selenium donor for the synthesis of selenoproteins and selenium-modified
tRNA [259]. Hence, it is of great importance to understand the biotransformation of
selenium and reaction mechanisms of the enzymes implicated in selenium metabolism.

SeNPs have proven efficient in enhancing the activity of selenoenzymes to combat
oxidative stress with equal effectiveness and less toxicity when compared to MeSeCys,
SeMet, and selenite [73]. SeNPs possess radical scavenging properties and reduce oxidants,
including 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide anion (O2

•−), singlet oxygen
(1O2), and carbon-centered free radicals [42,260–262]. This function is size-dependent since
smaller SeNPs possess a higher free radical scavenging potential. Moreover, SeNPs are
shown to restore T3, T4, glutathione (GSH), superoxide dismutase (SOD), and catalase levels
in animal models, and decrease K2Cr2O7-induced oxidative stress in thyroid glands [73,103].

4.4.2. Scavenging Mechanism of Reactive Oxygen Species

ROS are chemically reactive molecules, produced through a myriad of extra- and
intra-cellular pathways, that include at least one oxygen atom in each molecule [263].
They include free radicals, a species containing one or more unpaired electrons of oxygen,
such as superoxide (O2

•−), hydroxyl radical (•OH), and singlet oxygen (1O2), as well as
nonradical oxidizing agents, such as hypochlorous acid (HOCl) and hydrogen peroxide
(H2O2), formed by the partial reduction of oxygen and singlet oxygen [263]. Mitochondria
are the main intracellular source of O2

•−, produced by a side reaction of the respiratory
chain. The superoxide anions are formed through the conversion of a small percentage
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of oxygen molecules (1–2%) that are not reduced to water in the mitochondrial electron
transport chain (ETC) [263].

The ability of selenium compounds to scavenge ROS is well documented [51,257,263]. For
instance, the dose-dependent free radical scavenging activity (FRS) of water-soluble SeNPs (Aq-
SeNPs) using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis (3-ethylbenzothiazoline-
6-sulphonic acid) (ABTS) is revealed by a gradual color change of DPPH from intense purple
to light yellow, and of ABTS radical from bluish-green to colorless in the presence of Aq-
SeNPs at slightly acidic to neutral pH (6.0, 6.5, 7.0 and buffered 7.0) [215]. Importantly,
the scavenging ability of the NPs was found to be stronger than that of sodium selenite.
Furthermore, SeNPs of 103 nm in size, stabilized with chitosan of different molecular weights
(CTS-SeNPs), exhibited a capability to scavenge free radicals at different levels of DPPH, ABTS,
and lipid peroxide models [261]. The efficient penetration of CTS-SeNPs into cells and tissues
prevents the accumulation of ROS and lipofuscin (LF), protects GPX activity, and decreases
selenium in vitro and in vivo cytotoxicity. In addition, SeNPs of different sizes, ranging from
5 to 200 nm, possess important effects both on scavenging free radicals and protecting DNA
from oxidation in a size-dependent fashion; as found in an in vitro model, the smaller, the
better [261].

Neuroprotective drugs in tandem with ROS scavenging nanocarriers constitute excel-
lent agents to synergistically protect neurons and help restore nerve function. For instance,
multifunctional SeNPs were modified with the soluble polysaccharide–protein complex
(PTW) and PG-6 peptide (PLGLAG) and loaded with the therapeutic agents monosialote-
trahexosylganglioside (GM1) and tetramethylpyrazine (TMP) to effectively treat spinal
cord injury (SCI) (Figure 4) [264]. These SeNPs@GM1/TMP were found to attenuate
ROS overproduction, prevent mitochondrial dysfunction by up-regulating the expression
of pro-apoptotic proteins Bcl-2 (B-cell lymphoma-2) and Bcl-xl (B-cell lymphoma-extra-
large), down-regulating the expression of anti-apoptotic proteins Bax (Bcl-2 associated
X) and Bad (Bcl-2 associated agonist of cell death), and inhibit the activation of p53 and
mitogen-activated protein kinase (MAPK) pathways. They also display protective effects
against tert-butyl hydroperoxide (t-BOOH)-induced G2/M phase arrest and apoptosis.
Behavioral assessments in mice demonstrated that SeNPs@GM1/TMP constitute promising
therapeutic agents to potentially improve the function recovery of rats after SCI.

4.4.3. Pro-Oxidant Activity

Selenium exerts dual effects: at low concentrations, it possesses antioxidant activity
by maintaining the intracellular redox status, whereas at higher concentrations, it acts as a
pro-oxidant that generates oxygen radicals and provokes apoptotic cell death [248]. Among
all the explored inorganic nanoparticles, much attention has been placed on SeNPs due to
their cytotoxic activity since ROS are generated inside malignant cells [265,266]. Further-
more, SeNPs are found to be potential tools in fighting drug resistance, either as effective
chemotherapeutic agents or as excellent carriers for gene and drug delivery [174]. A study
showed that ROS generation by SeNPs is the initial major cellular event prior to cell cycle
arrest and/or apoptosis [267]. Indeed, SeNPs enter malignant cells via receptor mediated
endocytosis, mainly due to an acidic pH state with redox imbalance [268–272]. This pro-
cess leads to an NP pro-oxidant behavior by free radical generation, on one side, which
induces mitochondrial membrane disruption and, consequently, the leakage of mitochon-
drial proteins and endoplasmic reticulum (ER) stress on the other side [61,273–275]. Hence,
several apoptotic molecular pathways which are regulated by SeNPs are activated or modu-
lated, including TLR4/TRAF3/MFN1 (toll-like receptor-4/TNF receptor associated factor
3/mitofusin-1) [276]; p53, MAPK (mitogen-activated protein kinases) and AKT (protein
kinase B) [277–279]; Bcl-2 family proteins [280]; ROS/JNK (c-Jun N-terminal kinase) [281];
PI3/Akt/mTOR (mammalian target of rapamycin); mTOR and NF-κB (nuclear factor kappa
B) [282]; and caspase apoptotic pathways [268,280,283]. The regulation of these pathways is
crucial for oncogenic signaling due to a considerable decrease in cellular proliferation and
angiogenic signaling by obstructing the growth-promoting signaling in the vicinity of tumor
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cells. For instance, Pi et al. reported that SeNPs significantly reduce the adhesion force and
Young’s modulus of MCF-7 cells, leading to a diminished expression of trans-membrane
CD44 molecules and necrosis of MCF-7 cells [284]. Zeebaree et al. demonstrated that spheri-
cal biogenic SeNPs, synthesized using Asteriscus graveolens leaves, enhance the level of ROS
and lipid peroxidation while causing the apoptosis of HepG2 by glutathione depletion and
a decrease in the mitochondrial membrane potential [285].
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neuron cell death. Reproduced with permission from Ref. [264]. 2019, the Royal Society of Chemistry.

4.4.4. Production of Reactive Oxygen Species

ROS have been recognized as signal mediators implicated in cell growth, differentia-
tion, cycle progression, and death [286]. In regards to oxidative stress, ROS overaccumula-
tion in cells leads to a reaction with different cellular components, causing oxidative cellular
injury and cell death [287]. The term “oxidative stress” is attributed to the perturbations
of the physiological redox homeostasis when the rate of cellular reduction is exceeded by
the rate of cellular oxidation [248]. When ROS overwhelm the cellular antioxidant defense
system, either through enhanced ROS levels or a decreased cellular antioxidant capacity,
oxidative stress occurs. Particularly, selenium compounds possess a high capacity of exert-
ing oxidative stress by oxidizing thiols and generating ROS, thereby termed as redox-active
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selenium compounds, e.g., selenocysteine, selenite, methyl selenic acid, and MeSeCys [89].
This clearly demonstrates that selenium does not only have antioxidant properties, but also
pro-oxidant properties. Thus, wherever applicable, redox-active selenium compounds are
not antioxidant by themselves, but only when supplied at dietary dose levels equivalent to
physiological optima and incorporated into selenoproteins with oxidoreductase functions.
On the other hand, at supra-physiological levels, redox-active selenium compounds can
induce oxidative stress, becoming a novel tool in cancer therapy based on ROS-mediated
mechanisms [288]. The effectiveness of selenium compounds for in vivo chemoprevention
relies on their capability to regulate the cell cycle, stimulate apoptosis, and restrain tumor
cell migration and invasion in vitro [90,289].

SeNPs upregulate the activity of selenoenzymes with more efficiency and less toxicity
when compared to other selenocompounds, thereby serving as a potential antioxidant and
chemopreventive agent [58,96,290]. SeNPs can be reduced into selenide by a thioredoxin
(Trx)- or glutaredoxin (Grx)-coupled glutathione system to produce ROS more efficiently
than selenite, especially at low levels of NADPH. This is because elemental selenium
requires only a single step reduction to selenide anion, thus triggering redox cycling with
oxygen [291]. This process leads to a rapid and selective hyper-accumulation of SeNPs in
cancer cells, which causes catastrophic oxidative stress and cell death. This underlying
concept relies on two observations: firstly, the presence of higher basal levels of ROS in
cancer cells compared to normal cells; secondly, cancer cells possess lower tolerance to
increased levels of ROS than normal cells [288,292,293]. The process of ROS production,
mediated by SeNPs, is illustrated in Figure 5.
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Figure 5. The mechanism of ROS generation mediated by SeNPs. Adapted with permission from
Ref. [174]. 2021, The Royal Society of Chemistry.

The intraperitoneal delivery of SeNPs has emerged as an effective and safe approach
in preventing the growth of cancer cells in the peritoneal cavity without remarkable liver
toxicity symptoms [294]. For example, Zhao et al. demonstrated that SeNPs delivered
to hepatocarcinoma-22 cells in the peritoneal cavity of mice induce ROS production and
cause protein degradation and apoptotic response [293]. This study showed that GSH can
stimulate a dose-dependent redox biotransformation of SeNPs to generate ROS in a pure
enzymatic system, especially given that GSH is the cell’s most abundant thiol-containing
small molecule. Another study indicated that a minimal concentration of 2 µg·mL−1 of
biogenic SeNPs inhibits the proliferation of prostate adenocarcinoma cell line, PC-3, by
a ROS-mediated activation of necroptosis [295]. Furthermore, Y. Wang et al. reported
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on the inverse relationship between SeNPs size and ROS production mediated by a GSH
system encompassing GSH, GSH reductase (GR), and NADPH [296]. They found that the
smaller SeNPs (35 nm) were more active than larger SeNPs (91 nm) in inhibiting in vitro
and in vivo cancer cell accumulation through an ROS mediated mechanism [296].

The process of Se-induced apoptosis is associated with Se chemical species and their
metabolism, altering some cellular morphologies including nuclear breakdown, chromatin
condensation, membrane blebbing, cell rounding, and formation of apoptotic bodies that
are eliminated via phagocytosis [257]. It is well-known that apoptotic cascades can originate
from intrinsic mitochondrial, extrinsic receptor, or endoplasmic reticulum (ER) stress-
mediated signaling pathways [79]. Although different mechanisms are proposed to explain
the key role of Se in the cell cycle and apoptosis, the complete process is complex and not
yet fully understood. It is correlated with the chemical forms and doses of selenium, and
encompasses the activation of caspases, protein kinase signaling, p53 phosphorylation,
and ROS generation [79,255,293,297]. It is also known that selenium compounds possess
caspase modulation activity, causing programmed cell death. For instance, Se-containing
heterocycles, such as 1,2-[Bis(1,2-benzisoselenazolone-3-(2H)-ketone)] ethane (BBSKE),
fosters the activity of caspase 3 against tongue cancer Tca8113 cell line [298]; 2,5-Bis(5-
hydroxymethyl-2-selenienyl)-3-hydroxymethyl-N-methylpyrrole (D-501036) increases the
activity of caspases 3 and 9 [299]; and methyl selenic acid activates caspases 8 and 9 in
combination with tamoxifen in both tamoxifen-sensitive and tamoxifen-resistant breast
cancer cells [289].

The effect of selenium compounds on caspases, also known as cysteine-aspartic-specific
proteases, includes the fragmentation of inter-nucleosomal DNA and the induction of the
mitochondrial-dependent/independent apoptosis pathway [79]. The intrinsic mitochondrial
pathway is the main process for apoptotic caspase activation in mammals, especially owing to
the mitochondrial release of cytochrome c (Cyt-c) that creates an apoptosome complex through
the oligomerization with Apaf-1 and procaspase-9 [79]. For example, the Se-containing
polysaccharide SeGLP-2B-1 disrupts the mitochondrial membrane potential and enhances the
cytosolic Cyt-c levels and the activity of caspases 9 and 3 [300,301].

4.5. Virucidal Activity

Nanobiotechnology has enabled the design of smart molecular diagnosis/treatment
approaches for viral infections [302–305]. For example, synthetic NPs exhibit high antiviral
activity and can closely mimic the virus and strongly interact with its virulent proteins due
to morphological similarities [306]. In addition, nanostructures can deliver viral antigens in
a controlled manner, activate follicular dendritic cells or B cells, antigen cross-presentation,
as well as induce humoral/cellular immune responses [307].

SeNPs are found to possess much lower acute toxicity and similar or higher bioavail-
ability when compared to other Se species, such as selenite [308–311], selenate [312], se-
lenium dioxide [313], Se-yeast [314], selenomethionine [290,315], and methylselenocys-
teine [47]. In addition, SeNPs have significant antiviral, antibacterial, antiparasitic, and
cytotoxic activity [54,316–318]. For example, SeNPs decorated with amantadine were able
to reverse drug resistance caused by the H1N1 influenza virus infection through the inhibi-
tion of caspase-3 activity and suppression of the neuraminidase activity [319]. A similar
study demonstrated the superior antiviral capability of β-thujaplicin-decorated SeNPs
against H1N1 via the regulation of AKT and p53 signaling pathways [320].

At the onset of the COVID-19 pandemic, selenium was proposed as a weapon of choice
to fight against SARS-CoV-2 [321–327]. For instance, Jin et al. reported that a synthetic
redox-active selenium compound, ebselen, is a strong inhibitor of the main SARS-CoV-2
protease that enables viral maturation within the host [328]. This study suggested that
high Se intake might hypothetically inhibit SARS-CoV-2 proteases and promote a higher
cure rate. Knowing that selenium deficiency is linked to severe virulence, intravenous
Se therapy and high-dose selenite pharmaconutrition have been proposed to be effective
at reducing the occurrence and the progression of acute respiratory distress syndrome
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(ARDS), multiorgan failure, and new infections in COVID-19 patients [329]. Overall, human
Se levels are crucial in antioxidant, anti-inflammatory, and immune effects in COVID-19
patients; thus, it is important to study the impact of Se excess and deficiency in mitigating
COVID-19 symptoms, especially in patients with pre-existing comorbidities or long-term
diseases [330].

A unique experimental study used lateral flow immunoassay kits (LFIA) relying
on SeNPs modified with SARS-CoV-2 nucleoproteins for the combined detection of anti-
SARS-CoV-2 IgM and IgG in human sera, and succeeded in exhibiting recent SARS-CoV-2
infection within just 10 min detectable by the naked eye [331]. In addition, the sensitivity
and specificity of the kits were clinically examined with real-time polymerase chain reaction
(RT-PCR) tests in COVID-19-diagnosed patients and non-infected controls, amounting to
93.33% and 97.34%, respectively. Finally, there were no cross-reactions with rheumatoid
factor and positive sera for influenza A, influenza B, and antinuclear antibodies. Similar
studies have also designed point-of-care systems based on SeNPs to detect IgG and IgM
against SARS-CoV-2 [332,333]. Although little research has been conducted to highlight
their potential in mitigating and controlling COVID-19 pandemic, SeNPs clearly constitute
superior detection tools and antiviral nanotherapeutics amenable to containing and/or
combating viral outbreaks and pandemics. Figure 6 summarizes the biomedical role of
SeNPs in diagnosing and curing viral infections.
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5. Pharmacokinetics and Cellular Interactions of Selenium Nanoparticles

Nanomedicine is increasingly offering novel nanoparticle-based technologies for ther-
apy and diagnosis [72,334–336]. The extraordinary properties of nanomaterials provide
a safe and efficient basis for personalized medicine, which promotes tailored therapies
considering the patient’s specific characteristics for the best response and highest safety
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margin [337,338]. In vitro and in vivo pharmacokinetics, i.e., absorption, distribution,
metabolism, excretion, and toxicity (ADME-Tox) studies have been the rule for pharma-
ceutical organic drugs. Likewise, nanomaterials should be subjected to the same in vitro
and in vivo ADME-Tox studies [24,339]. NPs need to reach the targeted organ or tissue to
accomplish the desired action with both efficacy and safety. Therefore, nanotherapeutics
rely on effective NP cellular uptake and tissue or tumor permeability that both depend on
various factors, such as the size, shape, and surface chemistry of the NPs, as well as the
biological (micro)environment, the specific location, and the targeted tissue [340–342].

5.1. Interaction of Selenium Nanoparticles with Cells and Their Components

The interaction of nanomaterials with cells and lipid bilayers is crucial in several
biomedical applications, such as drug and gene delivery [280,343–345], diagnostics, pho-
totherapy, and imaging [34,219,346–348]. Besides interacting with biological entities
(i.e., organs and tissues), NPs cross the cellular barriers and are internalized by cells
through endocytosis to accumulate in targeted organs and are eventually cleared [349]. The
cell internalization of NPs occurs via several pathways, such as direct penetration, phagocy-
tosis, and pinocytosis [350]. On the other hand, the body internalizes the NPs via inhalation,
ingestion, and dermal exposure, to name a few, as depicted in Figure 7 [351]. Although
this particular capacity leads to beneficial therapeutic applications, some potential adverse
effects regarding NP toxicity have been observed [351]. In consequence, the investigation
of the NP interactions with their microenvironment, mainly with other nanomaterials and
biomolecules, is crucial to determine the efficacy of nanoscale materials [341,349,352].
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Figure 7. Schematic representation of the different manners through which NPs enter the human
body and are internalized inside the cells.

Several factors determine the success of the NP uptake and interaction with cells,
including the intrinsic NP physicochemical properties, such as the shape, size, coating
and morphology, and crystalline structure, in addition to the biological environment
characteristics and the transformation of NPs during the test, e.g., transformations owing
to the formation and adsorption of a protein layer, known as protein corona [353,354]. The
size and shape of the NPs directly affect their cellular uptake rate, which is also related
to their residence time in the circulatory system [337]. The NP shape plays a special role
in their internalization as it impacts their interaction with the cells. In addition, the NP
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symmetry controls their trajectory within the body since hydrodynamic forces regulate
their transport [355]. For example, several studies concur that spheres are the most effective
in terms of cellular uptake due mainly to their isotropic shape, which allows a constant
distribution of acting forces and a tendency to remain in the blood flow longer [356,357].
Furthermore, spherical NPs must overcome a minimal membrane bending energy barrier,
when compared to their non-spherical counterparts.

The importance of NP-cell interactions has been acknowledged by several
authors [352,358–360]. However, little research has addressed the quantitative analysis of
NP–cell interactions, which is essential to fully understand nano-bio mechanisms and nan-
otoxicology of cell-surface bound and intracellular NPs [361]. Lately, novel analytical mass
spectrometry (MS)-based methods, such as laser ablation inductively coupled plasma mass
spectroscopy (LA-ICP-MS), time-resolved ICP-MS (TR-ICP-MS), nano secondary ionization
mass spectrometry (nano-SIMS), and mass cytometry that fundamentally combines flow
cytometry with time of flight mass spectrometry (ToF-MS), have been introduced [353].
Several quantification studies on the interaction of NPs and cells under different exper-
imental conditions (i.e., type of NPs and cell lines) using SC-ICP-MS for a diversity of
applications, such as nanotoxicity, drug delivery research, and optimization of techniques
for the green synthesis of NPs, have been developed [362–366]. For instance, Hu et al.
quantified intracellular amounts of SeNP uptake by γδT cells using ICP-MS and found that
the total uptake amount was ~9 × 10−5 µmol of SeNPs per million of cells [97].

The analysis of NP uptake and biodistribution has gained much importance in recent
years, mainly to evaluate effective concentrations of clinically administered NPs. According
to the literature, the most remarkable biomolecules interacting with the NP surface are
nucleic acids and proteins [367,368]. Nucleic acids are convenient receptors for molecular
nano-structures, demonstrating potent synergistic activity due to their mechanical rigidity,
physicochemical stability, and high specificity of base pairing [369]. On the other hand,
proteins possess various binding sites owing to post-translational modifications in addition
to specific and non-specific adsorption capability. All these interactions confer stability,
sustained enzymatic activity, and immune-biocompatibility to nanomaterials [370–373].

The main factors that influence the coupling of NPs with biomolecules or other NPs
are known as the interaction drivers, and include van der Waals forces, electrostatic or
magnetic interactions, and molecular forces, based on complementarity between nano-
materials, their distance, and their geometry [374]. Furthermore, the interaction between
surface molecules greatly depends on the surface functionalization with one or different
chemical reactive moieties [375]. For instance, NPs in biological milieus are surrounded
by interacting biomolecules that are able to change or saturate their surface, resulting
in surface coating modification that, in turn, may alter their unique properties, initially
designed functionalities, and desired targeting capabilities, in addition to altering their
cytotoxicity and influencing their pharmacokinetic features and accumulation [376–379].

Surface modification of NPs using functional molecules/particles/polymers can in-
crease their cellular interactions and uptake by tuning their overall properties to fit the
targeted applications [380]. Multifunctional NPs have various and different interactions
with biomolecules, and are embedded within human proximal fluids inside cells and
culture media [337,369]. To achieve this multifunctionality, NPs are bioconjugated with
several entities that may include the diagnostic imaging domain, the targeting ligand, and
therapeutic moiety to yield multifunctional formulations consisting of therapeutic-loaded
NPs, also known as theranostic NPs (Figure 8) [381–383]. This constitutes a key step for-
ward in nanomedicine towards personalized medicine with promising applications in drug
delivery, cancer treatment, and diagnosis, among others [8,24,337].
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For instance, monodisperse and homogeneous spherical SeNPs have been success-
fully modified with a dinuclear luminescent Ru(II) complex resulting in a multifunctional
nanocarrier-based delivery system (NDS) that delivers the siRNA targeting tumor-MDR1
gene in cisplatin resistant adenocarcinomic human alveolar basal epithelial cells (A549
cells) [384]. Another study presented amine-terminated generation 5 polyamidoamine (PA-
MAM) dendrimers (G5.NH2)-modified SeNPs (G5@SeNPs) for the systemic dual delivery
of MDR1 siRNA and cisplatin to down-regulate P-glycoprotein and reverse multidrug
resistance [385]. Through gel retardation assay, cellular uptake, and transfection studies,
these multifunctional G5@SeNPs are found to enhance siRNA loading, release efficiency,
and gene-silencing efficacy. In addition, siRNA- and polyethylenimine (PEI)-modified
SeNPs are shown to improve the apoptosis of HepG2 cells [386]. Therefore, all these studies
demonstrate that multifunctional SeNPs are effective nanosystems for chemotherapy and
gene therapy technology.

When NPs interact with plasma proteins, a protein corona forms on their surface.
This has been widely studied due to its significant effects on therapeutic NPs [387–390].
Indeed, it can considerably modify the NP shape, size, surface charge distribution, and
susceptibility to aggregation. Its formation also dictates the subsequent biological fate
of NPs within the body [342,359] and modulates various biological behaviors, such as
cell-uptake, toxicity and immunogenicity [391]. Since this layer is important in the NP-cell
interactions, various studies have investigated the parameters affecting the adsorption of
proteins on the NP surface in physiological fluids and the role played by the corona in the
mechanism of NP uptake by the cells [392]. As a result, the formation of an individualized
protein corona might be useful for targeted therapy and, consequently, for personalized
medicine approaches [393].

Chakraborty et al. studied the formation of coronas, consisting of serum most abun-
dant proteins, i.e., human serum albumin (HSA), IgG, and transferrin, to encapsulate SeNPs
that had been previously functionalized using one of the following surfactants: cetyltri-
ammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and Brij-58
(non-ionic) [394]. As a result, HSA was found to increase the antioxidant capacity of SeNPs,
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whereas the presence of IgG and transferrin reduced their radical scavenging activity.
Moreover, the protein corona formation over functionalized SeNPs enhanced their size and
decreased their cellular uptake and subsequent toxicity, except for transferrin-coronated
NPs that showed increased uptake and cytotoxicity. In addition, protein coronation is
significantly influenced by NP functionalization [395]. In fact, protein quantification and
densitometry studies showed that cationic SeNPs (CTAB-SeNPs) promote maximum corona
formation and possess higher affinity towards the predominantly negative surface potential
of serum albumin. This suggests that binding factors, such as electrostatic forces, attach-
ment via cysteine, hydrogen bonding, and entropy-driven binding, govern the process of
protein coronation [395]. Moreover, the study of molecular interactions between biogenic
SeNPs, synthesized using yeast extract, and HSA by employing a microwave plasma optical
emission spectrometry operating in a single-particle mode documented that the potential
biomedical application of SeNPs greatly depends on their surface functionalization and
capability to form a protein corona [396].

Polysaccharides (PS) have been widely used as functionalizing agents for nanoma-
terials, especially due to their unique properties, such as excellent biocompatibility, sta-
bility, and biodegradability [397–399]. In addition, they increase the residence time of
PS-functionalized NPs at the target site and the permeation/bioavailability of loaded drugs
or biomolecules [400], enhance the specific interaction with biological targets [401], and
improve cell-permeability and cancer-targeting ability [398]. For example, SeNPs decorated
with mushroom PS–protein complexes (PSP) achieved remarkably enhanced cellular uptake
via endocytosis which, in turn, improved their antiproliferative activity [49]. The capping
with PSP was carried out through strong physical adsorption of PS hydroxyl groups and
protein imino groups to yield PSP–SeNPs, whose main target organelles are lysosomes on
MCF-7 human breast carcinoma cells. Moreover, Spirulina PS (SPS) from the food-grade
blue-green microalga Spirulina platensis are known to have an essential biological role in
free radical scavenging, DNA repair, immunostimulation, and antiviral effect [402]. Thus,
SPS could be employed as a surface decorator of NPs to improve their cell-penetrating
capabilities, prolong their circulation time, and prevent plasma protein adsorption. For
instance, SPS-functionalization of monodisperse spherical SeNPs enhances their cellular
uptake capability and cytotoxicity against various human cancer cell lines, including A375
melanoma cells [403]. A comprehensive survey of Se-carbohydrate combinations including
PS-decorated SeNPs is provided by Li et al. [404].

5.2. Key Role of Selenoproteins in the Pharmacological Activity of SeNPs

As mentioned earlier, selenium is a unique trace element which presents a pharmaco-
logical behavior by its incorporation into selenoproteins. Several selenoproteins are essen-
tial enzymes that include at least one SeCys in their active sites to exert catalytic and antioxi-
dant activities [405,406]. Selenoproteins play several physiological roles [250,407–410], such
as regulating the immune functions [408], protecting against oxidative stress [411], prevent-
ing cardiovascular disorders [412,413], regulating thyroid hormone metabolism [414,415],
influencing the occurrence of type 2 diabetes [416], protecting against cartilage redox
homeostasis and the progression of arthropathies [417], chemoprevention and chemother-
apy [406], modulating energy metabolism in neural cells [418], and enhancing male fertil-
ity [419]. However, there is little information on the effect of SeNPs on the pharmacokinetics
and pharmacodynamics of selenoproteins [73]. For example, SeNPs have a better effect
on glutathione S-transferase (GST) activity when compared to selenoproteins regardless
of supra-nutritional or toxic levels [290]. Moreover, SeNPs are used to design a safe and
effective strategy for a highly therapeutic efficacy of cytokine-induced killer (CIK)-based
cancer immunotherapy [35]. Since the safety profile of nanomaterials to a large extent
determines their biomedical applications, no induced hemolysis is noticed when SeNPs are
incubated with human blood, highlighting their hemocompatibility. In addition, SeNPs
are gradually metabolized into selenocysteine (SeCys2), which subsequently regulates the
expression of multiple selenoproteins and other metabolites in CIK and cancer cells [35].
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This unique strategy enables a CIK-SeNPs co-treatment that induces specific immune
responses against tumor progression via the production of natural killer cells and the
priming of tumor-associated macrophages. All these findings are helpful in translational
medicine towards the development of efficient treatments for diseases associated with
Se metabolism [32]. Additionally, SeNPs improve selenium bioavailability and facilitate
selenoprotein expression when selenium level is low [127]. Indeed, the encapsulation of
selenium in chitosan networks (CTS-SeNPs) likely increases its retention and/or delivery
to induce selenoprotein expression and prevent Se-induced damage to DNA.

5.3. Pharmacokinetics of Selenium Nanoparticles

Pharmacokinetics investigates the scale and rate of ADME-Tox of drugs in the body
through precise and rigorous experimental methods [24,420]. By nanosizing its formulation,
the drug dissolution rate can be increased to promote improved absorption and bioavail-
ability [421,422]. Therefore, NPs are useful to deliver drugs and enhance tissue selectivity
due to their selective uptake in specific tissues [24,341,422]. Moreover, nanocarriers alter the
pharmacokinetic properties of drugs by enhancing their effectiveness and diminishing their
adverse effects [423]. The pharmacokinetic profiles of the parent drug and the drug associated
with NPs are often different [424]. Thus, studying the pharmacokinetics and biodistribution
of drugs formulated as NPs is essential to comprehend and predict their effectiveness and
side effects. For delivery purposes, an optimal theranostic NP model should display suitable
release kinetics of the drug in specific concentrations at the target site [24].

The physicochemical properties of NPs are essential for pharmacokinetic modulation
as they dictate the immediate pharmacological response in the body following their ad-
ministration [425]. For instance, the shape, size, surface chemistry (PEGylation, ligand
conjugation), surface charge, and composition influence the pharmacokinetics, intracel-
lular penetration, and tumor bioavailability [341]. Moreover, NPs prolong the half-life
of drugs in blood circulation, decrease their apparent volume of distribution, and signifi-
cantly reduce their degradation and clearance. Depending on the method of preparation
and the desired therapeutic effect, the drug can be dissolved, adsorbed, attached, en-
trapped, or encapsulated within NPs [426,427]. Regardless of their compositions, all NPs
must possess a reasonable half-life in the blood circulation, selective targetability, and
efficacious clearance from the body after the drug delivery to target tissues [428–432]. To
obtain the adequate NP pharmacokinetic features for clinical applications, it is required
to regulate their hydrodynamic diameter, shape, and surface properties. The general pro-
cess includes: (1) systemic circulation and reticuloendothelial system (RES) interaction,
(2) extravasation and tumor penetration, and (3) interaction with target cells [433]. The
specific pharmacokinetic parameters include the volume of distribution, half-life, mean
residence time, maximum concentration, bioavailability, permeability, clearance, and area
under the time–concentration curve [434].

In the case of selenium, Se metabolic cycling and excretion from the human body
include both inorganic and organic molecular species of Se present at different oxidation
states including 2−, 2+, 4+ and 6+ [435]. Nevertheless, little research has been conducted
to show the formation of elemental or metallic Se (Se0) as part of these metabolic pro-
cesses [435]. For instance, MeSeCys, an organic Se compound with potential anticancer
activity, is found to be an advantageous supplementation of Se due to its lowest toxicity
among all the selenocompounds while still being greatly bioavailable [86]. The same study
also showed that the positive effects of various selenocompounds on the activity of GPX1
and on the generation of the glycoprotein selenoprotein P (SEPP) do not correlate with their
toxicity levels but rather with molecule-specific properties [86]. Further, MeSeCys has mi-
nor sub-chronic oral toxicity and no genotoxicity at doses far above the daily nutritional Se
level (0.5, 0.7, 0.9 mg per kg of body weight) after 90-day oral exposure [436]. Although the
pharmacokinetics of sodium selenite has been investigated in various animal models, the
biosafety dose of Se is still unclear due to the narrow safe dose range of Se and the distinct
animal physiological and pathological conditions [437]. For instance, selenium-enriched
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yeast (SeY) had higher bioavailability in rats than sodium selenite, while plasma-free
SeMet was found to be the ideal biomarker of SeY status in vivo [438]. Furthermore, rapid
absorption and slow excretion of sodium selenate in the blood of healthy piglets were
observed; this pharmacokinetic process conforms to the two-chamber open model [439].
Additionally, variations in antioxidant systems in piglets as a function of Se levels were
noticed, thereby providing a more complete understanding of risk assessment and clinical
application of Se supplementation. On the other hand, the safe dose level of intravenously
administered sodium selenite, defined as maximum tolerated dose (MTD), was reported to
be 10.2 mg·m−2 in terminal cancer patients and implied the importance of kidney function
in the excretion of Se from selenite since the pharmacokinetic results demonstrated a linear
increase in plasma Se concentration with respect to total Se dose [440]. Lastly, no apparent
adverse effects of high dose of repeated selenite administration on physiological selenium
homeostasis were reported [440].

The pharmacokinetic and pharmacodynamic profiles of two high doses of parenteral
selenite in patients with systemic inflammatory response syndrome (SIRS) showed that
the maximum glutathione peroxidase activity appeared only at very high dose [441]. As
a result, the very high dose of 2000 µg (25.30 µmol) of selenium supplied as selenous
acid by short-term bolus injection, followed by a continuous daily intravenous infusion of
1600 µg (or 20.24 µmol) for 10 days, was very effective in replenishing serum selenium to
physiological levels and safely maximizing the antioxidant activity of the selenoenzyme
GPX3. Furthermore, it has been shown that three selenium compounds (sodium selenite,
methyl selenocysteine, and seleno-1-methionine) were well-tolerated and assessed safe
to be used at 400 µg elemental selenium per day in a study population of twenty-four
cancer patients, revealing negligible genotoxicity and minor reductions in lymphocyte
counts [442].

Although the above therapeutic applications of Se compounds by conventional intro-
duction may seem effective, the delivery of nano-formulated Se has distinct pharmacoki-
netic advantages such as specific drug delivery, controlled release, high metabolic stability,
high membrane permeability, enhanced bioavailability, long duration of action, less toxicity,
and therapeutic efficacy [50,61,74,76,90,443]. SeNPs are convenient for administration since
they can be delivered by various routes including oral and intravenous ones [444]. At
the nanoscale, selenium is also used to improve the pharmacokinetic properties of drugs.
For instance, chitosan-decorated SeNPs constitute an excellent carrier of the therapeutic
peptide BAY 55-9837 for type 2 diabetes mellitus by decreasing its renal clearance rate [445].
In addition, insulin-loaded SeNPs (Ins-SeNPs), fabricated using ionic cross-linking/in situ
reduction, exhibit enhanced antidiabetic effect through a controlled insulin delivery and
an outstanding stability in the digestive fluids [446]. Based on ex vivo intestinal imaging
and cellular internalization, the transepithelial transport ability of SeNPs to overcome the
absorption barrier was assessed, and it was found that Ins-SeNPs not only get into the cyto-
plasm, but also enter the nuclei. Finally, Ins-SeNPs exhibit excellent hypoglycemic effects
after oral administration, requiring a lower oral dose to achieve a long-acting glycemic
reduction than insulin alone for the same time and concentration (0.75 µg·mL−1) [446].

In addition, Arg-Gly-Asp (RGD) peptide-decorated and doxorubicin-loaded selenium
nanoparticles (RGD-SeNPs) targeting tumor vasculature significantly enhanced the cellular
uptake and antiangiogenic activity of SeNPs in vitro and in vivo on human umbilical vein
endothelial cells (HUVEC) [447]. The as-designed nanosystem led to bioresponsive triggered
drug doxorubicin (DOX) release by disassembly under acidic conditions with the presence of
lysozymes and cell lysate [447]. Another study reported on the hybridization of SeNPs with
niosomes as lipid nanoparticles (NISM-B@SeNPs) to open a new approach in drug delivery
for cancer treatment studies that potentially exhibit good in vivo biocompatibility [343].
Moreover, Se-functionalized liposomes (SeLPs) were developed as a DOX delivery vehicle
to prolong the systemic circulation of liposomes by in situ selenium coating and enhance
the anticancer effect via the synergy between DOX and Se [339]. A dual-loaded nanocarrier
system of the antiretroviral drug Etravirine (TMC-125) and SeNPs was fabricated to evaluate
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the NP biodistribution in potential human immunodeficiency virus (HIV) reservoirs in vivo
in Sprague Dawley rats [448]. The in vivo pharmacokinetic study showed the controlled
release potential of the nanocarrier along with high stability, prolonged on-target residence
time, low clearance, and a higher accumulation of the dual-loaded nanocarrier in remote
HIV reservoir organs such as the brain, ovary, and lymph node.

A nanoselenium-coating biomimetic cytomembrane nanoplatform (BMMP) was pre-
pared as a drug nanocarrier by using P. geniculate for manganese and doxorubicin codelivery
and mitochondrial targeted chemotherapy [449]. The pharmacokinetic studies revealed that
approximately 50% of BMMP-Mn2+/Se/DOX was retained in the body at 8 h post-injection,
implying that BMMP-Mn2+/Se/DOX had a long blood circulation time. In addition, the
nanoplatform exhibited excellent biosafety and exerted long-acting effects on tumors, being
completely excreted from the body at 96 h post-injection with no obvious side effects from
its residue [449]. Se-coated nanostructured lipid carriers (SeNLCs) of around 160 nm were
developed for improving the oral bioavailability and the curative effect of berberine, an
antidiabetic phytomedicine [450]. The results showed that the berberine-loaded SeNLCs
(BB-SeNLCs) had an entrapment efficiency of 90% and greatly enhanced the oral bioavail-
ability of berberine, which was approximately 6.63-fold higher than that of berberine
solution. From the abovementioned cases, it is evident that SeNPs are emerging as valid
pharmacological tools for further in vitro and in vivo studies on conjugates with drugs,
drug candidates, targeting agents, and molecular probes.

6. Green Nanotechnology: A Better Avenue for SeNP Bioapplications

Despite tremendous advances in the application of nanotechnology in the diagnosis
and treatment of different diseases, several challenges are yet to be adequately addressed,
such as bio- and cyto-compatibility, as well as selectivity and efficiency of NPs [451]. The
conventional synthesis of nanomaterials often involves the use and/or the generation of
toxic/harmful reagents and substances (i.e., solvents, catalysts, and reducing and cap-
ping agents), which affect the environment and patient response. Moreover, bringing
nanomaterials from the laboratory to clinical or industrial applications has been slow and
challenging due to the poor understanding of the new potential hazards introduced by
nanotechnology and the absence of suitable policies to manage emerging risks [452–455].
Hence, bionanotechnology may hold the solution and constitute a sustainable alternative
by offering better and safer processing methods for NP production [65,171,456–461]. This
growing approach aims at exploring the capabilities of natural, widespread, and renewable
resources as part of the starting reagents in the NP production process to eliminate or, at
least, reduce the NP hazards to the environment and human health, and, ultimately, to
substitute the existing toxic reagents/products with new environmentally friendly products
that are benign, eco-friendly, sustainable, biocompatible, and safe [462,463]. Indeed, organic,
non-toxic stabilizing agents lead to controlled sizes and shapes, tailored biological responses
(e.g., cytotoxicity, inflammation), and enhanced biodistribution of biogenic NPs [451].

Green nanomaterials have demonstrated potential applications in medicine as anti-
cancer, antidiabetic and antioxidant agents, as well as for bio-sensing purposes [464]. For
instance, green drug delivery nanosystems display efficient targeted recognition and con-
trolled release, high biocompatibility, and decreased toxicity [465]. Thus, this has triggered
a sustained demand for green nanotechnology-driven drug delivery systems fueled by
significant developments of diverse delivery devices, such as inorganic NPs, quantum dots,
polymeric NPs, dendrimers, nanostructured lipid carriers, solid lipid NPs, etc. [466]. Further,
the rise of green nanomaterials is accompanied by sustainable, low-energy, and low-cost
procedures for the manufacturing of different tissues that diminish the consumption of toxic
materials [467].

Green approaches produce highly stable and biocompatible SeNPs that increase ef-
ficiency and minimize side effects [155,468]. Indeed, some metabolites present in plant
extracts, such as polyphenols, saponins, vitamins, carbohydrates (including polysaccha-
rides), flavonoids, alkaloids and tannins, are excellent reducing and capping agents of
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SeNPs that make them safer, more stable [469], and suitable for several potential applica-
tions in biomedical sciences [42,60–63,470]. A recent survey comprehensively addresses
the biosynthesis of SeNPs using a variety of plant extracts relating the properties of the
synthesized nanostructures (composition, size, shape, stability) with the conditions used
for this green route (temperature, time, Se precursor, and extract concentration) [471]. Since
biosynthesized SeNPs are less polydisperse and do not aggregate under physiological
conditions, they have emerged as effective tools in medical and pharmaceutical sciences to
treat different diseases [61,472]. In addition, eco-friendly metallic NPs are safely translated
in medicine and serve as safe nanotheranostic agents/platforms [468,473,474]. However,
some important concerns need to be considered prior to the use of SeNPs in clinical transla-
tional applications, such as the safety profile, pharmacokinetics and pharmacodynamics,
and specificity and sensitivity in the biological milieu.

7. Biomedical Applications of Biogenic Selenium Nanoparticles

SeNPs are bioactive entities that might be easily made biologically available to play a
crucial role in many oxidoreductive processes [91]. In addition, SeNPs possess a regulative
effect to support the correct functioning of the body and offer outstanding health benefits
to treat/cure various diseases [32,58,475,476]. The following sections detail the use of
biogenic SeNPs for different therapeutic purposes, including anticancer, antimicrobial, and
anti-diabetic activities, in addition to gene and drug delivery.

7.1. Antioxidant Activity

Antioxidants are compounds that prevent the generation of free radicals as well as
scavenge them when produced during various biochemical reactions in animals and plants,
therefore playing a significant role in protecting against oxidative stress and neurodegen-
erative and cardiovascular diseases [58,477,478]. The antioxidant potential of biogenic
NPs relies on the redox potential of phenolic and flavonoid compounds present at their
surface [128,479,480]. Since selenium is implicated in antioxidant defense systems and
significantly contributes to maintaining the redox homeostasis [481–484], SeNPs display a
protective activity against cellular damage [167,485,486]. To date, an overwhelming number
of studies indicate that SeNPs possess great antioxidant ability and free radical scavenging
efficiency that potentially protect tissues and cells from oxidative damage [160]. Moreover,
SeNPs exhibit antioxidant activity with less toxic effects than zero-valent selenium (Se0) [51]
or sodium selenite [155]. In addition, biogenic SeNPs exhibit a higher antioxidant activity
with less toxicity to healthy cells than selenium dioxide [260]. It has also been proved
that SeNPs, fabricated using Theobroma cacao L. bean shell extract as the reducing and
capping agent, are highly stable and possess a better antioxidant activity than the extract
itself [487]. Similar behaviors of SeNPs, fabricated using different natural extracts, have
been reported [160,488–490]. However, Ephedra aphylla extract displays a better antioxidant
activity than SeNPs produced using the same extract owing, most likely, to the presence in
the extract of phenolics, flavonoids, and tannins in greater amounts [491].

Biogenic SeNPs exhibit numerous biological properties. For instance, SeNPs of
5–200 nm can directly scavenge free radicals in vitro [492]. In addition, their size has
a considerable effect on their antioxidant properties since smaller NPs are more efficient in
capturing free radicals [262]. This was corroborated by other studies that also established
the dependency of antioxidant activity on particle concentration [109,490,493]. Addition-
ally, the capping moieties, such as quercetin and gallic acid, play an important role in the
antioxidant potential of ecofriendly SeNPs [494], and of bimetallic Ag-Se NPs [495]. Table 3
summarizes the antioxidant activity of biogenic SeNPs, obtained via different methods.

The most used in vitro technique to measure the free radical scavenging activity (RSA)
of SeNPs is 2,2-diphenyl-1-picrylhydrazyl (DPPH) as it is simple, rapid, facile, sensitive,
and stable [249]. It is based on the reduction of methanolic DPPH solution by donating
an electron or hydrogen atom to form a non-radical, stable, and pale yellow/colorless
molecule: 2,2-diphenyl-1-hydrazine [316,490].
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Table 3. Antioxidant activity of biogenic SeNPs: Biosynthetic route, NP features (size and shape),
methods used and main outcomes.

Biological
System Used for

Synthesis

Shape and Size
of SeNPs

Antioxidant
Measurement Technique Antioxidant Activity IC50 (µg/mL) EC50 (µg/mL) Ref.

Bacillus sp.
MSh-1. Spherical; 80–220 nm DPPH and reducing

power assays

RSA of 23.1 ± 3.4%
Dose-dependent

reducing power within
a 0–200 µg·mL−1

concentration range

41.5 ± 0.9 N/A [260]

Saccharomyces
cerevisiae Spherical; 50 nm DPPH

RSA increase of
21.7–48.5% in a dose-
dependent manner

N/A N/A [150]

Bacillus sp.
EKT1 Spherical; 31–335 nm DPPH RSA of up to 56.5

± 5.0% at 400 µg·mL−1 322.8 N/A [493]

Quercetin and
gallic acid

Bimetallic Ag-Se NPs
capped by flavonoids

and phenolics; 30–35 nm

ABTS, DPPH and
MTT assays 59–62% T-AOC 30–66 N/A [495]

Aqueous chitosan
microspheres Spherical; 36–95 nm

H2O2 levels;
measurement of GSH,

TBARS (MDA
equivalent), GSH-Px,

SOD and CAT

Increase in both
intracorporeal Se

retention and levels of
GSH-Px, SOD and CAT;

reduced levels
of TBARS

N/A N/A [129]

Emblica officinalis
extract Spherical; 15–40 nm DPPH and ABTS radical

scavenging assays

Dose-dependent RSA,
linear relationship

with NP concentration
127.28 ± 3.73 DPPH: 15.67 ± 1.41 mg·mL−1

ABTS: 18.84 ± 1.02 mg·mL−1 [155]

Lactobacillus casei
ATCC 393 50–80 nm

Cellular methods:
T-AOC
MDA

T-SOD
GSH-Px levels

TrxR

Increased T-AOC,
T-SOD, TrxR and

GSH-Px
Reduced MDA levels
in serum and jejunum

N/A N/A [496]

Pantoea
agglomerans Spherical; 30–300 nm

Production of ROS using
HUVEC

fluorescence determined
using a microplate reader
at 485-nm excitation and

583-nm emission

Decrease in
fluorescence resulting
from the oxidation of
the intracellular probe

dichlorofluores-
cein (DCF)

N/A N/A [262]

L. casei ATCC 393
Spherical; capped with

proteins and
polysaccharides;

50–80 nm

H2O2 levels Increased GPX
activity, reduced MDA N/A N/A [497]

H2O2-induced oxidative
damage model of

human colon mucosal
epithelial cells

Alleviated increase in
ROS, reduced ATP

and MMP
Improved levels of

Nrf2, HO-1, and
NQO-1 proteins

N/A N/A [498]

L. lactis NZ9000 Spherical; 38–152 nm

H2O2 levels
measurement;

MDA
T-SOD
GPX

Alleviated IPEC-J2 cell
oxidative

damage caused
by H2O2

Inhibition of
intracellular

ROS production

N/A N/A [499]

Cordyceps sinensis
EPS conjugation

Amorphous and
monoclinic; 80–125 nm.

ABTS and superoxide
anion radical (O2

•−)
scavenging assays

Smaller SeNPs present
high O2

•−

scavenging ability.
Se/P ratios (1:3, 1:1

and 4:3) had a higher
ABTS•+ scavenging

ability, and could reach
88.89%, 85.53% and

69.88%, respectively, at
0.2 mg·mL−1.

N/A N/A [148]

Ephedra aphylla
extract

Spherical and tetragonal;
13.95–26.26 nm DPPH assay

Lower activity of
SeNPs a than the

plant extract

0.213 and
0.296 mg·mL−1 N/A [491]
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Table 3. Cont.

Biological
System Used for

Synthesis

Shape and Size
of SeNPs

Antioxidant
Measurement Technique Antioxidant Activity IC50 (µg/mL) EC50 (µg/mL) Ref.

Green tea extract
and Lycium

barbarum
polysaccharides

Spherical and triangular;
83–160 nm DPPH and ABTS assays

Strong, concentration-
dependent DPPH-
scavenging activity

at 5–25 µM
High antioxidant

activity with low EC50
Dose-dependent

inhibition of ABTS
free radicals

N/A 22 µM [500]

Theobroma cacao L.
bean shell extract Spherical; 1–3 nm ABTS and FRAP assays

ABTS: 28.6 ± 0.1 mg
TE/g

FRAP: 12.4 ± 0.2 mg
TE/g

N/A N/A [487]

Chitosan Spherical; 102–104 nm
DPPH, ABTS and

superoxide anion radical
(O2

•−) scavenging assays

DPPH: 83.06% at
0.5 mM

ABTS: 74.33, 80.23 and
81.99% at 2 mM

Superoxide: 25.20,
27.54, 31.44% at 1 mM

DPPH: 0.296,
0.306, 0.325,
0.370 mM

ABTS: 1.314,
1.249, 1.143 and

1.101 mM

N/A [489]

Streptomyces
minutiscleroticus Spherical; 100–250 nm

DPPH;
Reducing power assay;

T-AOC:
Phosphomolybdenum

method

All measurements
increase in a dose-

dependent manner
T-AOC was more or

less equal to the
standard ascorbic acid

N/A N/A [316]

Withania somnifera Spherical; 45–90 nm DPPH

RSA increase in a
dose-dependent

manner in the range of
20–100 mg·mL−1 *

14.81 µg·mg−1 N/A [160]

Diospyros montana
leaf extract Spherical; 4–16 nm DPPH and FRAP assays

DPPH: color change
from purple to pale

yellow. RSA of 61.12%
at 200 µg·mL−1

FRAP: color change
from yellow to shades

of green and blue

0.225 0.435 [490]

Corbicula fluminea Spherical; 40–70 nm DPPH, TEAC and FRAP
of plasma assays.

DPPH RSA: 70, 77, 83,
79, and 53% at
1.5 mg·mL−1 *.

Increase in a dose-
dependent manner

TEAC: highest RSA at
226 µmol

Trolox/g sample
FRAP: highest RSA at

150 µmol
Fe2+/g sample

1.5 mg·mL−1 * N/A [488]

Murraya koenigii Spherical; 50–150 nm
DPPH and

Superoxide anion (O2
•−)

scavenging assay

Concentration-
dependent

RSA increase
25 and 50 N/A [109]

Ginger plant
(Zingiber officinale)

extract
Spherical; 100–150 nm DPPH

Dose-dependent RSA
increase (disappearance

of the purple color)
SeNPs are free radical

inhibitors or scavengers
acting possibly as

primary antioxidants

125 N/A [501]

* We think these concentrations are in µg·mL−1. Abbreviations: ABTS: (2,2′-azino-bis(3-ethylbenzothiazoline-6-
sulfonic acid); APX: Ascorbate peroxidase; CAT: Catalase; DAO: Diamine oxidase assay; DCF: Dichlorofluorescein;
DPPH: 2,2-diphenyl-1-picrylhydrazyl; ABTS: 2,20-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid); EC50:
Effective concentration required to inhibit 50% of free radicals; EPS: Exopolysaccharides; FRAP: Ferric reducing
antioxidant power; GSH: Glutathione; GSH-Px: Glutathione peroxidase; HUVEC: Human umbilical vein endothe-
lial cells; IC50: Half maximal inhibitory concentration; IPEC-J2: Intestinal porcine enterocytes; MDA: Malondialde-
hyde assay; MMP: Mitochondrial membrane potential; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide; POX: Peroxidase; ROS: Reactive oxygen species; RSA: Radical scavenging activity; SOD: Superoxide
dismutase; T-AOC: Total antioxidant capacity; TBARS: Thiobarbituric acid reactive substances; TEA: Trolox
equivalent antioxidant; TEAC: Trolox equivalent antioxidant capacity; TrxR: Thioredoxin reductase; T-SOD: Total
superoxide dismutase.
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Several studies explored the strong antioxidant activity of biogenic SeNPs synthesized by
Lactobacillus casei in oxidative stress-caused intestinal epithelial barrier dysfunction [496–498].
As a result, SeNPs can alleviate ROS mediated mitochondrial dysfunction via Nrf2-mediated
signaling pathway, increase the number of goblet cells, reduce the production of ROS, increase
GPX activity, and preserve the mitochondrial functions. Therefore, SeNPs could be employed
to treat oxidative stress-related intestinal disorders. Similarly, biogenic SeNPs, mainly coated
by polysaccharides, exhibit antioxidative and anti-inflammatory effects in protecting intestinal
epithelial cells against H2O2 and ETEC K88-caused injury, and maintaining the intestinal
epithelial barrier integrity [499]. This amount of work has led to a consensus stating that bio-
genic SeNPs present significant antioxidant activity and may serve as a potential antioxidant
supplement or ingredient [155,488] and neuroprotective agent [500].

7.2. Antimicrobial Activity

The antimicrobial capability of SeNPs stems from their large surface to volume ratio,
which allows them to set better contact with microorganisms, thus leading to improved
antimicrobial activity [147]. Therefore, SeNPs can be used in several fields including
infectious control, surface treatment of biomedical instruments, pharmaceutical industry,
cosmetics, and food manufacturing [155].

7.2.1. Antibacterial Activity

The antibacterial activity of selenium compounds is attributed to the generation of
free radicals, including Se oxyanions [501]. These novel active products might constitute a
solution to the emerging drug-resistant microorganisms that are considered to be a great
current health concern [62,502–504]. The unique antibacterial effect of biosynthesized
SeNPs has been extensively explored on the basis of morphological and structural changes
in the bacterial cells [160,316,490,491,495]. For instance, phytofabricated SeNPs using the
aqueous fruit extract of Emblica officinalis were found to possess antimicrobial activity
against both Gram-positive and -negative bacteria and fungi [155]. The minimal inhibitory
(MIC) and bactericidal (MBC) concentrations were 9.16 ± 0.76 and 19.83 ± 1.25 µg·mL−1,
respectively, against S. aureus, and 59.83 ± 2.56 and 97.50 ± 3.27 µg·mL−1, respectively,
against E. coli. A similar study provides the MIC of manufactured SeNPs using aqueous
extract of fermented lupin against Acinetobacter calcoaceticus (2.343 µg·mL−1) and S. aureus
(1.171 µg·mL−1) [149]. In addition, the activity of the same SeNPs against the fungus
Aspergillus was strain-selective, as they were effective only against A. flavus while no
activity was shown against A. niger.

The NP antimicrobial activity is size-dependent since tiny NPs can easily cross the
cell wall and membrane and provoke cell lysis [93,114,155]. For instance, 221.1 nm SeNPs,
fabricated using S. maltophilia, exhibit a strong antimicrobial activity with an effective
concentration (EC50) of 26.32 mg·L−1 against E. coli, 7.59 mg·L−1 against S. aureus, and
62.37 mg·L−1 against P. aeruginosa [505]. In addition, the large surface area, small size,
and spherical shape are probably responsible for the good antimicrobial activity of SeNPs
fabricated using the supernatant of Lysinibacillus sp. against E. coli and S. aureus [68].
Moreover, the anti-biofilm activity of different concentrations (0–2 mg·mL−1) of the same
biogenic SeNPs against the strong-biofilm producer P. aeruginosa was highlighted.

Besides the dimensions, other important features, such as the elemental structure
(purity) and shape of SeNPs, should be considered when studying their antibacterial activ-
ity [155]. For example, the antimicrobial and antibiofilm ability of SeNPs, manufactured
using S. maltophilia SeITE02, against different pathogenic bacteria seems to be strictly linked
to their organic surrounding cap [62]. This characteristic was tested by exposing NPs to
progressively stronger protocols that denature their external organic coating; this resulted
in increased MIC values with progressive denaturation. Moreover, SeNPs synthesized
using C. bulbosa tuber aqueous extract were found to promote inhibitory effects on the
growth of certain clinical pathogens, such as B. subtilis and E. coli, as well as a strong
larvicidal activity against the dengue vector, Aedes albopictus, with 250 µg·mL−1 as the
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maximum lethal concentration [506]. In this study, the mortality rate of A. albopictus larvae
is caused by the adhesion and penetration of SeNPs across cell membranes to further hinder
the function of membrane proteins. On the other hand, biofilm inhibition assays using
biogenic SeNPs resulted in a gradual decline of biofilm thickness at 25 µg mL−1 (80–70%
reduction) and 50 µg·mL−1 (extreme reduction), thus inhibiting any further bacterial prolif-
eration (Figure 9) [109]. Additionally, SeNPs, derived from B. licheniformis, inhibit S. aureus
adherence and microcolony formation on polystyrene, glass, and catheter surfaces [507].
These findings are corroborated by another study showing that SeNPs, fabricated by the
whole cell lysate of Bacillus sp., inhibited the biofilm formation by S. aureus, P. aeruginosa,
and P. mirabilis by 12.42%, 34.30%, and 53.40%, respectively.
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Figure 9. Confocal laser scanning microscopy images of antibiofilm activity of biogenic SeNPs,
produced using the aqueous extract of Murraya koenigii against Gram-positive (E. faecalis and S.
mutans) and Gram-negative (S. sonnei and P. aeruginosa) bacteria. Reproduced with permission from
Ref. [109]. 2019, Elsevier.

Owing to their interactions with DNA and proteins, biogenic SeNPs totally inhibit S.
aureus growth at a 300 µM concentration within 24 h [508]. Spherical SeNPs of 40 to 120 nm in
size, fabricated with the non-pathogenic bacterium Ralstonia eutropha, were found to almost
totally inhibit (99%) the growth of P. aeruginosa, S. aureus, E. coli, and Streptococcus pyogenes at
different concentrations ranging from 10 to 300 µg·mL−1 [55]. In contrast, the growth inhibition
of the pathogenic fungus A. clavatus requires 500 µg·mL−1 of the same SeNPs. Moreover, the
antimicrobial activity of SeNPs, synthesized by Zingiber officinale root extract, against Gram-
positive (S. aureus) and -negative (E. coli, Klebsiella sp., Pseudomonas sp., Serratia sp., and
Proteus sp.) bacteria resulted in MIC values of 150–500 µg·mL−1 [501]. On the other
hand, SeNPs, produced using E. coli, P. aeruginosa, S. aureus, and methicillin-resistant
S. aureus (MRSA), are shown to inhibit the bacterial growth by, most likely, altering the
bacterial growth cycle by impacting the synthesis of RNA, enzymes, and/or other molecules
involved in the cell division [133]. In addition, these SeNPs may cause a systemic failure of
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the bacterial metabolism leading to cell death owing to induced ROS generation. Similar
results are obtained with biogenic SeNPs, synthesized via a plant-mediated process. This is
the case, for instance, of SeNPs produced using Cinnamomum zeylanicum bark extract, which
show a biocidal activity against several bacterial foodborne pathogens (E. coli, Salmonella
typhimurium, S. aureus, and Listeria monocytogenes), and display a potential edible coating
basement [509]. Lastly, interesting antibacterial activities are also obtained using SeNPs
fabricated by the aqueous extract of cow urine [510].

7.2.2. Antifungal Activity

Several investigations have reported the antifungal activity of biogenic SeNPs. For
example, mycosynthesized spherical SeNPs show an antifungal activity against Pyricu-
laria grisea, Colletotrichum capsica, and Alternaria solani, in addition to the inhibition of the
sporulation of P. infestans [147]. Moreover, SeNP-enriched probiotics (L. plantarum and L.
johnsonii) combined with extracellular metabolites inhibit the growth of the potent uro-
genital pathogen C. albicans [511]. Additionally, selenium dioxide in culture supernatants
enhances the production of soluble metabolites involved in killing the same yeast. Fur-
thermore, the size and crystallinity of chitosan-stabilized SeNPs greatly influence their
synergistic antifungal effect against C. albicans biofilms in a dose–response manner [113].

SeNPs, produced using the fusarium T. harzianum, exhibit excellent antifungal activity
and, more specifically, a dramatic deactivation of several synthetic genes (FUM1, PA, TRI5,
and TRI6) and toxins of the fungi Alternaria (83% TeA and 79% AOH reduction) and
Fusarium (63% FB1 and 76% DON reduction), opening them new avenues as bifunctional
nanomaterials for the biocontrol of phytopathogens and mycotoxins in agriculture and
food safety [512]. On the other hand, SeNPs, fabricated using the plant extract of E.
aphylla, display potent antimicrobial activity against several bacterial and fungal species
with an enhanced inhibition zone diameter ranging from 19 to 39 mm [491]. In addition,
biosynthesized SeNPs using the leaves of Diospyros montana show the highest inhibition
zone against A. niger (12 mm) when compared to the tested bacterial species using a disc
diffusion method at different concentrations (10, 20, 30 and 40 µg·mL−1) [490].

7.3. Antiparasitic Activity

Biogenic SeNPs show effective and accurate prophylactic effects on acute toxoplas-
mosis, thereby offering a potential alternative to pyrimethamine and sulfadiazine, whose
treatment presents serious side effects [513]. In addition to their strong larvicidal activity
against the dengue vector mosquito, A. albopictus [506], biogenic SeNPs also exert in vitro
and in vivo antiparasitic activity against Leishmania major, rendering these nano-objects
into novel therapeutic agents for the treatment of localized lesions typical of cutaneous
leishmaniasis [514].

7.4. Anticancer Activity

Cancer remains a major global health challenge and embraces nearly 100 types char-
acterized by an uncontrolled division of abnormal cells with the ability to metastasize to
other parts of the body [515]. Over the previous decades, nanotechnology has gained much
importance as a revolutionary approach to combat cancer owing to the unique properties
of NPs, such as their size, shape, large surface-to-volume ratio, tunable surface chem-
istry, and the ability to encapsulate/carry and deliver various drugs, that confer to them
many advantages over their bulk counterparts [516]. A fuller understanding of nano–bio
interactions should lead to safer and more efficacious nanotherapeutics by overcoming
the physiological barriers posed by the tumor microenvironment, which will eventually
facilitate the corresponding clinical developments [517]. On the other hand, green nanoma-
terials are currently intensively screened for the treatment and diagnosis of cancer owing
to their high biocompatibility and effectiveness, among which biogenic SeNPs hold great
promise [518–520]. Building on previously published data [85], Table 4 provides an update
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and indicates the anticancer activity displayed by a number of biogenic SeNPs against
different cancer cell lines.

Table 4. Anticancer activity of several biogenic SeNPs against different cancer cell lines.

Biological
System/Green

Method

Shape and
Size (nm) Concentration/Dosage Assay/Pathway Cell Line * Key Outcomes Ref.

Streptomyces
bikiniensis Nanorods; 17 nm 10, 25, 50, and

100 µg·mL−1
MTT dye

reduction assay
Hep-G2 (M)
MCF-7 (M)

ID50%: 75.96 and
61.86 µg·mL−1, respectively.

Loss of cell-to-cell contact, cell
shrinkage, and formation of

apoptotic bodies.
Higher reduction of cell

viability in Hep-G2 (42.3–86.9%)
than in MCF-7 (37.5–69.1%).

[521]

Cassia auriculata
leaf extract 10–20 nm 0.5 to 150 µg·mL −1 MTT assay HL-60 (M)

Vero cell line (NM)

Antileukemia activity in a
dose-dependent manner with a

CC50: 7.01 µg·mL−1 (HL-60)
and 109.13 µg·mL−1 (Vero cells)

[162]

Garlic (Allium
sativum) clove extract

Spherical;
40–100 nm

15, 30, 60 and
90 µg·mL−1 MTT assay Vero cell line (NM) CC50 of 31.8 ± 0.6 µg·mL−1 [522]

Chitosan
(CTS-SeNPs) and
Pleurotus ostreatus

fermented fenugreek
(SeNPs-AEFFP)

Spherical;
CTS-SeNPs: 45 nm

SeNPs-AEFFP:
11.8 nm

CTS-SeNPs:
1.187–38 µg·mL−1

SeNPs-AEFFP:
0.594–19 µg·mL−1

NPs exposed to γ-ray
doses of 60 and 15 kGy,

respectively, against EaC
and CaCo-2.

Trypan blue
(0.5%) assay

EaC (M)
CaCo-2 (M)

For EaC:
CTS-SeNPs: IC50 = 23.12%

SeNPs-AEFFP: IC50 = 7.21%
For CaCo-2:

CTS-SeNPs: IC50 = 25.32%
SeNPs-AEFFP: IC50 = 8.57%

SeNPs exhibit a
concentration-dependent

repression against EaC and
CaCo-2 and a selective

cytotoxic effect.

[112]

E. coli Spherical, elliptical
and nanorods; 60 nm 20, 60, and 100 µg·mL−1

MTT and addition
of DMSO. Caspase

3-involved
apoptosis pathway.

A549 (M)
IMR-90 (NM)

Cell viability of ∼70%, ∼45%
and ∼25%, high ROS

generation and elevated
caspase-3 activity.

[523]

B. licheniformis JS2 Spherical; 110 nm 1, 2, 4, 6, 50, or
200 µg Se/mL for 24 h

Colorimetric XTT
assay, activation of
caspases 3 and 7,
DMSO treatment

and hemolysis assays

LNCaP-FGC (M)

Overexpression of TNF and
IRF1, reducing the expression

of androgen receptors.
SeNPs decrease the cell viability

regardless of apoptosis and
necrosis. SeNPs induce cell

death through neither
apoptosis nor necrosis.

[524]

S. minutiscleroticus
M10A62 Spherical; 10–250 nm 50–100 µg·mL−1 MTT Hep-G2 (M)

HeLa (NM)

50 µg·mL−1 concentration of
SeNPs was required for 99.5%
HepG2 growth inhibition and
100 µg·mL−1 for 100% growth

inhibition of HeLa.

[316]

B. licheniformis JS2 110 nm Minimum of 2 µg
Se/mL

Real-time qPCR
analysis; confocal

microscopy;
treatment with
cytochalasin D

PC-3 (M)

ROS mediated necroptosis of
PC-3 cells independent of RIP3
and MLKL and regulated by a

RIP1 kinase. Increased
expression of necroptosis

associated to TNF and IRF1

[295]

Fenugreek seed
extract

Amorphous;
50–150 nm

25, 50, 75, and
100 µg·mL−1 for 24 h MTT assay MCF-7 (M)

SeNPs augment the cytotoxicity
of doxorubicin and induce MCF
7 cell death through apoptosis.

[525]

Idiomarina sp.
PR58-8

Spherical;
150–350 nm 5–100 µg·mL−1 for 24 h

MTT assay,
ROS assay, apoptotic
index assay, Western

blot assay.

HaCaT (NM)
HeLa cells (M)

Caspase-dependent apoptosis in
HeLa cell lines: decrease in
expression of pro-caspase 3.

SeNPs exhibited dose-dependent
cytotoxicity with only 3%
viability at 100 µg·mL−1.

[526]

Acinetobacter sp.
SW30

Nanospheres and
crystalline nanorods

of 78 nm.
Polygonal-shaped
SeNPs of 79 nm.

0–100 µg·mL−1 MTT assay

4T1 (M)
MCF-7 (M)

NIH/3T3 (NM)
HEK293 (NM)

Antiproliferative activity. [527]
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Table 4. Cont.

Biological
System/Green

Method

Shape and
Size (nm) Concentration/Dosage Assay/Pathway Cell Line * Key Outcomes Ref.

Bacillus
sp. MSh-1

Spherical;
80–220 nm

10, 20, 50 and
100 µg·mL−1

MTT assay and
gelatin zymography HT-1080 (NM)

SeNP dose of 100 µg·mL−1

decreases the viability of the
cell line to 50%, whereas a

lower dose (10 µg·mL−1) shows
a low level of cytotoxicity with
a viability of more than 80%.

[528]

Asteriscus graveolens
extract Spherical; 20 nm 25–125 mg·mL–1 ‡ for 24 h

MTT assay, flow
cytometry analysis,

measurement of ROS
(conversion of
DCFH-DA to

DCFH); measure-
ment of MMP and
lipid peroxidation

HepG2 (M)

Cell viability (IC50): 51.8% at
3.98 µg·mL−1. SeNPs inhibit

the growth of HepG2 cells
mainly by induction of

apoptosis. They also
significantly and rapidly
increase the ROS level.

[285]

Moringa oleifera
extract

Spherical; 23–35 nm
Polygonal; 25–45 nm N/A MTT assay

CaCo-2 (M)
HepG2 (M)
MCF-7 (M)

IC50: 50.3% at 392.57 µg·mL−1 [156]

Penicillium
corylophilum

Spherical;
29.1–48.9 nm

1000, 500, 250, 125, 62.5
and 31.25 ppm
incubated in 5%

CO2 at 37 ◦C for 24 h

MTT assay WI-38 (NM)
CaCo-2 (M)

IC50: 171.8 ppm (Wi 38) and
104.3 ppm (CaCo-2) [502]

Hawthorn fruit
extract 113 nm 0, 5, 10 and

20 µg·mL−1 for 24 h

MTT assay; flow
cytometric analysis;

ROS detection;
MMP measurement;
Western blot assay

HepG2 (M) IC50: 19.22 ± 5.3 µg·mL−1 [529]

L. casei 393 Spherical; 50–80 nm 4, 8, and 16 µg·mL−1

for 12 h

RT-PCR; mRNA
expression levels of

Bax, caspase 3,
p53 and bcl-2.

HepG2 (M)
NCM460 (NM)

Endocytosis of SeNPs induces
cell death by reducing the

viability of HepG2, increasing
mRNA levels of caspase 3, Bax,

and p53, and
reducing mRNA expression

of bcl-2.

[497]

Carica papaya latex Spherical; 70 nm
5, 10, 15, 20, 25, 30, 35, 40,

45, and 50 µg·mL−1

for 48 h
MTT assay HBL100 (NM)

MDA-MB-231 (M)

IC50 (HBL100): 50 µg·mL−1

IC50 (MDA-MB-231):
34 µg·mL−1

[530]

Spermacoce hispida
aqueous leaf extract

(Sh-SeNPs)
+

S-allyl glutathione
conjugation

(SAG-Sh-SeNPs)

Sh-SeNPs:
aggregation

SAG-Sh-SeNPs:
spherical; 50 nm

HepG2: 1.88, 3.75,
7.50, 15.00 and

30.00 µg·mL−1 for 24 h
Vero cells:

3.7–60.0 µg·mL−1 for 48 h

MTT assay;
determination of
intracellular ROS
production and
MMP; cell cycle
analysis by flow
cytometry; DNA

fragmentation
assay; apoptosis
determination by

acridine or-
ange/ethidium

bromide staining

HepG2 (M)
Vero cells (NM)

IC50 (Sh-SeNPs): 30.0 µg·mL−1

IC50 (SAG-Sh-SeNPs):
18.7 µg·mL−1

SAG-Sh-SeNPs induce cell cycle
arrest at sub-G1 phase and

further lead to apoptosis. The
NPs increase ROS levels,

disrupt MMP, initiate DNA
fragmentation and decrease the

endogenous levels of
antioxidants, such as GSH,

superoxide dismutase, catalase
and GSH peroxidase.

[531]

Undaria pinnatifida
polysaccharides

Spherical; 44–92 nm
(average of 59 nm) N/A

MTT assay; flow
cytometry analysis;
Annexin-V-FLUOS

staining assay;
measurement of

ROS levels;
MMP evaluation

A375 (M)
CNE2 (M)

Hep G2 (M)
MCF-7 (M)

IC50 values ranging from 3.0 to
14.1 µM. Apoptosis with the

involvement of oxidative stress
and mitochondrial dysfunction.

[532]

Ceropegia bulbosa
tuber’s aqueous

extracts
Spherical; 55.9 nm

0, 5, 10.0, 15.0, 20.0, 25.0,
30.0, 35.0, 40.0, 45.0, 50.0

µg·mL−1
MTT assay MDA-MB-231 (M)

HBL-100 (M)

IC50 (MDA-MB-231): 34
µg·mL−1 for 48 h.

IC50 (HBL-100): more than 50
µg·mL−1 for 48 h.

[506]

Diospyros montana
leaf extract 4–16 nm 50, 150, 250, 350

µg·mL−1 MTT assay MCF-7 (M) IC50: 80.83 µg·mL−1, SeNPs
enhance the cytotoxicity. [490]

Chitosan decoration Spherical; 50 nm 10, 50,
100 µM WST-1 assay HepG2 (M)

SeNPs decrease the cell viability
to 76.63, 63.31 and 56.34% and
inhibit the growth of HepG2

cells in a time- and
dose-dependent manner.

[489]
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Table 4. Cont.

Biological
System/Green

Method

Shape and
Size (nm) Concentration/Dosage Assay/Pathway Cell Line * Key Outcomes Ref.

Ephedra aphylla
extract

Spherical and
tetragonal;

13.95–26.26 nm
N/A MTT assay

HepG-2 (M)
MCF-7 (M)

HCT-116 (M)
HeLa (M)
PC3 (M)

HEp2 (M)

IC50 (HePG-2): 7.56 ±
0.60 µg·mL−1

IC50 (MCF-7): 15.65 ±
1.40 µg·mL−1

IC50 (HCT-116): 10.02 ±
0.90 µg·mL−1

IC50 (HeLa): 9.23 ±
0.80 µg·mL−1

IC50 (PC3): 18.63 ±
1.50 µg·mL−1

IC50 (HEp2): 12.10 ±
1.20 µg·mL−1

[491]

Lentinan (LNT,
denatured
β-glucan)

Spherical; 28 nm N/A MTT assay HeLa (M)

IC50 of three complexes
Se/s-LNT-1, Se/s-LNT-2,

Se/s-LNT-3 were estimated to
be 85, 37, and 19 µM. SeNPs

with small, uniform size greatly
enhanced the antitumor activity

and bioavailability.

[533]

Quercetin and gallic
acid

Bimetallic Ag-Se
NPs of 30–35 nm
and capped by
flavonoids and

phenolics.

50, 100, 250 and 500
µg·mL−1 MTT assay DL (M)

The viability of DL cells was
20% at 50 µg·mL−1 of

Ag-SeNPs, while at 100
µg·mL−1, it was reduced to
15%. The Ag-SeNPs showed
strong anticancer activity at a

lower concentration.

[495]

Cationic pullulan
(CP)

Spherical and
microflowers; 50

nm
N/A

MTT assay;
Annexin-V-FITC
and propidium

iodide (PI) staining

L929 (M)
KB (M)

IC50: 0.060 µM. The early- and
late-stage apoptotic rates of KB
cells treated with doxorubicin
only reached 0.52% and 4.64%,
respectively, and the highest

induction of 55.8% was arrested
in the necrosis rate.

[534]

Walnut peptides Spherical; 89.22 nm 200 µL·mL−1

MTT assay; POM,
flow cytometry;

MMP assay; nuclear
morphology

analysis by Hoechst
33258; measurement
of ROS production;

DNA fragmentation
assay; caspase
activity assay;

Western blot assay

HL-7702 (L02) (M)
MCF-7 (M)

SGC-7901 (M)
A549 (M)
PC3 (M)

HeLa (M)

MCF-7 cells were the most
sensitive to SeNPs. The

apoptosis-inducing activity was
proved by the accumulation of

S-phase cell arrest, nuclear
condensation, and

DNA breakage.
The intrinsic signal pathway
was through the activation of

FADD and caspases 3, 8, and 9,
in combination with the MMP
depletion and ROS generation.

[535]

* Cell lines: 4T1: murine mammary carcinoma cell line; A375: human melanoma cell line; A549: human lung
carcinoma cells; CaCo-2: human colorectal adenocarcinoma; CNE-2: human nasopharyngeal carcinoma cell
line; DL: Dalton’s lymphoma (mice); EAC: Ehrlich ascites carcinoma (mice); HaCaT: normal human epidermal
keratinocyte cell line; HBL100: human epithelial breast cell line (non-malignant); HCT-116: human colorectal
carcinoma cell line; HDF: primary human dermal fibroblasts (non-malignant); HEK293: human embryonic kidney
cell line (non-malignant); HeLa: human cervical carcinoma cell lines; HEp2: human epithelial carcinoma cell line;
Hep-G2: human hepatic carcinoma cell line; HL-60: human leukemia cells; HL-7702 (L02): human liver cell line
(non-malignant); HT-1080: human fibrosarcoma cell line; IMR-90: normal lung fibroblast cells (non-malignant);
KB: human cervical carcinoma cell line; L292: fibroblast cell line (mice, non-malignant); LNCaP-FGC: human
prostate epithelial carcinoma cell line; MCF-7: human breast adenocarcinoma cells; MDA-MB-231: human breast
adenocarcinoma cell line; NCM460: human colon mucosal epithelial cell line (non-malignant); NIH/3T3: murine
embryonic fibroblasts (non-malignant); PC3: human prostate adenocarcinoma cell line; PC-3: human prostate ade-
nocarcinoma cell line; SGC-7901: human gastric cancer cell line, Vero cell lines (monkey, kidney, non-malignant);
WI-38: human embryonic lung cell line (non-malignant); M: malignant; NM: non-malignant. Abbreviations: CC50:
Cytotoxicity concentration; DCFH: 2′,7′-Dichlorodihydrofluorescein; DCFH-DA: 2′,7′–dichlorodihydrofluorescin
diacetate; DMSO: Dimethylsulfoxide; DNA: Deoxyribonucleic acid; FADD: Fas associated via death domain;
FITC: Fluorescein isothiocyanate; IC50: Half maximal inhibitory concentration; IRF: Interferon regulatory factor;
MLKL: Mixed lineage kinase domain such as pseudokinase; MMP: Matrix metalloproteinases; mRNA: Messenger
ribonucleic acid; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; POM: Polarized optical mi-
croscopy; RIP: Receptor interacting serine/threonine kinase; ROS: Reactive oxygen species; RT-(q)PCR: Real-time
(quantitative) polymerase chain reaction; TNF: Tumor necrosis factor; WST-1: 4-[3-(4-Iodophenyl)-2-(4-nitro-
phenyl)-2H-5-tetrazolio]-1,3-benzene sulfonate; XTT: sodium 3′-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis
(4-methoxy6-nitro) benzene sulfonic acid hydrate. ‡ We think the concentration is in µg·mL−1.
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For instance, biogenic SeNPs are better anticancer, nontoxic, and biocompatible opera-
tors than selenite and selenate compounds [50]. Moreover, B. licheniformis-derived SeNPs
emerge as the safest form of selenium supplementation with potent necroptosis activity
against LNCaP-FGC cancer cells, without affecting red blood cell integrity [524]. Similar re-
sults were obtained against the PC3 prostate adenocarcinoma cell line (Figure 10) [295]. Strep-
tomyces bikiniensis-derived SeNPs demonstrate excellent in vitro anticancer effect against
Hep-G2 and MCF-7 malignant cells through a hypothetical mechanism consisting of the
increased mobilization of endogenous copper (possibly chromatin-bound copper) of cancer
cells and the subsequent pro-oxidant action [521]. Another proposed anticancer mechanism
of biogenic SeNPs fabricated using Idiomarina sp. PR58-8 is based on the activation of
apoptotic pathways by an increased expression of pro-caspase 3 [526]. This is corroborated
by the expression of poly(ADP-ribose) polymerase (PARP), and the cleavage of PARP since
the activated form of caspase 3 catalyzes the cleavage of pro-PARP, consistent with the role
of caspases, a family of intracellular proteases essential in the initiation and execution of
apoptosis or programmed cell death through proteolytic cleavage [536]. A similar study
reports that biosynthesized SeNPs in combination with X-rays are involved in caspase 3
activation and downstream targets that inhibit the proliferation of lung cancer cells with
high cytotoxic effect [523].
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Nanomaterials 2023, 13, 424 36 of 70

Biogenic SeNPs exert their anticancer activity in a dose-dependent manner [491,525,537]
and seem to be less cytotoxic to non-malignant cells when compared to their analogs obtained
via chemical routes [522], while their surface functionalization has no impact on their anticancer
activity nor on the induction of cell cycle arrest [531]. Besides the cytotoxicity pathways
discussed above, Se-induced cytotoxicity against malignant cells might also be the result of
ROS generation, as in the case of injection of biogenic SeNPs into the abdominal cavity of mice
following their inoculation with highly malignant H22 hepatocarcinoma cells [294]. This is
corroborated by another study where biogenic spherical SeNPs, synthesized using Asteriscus
graveolens leaf extract, induce ROS overproduction and mitochondrial membrane potential
(MMP) disruption, thus evidencing their high antitumor activity against HepG2 cells through
the activation of apoptosis pathways (Figure 11) [285]. Via another mechanism, biogenic SeNPs,
produced using hawthorn fruit extract, trigger increased apoptosis rates in HepG2 cells by
up-regulating caspase 9 and down-regulating Bcl-2 [529].

Overall, nanostructured Se compounds have significant potential in the fight against
cancer due to their chemopreventive activity, antioxidant/pro-oxidant activity as mod-
ulators of ROS suppression/production, capacity to modulate inflammatory processes,
apoptosis, capacity to inhibit cancer metastasis, selective targeting of tumors over healthy
adjacent tissue, and, last but not least, capacity to inhibit multidrug efflux pumps and
thereby counteract tumor resistance to established chemotherapeutic agents and inhibit
cancer metastasis. These emerging insights concerning Se-based small molecules formu-
lated as NPs and quantum dots open the way towards new anticancer therapeutics, or for
adjuvants designed to overcome drug resistance associated with current chemotherapeutic
protocols used routinely in clinical oncology [538].

7.5. Protective Role of Selenium Nanoparticles against Drug-Induced Toxicity

Notwithstanding the widespread application of chemotherapeutic drugs in clinical
tumor treatment, serious toxicity, dose-dependent side effects, and non-specific targeting
restrict their therapeutic efficacy [539]. Thus, SeNPs, alone or in formulation, have been con-
sidered as a potent agent preventing adverse chemotherapy due to their high bioavailability
and low toxicity [90]. For example, SeNPs induce a significant tumor cell apoptosis and an
impressive enhancement of the therapeutic effect of irinotecan by a selective modulation of
Nrf2-ARE pathway in tumor and healthy tissues [444]. Another report demonstrates that
SeNPs, at daily doses of 1 mg per kg body weight, efficiently alleviate bone toxicity caused
by the intake of anastrozole—a breast cancer drug—therefore preventing the occurrence of
osteoporosis in ovariectomized female SD rats [540]. This study also highlights a process
of ossification and mineralization in the femurs of SeNP-treated groups, which probably
can be explained by the NP antioxidant and protective action. In addition, biogenic SeNPs
protect against adverse effects of antibiotics. For instance, SeNPs, produced using the
bacterium Pantoea agglomerans, exhibit a protective role in immunological and oxidative
stress generated by enrofloxacin (EFX), a broad-spectrum antibiotic, in broiler chickens at a
dose of 0.6 mg kg−1 of feed [541]. Furthermore, SeNPs display protective effects against
gentamicin-induced nephro- and hemo-toxicity in female Swiss albino mice [542], and
hexavalent chromium-induced thyroid damage in male rats [103].

Cisplatin (CIS) is a commonly used alkylating agent to treat testicular, ovarian, head,
and neck cancers, among others [543]. Despite its wide clinical applications, CIS trig-
gers many side effects, including the obstruction of some cellular processes, e.g., DNA
replication and transcription by inducing DNA adducts and establishing DNA cross-
links [544]. Several articles provide insight on the protective effects of SeNPs against CIS
toxicity [385,545,546]. For example, SeNPs possess a strong antioxidant potential to prevent
CIS-induced gonadotoxicity [544]. Moreover, SeNPs surface-functionalized by 6-hydroxy-
2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) (Se@Trolox) block cisplatin-induced
ROS accumulation [547]. In addition, SeNPs decorated with amantadine (Se@AM), remark-
ably, prevent caspase 3 activation and decrease ROS levels to inhibit the ability of the H1N1
influenza virus to infect host cells, thereby overcoming the emergence of drug-resistant
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viruses [319]. Furthermore, SeNPs display protective effects in the progression of diabetic
nephropathy (DN) by increasing the levels of heat shock protein (HSP-70) [548]. Lastly,
SeNPs increase the number of neutrophils and prolong their survival duration in healthy
sheep, as evidenced through thiobarbituric acid reactive substances (TBARS) assay [549].
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Biogenic SeNPs, synthesized using Terminalia arjuna leaf extract, show protective and
antigenotoxic effects against arsenite (As3+)-induced genetic damage in isolated human
lymphocytes [102]. Selenium has been recognized as an effective chemo-protectant against
the toxicity of cadmium, exposure to which produces high ROS levels, regarded as Cd-
induced neurotoxicity and nephrotoxicity [550]. For example, SeNPs, sodium selenite, and
yeast-Se diets display different protective proficiency in Cd-induced testicular damage by
improving the expression and synthesis of selenoproteins via the regulation of numerous
related transcription factors [551]. Another study ascribes the chemoprotective effects of
SeNPs against neuro- and nephro-toxicity of subchronic exposure to CdCl2, mainly, to the
inhibition of lipid peroxidation and regulation of genes encoding numerous detoxifying
and antioxidant enzymes [550].

T. harzianum-derived SeNPs exhibit high protective effects in infected maize and pear
with Fusarium and Alternaria as the main parasites, suggesting that these NPs may be
applicable as bifunctional nanomaterials for biocontrol of phytopathogens and mycotoxins
in agriculture and food safety [512]. Furthermore, biologically synthesized SeNPs using
the terrestrial actinomycete S. griseobrunneus, at 64 µg·mL−1, can eliminate, under UV
irradiation, 94% of diclofenac through hydroxylation, oxidation, and decarboxylation [228].
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7.6. Anti-Inflammatory Activity

Biogenic SeNPs, synthesized using Trachyspermum ammi, exhibit anti-rheumatic and
immunomodulatory properties in arthritic Balb/c mice, as a SeNP treatment reduces paw
edema along with decreased lymphocytic cellular infiltration in liver, kidney, and spleen
specimens, as well as improved redox state of inflamed synovium [552]. Moreover, SeNPs,
dispersed in phytochemical P-coumaric acid, exert an anti-inflammatory activity by modu-
lating catalase, GPX1, and COX-2 gene expression in a rheumatoid arthritis rat model [553].
In addition, biogenic SeNPs, synthesized using L. casei, possess strong antioxidant and
anti-inflammatory activity to effectively protect human colon epithelial cells against H2O2-
induced injury [498]. SeNPs are a promising anticonvulsant agent due to their potent
antioxidant, anti-inflammatory, and neuromodulatory activities against pentylenetetrazole
(PTZ)-mediated epileptic seizures in mice hippocampus [554]. Importantly, SeNPs are
more effective than sodium selenite in terms of antioxidant and anti-inflammatory activity
against induced eimeriosis in the jejunum of mice; therefore, they could be applied for
immunoregulation purposes [555]. The potential anti-inflammatory activity of biogenic
SeNPs may be ascribed to their down-regulation of pro-inflammatory genes and mediators
(e.g., TNF-α, PGE2, TBAR and NOx) and/or to their further antioxidant activity [556].
Additionally, SeNPs ameliorate the health state of rats with streptozotocin-instigated brain
oxidative-inflammatory stress and neurobehavioral alterations by regulating the molec-
ular markers of oxidative stress and tissue damage: Nrf2, caspase 3, and parvalbumin
proteins [557].

Macrophages play a vital role in chronic inflammatory diseases (CIDs), and thus
regulating their activity is crucial in detecting and reducing chronic inflammation [558].
SeNPs, decorated with Ulva lactuca polysaccharides, display anti-inflammatory effects,
and relieve the symptoms of acute colitis through the inhibition of the hyper-activation
of NF-κB in colon tissues and macrophages [559]. Biogenic SeNPs lower the amounts of
H2O2 produced by the pro-inflammatory-activated macrophages in addition to selectively
targeting, imaging, and killing pro-inflammatory-activated ones under photodynamic
treatment [560]. Further, SeNPs, stabilized by sulfated Ganoderma lucidum polysaccharides,
inhibit the inflammation caused by over-activated macrophages in Raw 264.7 cells in a
dose-dependent manner [561].

7.7. Antidiabetic Activity

Diabetes mellitus (DM) is defined as a group of metabolic disorders characterized
by the decrease in insulin secretion by pancreatic islet cells leading to high blood glucose
levels (hyperglycemia) [562]. Diabetes is classified into two major types: type 1 diabetes
mellitus, or insulin-dependent diabetes, and type 2, or non-insulin dependent diabetes.
Type 1 diabetes mellitus causes a deficiency of insulin due to autoimmune or genetic
disorders, while type 2 diabetes (T2D) generates an insulin resistance or reduced insulin
sensitivity as a result of inappropriate diet or lack of physical activity [563]. Advances
in nanotechnology, molecular and biomedical imaging tools, and drug delivery systems
are offering new opportunities for early diagnosis and monitoring disease progression in
patients with type 1 or type 2 diabetes combined with diminished insulin secretion [562].

Several articles have thoroughly explored the association between selenium concen-
tration and diabetes [564–569]. Patients with DM are often affected by oxidative stress,
requiring more antioxidant species to reduce the oxidative and inflammatory response [570].
Since selenium is known to possess excellent antioxidant and anti-inflammatory effects
against DM [571,572], several studies have investigated the pivotal therapeutic role of
SeNPs in alleviating most diabetic complications and insulin resistance [53,140,446,573].
Owing to their antidiabetic potency, SeNPs can increment insulin secretion by preserving
the pancreatic β cell integrity, repressing oxidative stress, inducing glucose depletion, and
inhibiting pancreatic inflammation [574]. For instance, biogenic SeNPs, fabricated using
Hibiscus sabdariffa (roselle plant) leaf extract, significantly decreased the oxidative stress
indicators of testicular tissue in streptozotocin (STZ)-induced diabetic rats, such as nitric ox-
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ide and lipid peroxidation [168]. These findings indicate that these nanocrystals hold great
promise in attenuating oxidative damage induced by diabetes. Similar research reveals
that the administration of SeNPs prepared with Catathelasma ventricosum polysaccharides
(CVPS-SeNPs), remarkably, ameliorate body weight, blood sugar level, antioxidant enzyme
activities, and lipid levels in STZ-induced diabetic mice, highlighting, thus, their dramatic
antidiabetic activity [140]. Although a synergistic effect of CVPS-SeNPs and vitamin E
regarding this antidiabetic activity is suggested, the underlying mechanism is not yet
clearly understood.

CTS-SeNPs conjugated with a novel peptide, consisting of a recombinant pituitary
adenylate cyclase-activating polypeptide (PACAP)-derived peptide DBAYL capable of
specifically activating the vasoactive intestinal peptide receptor 2, also known as the VPAC2
receptor, that influences glucose-dependent insulin secretion, enhances insulin sensitivity,
hyperglycemia, and lipid profiles, thus demonstrating the potential of this assembly to
become a long-acting anti-T2D therapeutic [573]. Moreover, chitosan-decorated SeNPs
(CTS-SeNPs) are used to treat T2D by prolonging the in vivo half-life of the therapeutic
peptide BAY 55-9837 and slowing its renal clearance rate, proving that BAY 55-9837-loaded
CTS-SeNPs possess a desirable sustained-release profile and high stability that could
enhance the half-life of low-molecular-weight therapeutics by increasing their apparent
molecular size [445]. In combination with metformin (MF), CTS-SeNPs are also effective
in the treatment of T2D by mitigating the diabetic complications in a better way than a
monotherapeutic approach, and considerably restrict the T2D-induced sperm abnormalities,
such as reduced sperm motility, diminished levels of sexual hormones, testicular oxidative
damage, and steroidogenesis-related genes dysregulation [575]. Other studies detail the
antidiabetic effect of CTS-SeNPs as a monotherapy or as part of a combined therapy
with drugs able to swiftly decrease blood glucose and insulin levels [576], in addition to
nanohybrid systems to treat diabetic wound infection at mild stage [577].

7.8. Diagnostic Applications

Nanotechnology has led to the development of various NP formulations for diagnostic
applications, thereby revolutionizing treatment strategies of relevant diseases, whose
outcomes depend on early and accurate detection, such as cancer [25,336,426,578,579],
diabetes [580–582], gastrointestinal disorders [583–585], infectious diseases [586–589], and
neurodegenerative disorders [590–592]. Imaging and point-of-care technologies are two
specific fields that could benefit from the utilization of NPs [593,594]. In the case of imaging
(vide infra), NPs appear positioned to play a key role in the future of medical diagnostics
due to their many advantages over the conventional contrast agents, including high affinity
binding, specific molecular targeting abilities, controlled biological clearance pathways,
and prolonged residence time, thereby providing a longer time for imaging with even
multimodal and stimuli-responsive attributes [595–597]. However, nanodiagnostics remain
useful in very limited clinical situations due to complex demands on pharmacokinetic
activity and clearance [595]. The application of SeNPs is of particular interest as they
have high photoconductivity, piezoelectricity, thermoelectricity, and spectral sensitivity
properties [210,219,598]. For instance, optical and photoluminescence properties of SeNPs
can be exploited in the fabrication of nanosensors and imaging markers, eliminating the
requirement for additional fluorescent tags, such as proteins or dyes [219].

7.8.1. Detection, Biosensing and Diagnostics

Before addressing the specific place of nanoscale Se in detection and biosensing, a
brief outline of this emerging area is in order. Nanobiosensors have witnessed tremendous
developments resulting in innovative and sophisticated devices, due to the ever-increasing
demand to efficiently and reliably sense a great variety of molecules at low concentrations
with high specificity and selectivity [464,599–604]. Compared to bulk materials, nano-
materials possess large surface-to-volume ratios, which enable them to provide a greater
surface to anchor biomolecules of interest [605–607]. In addition to this feature exploited in
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achieving a high-density immobilization of bioreceptors, nanobiosensors benefit from the
unique NP properties to enhance biological signaling and transduction mechanisms since
these nanostructures catalyze the bioreactions, mediate the electron transfer, amplify the
mass change, and refine the refractive index changes [599,608,609].

Conventional procedures to immobilize enzymes include physical adsorption, affinity
labeling, covalent cross-linking, and entrapment [610–615]. However, these methodologies
are often multistep procedures and present different shortcomings such as non-specific
adsorption, leakage, and/or partial denaturation of immobilized biomolecules [616,617].
Aiming to tackle these challenges, approaches based on nanostructured platforms offer ex-
ceptional benefits in enzyme immobilization including high binding capacity, high catalytic
activity, long operational and storage stability, high specific surface area for volume-efficient
catalysis, low protein unfolding, and minimal mass transport limitations [618–620]. Nano-
immobilized enzymes can be tailored into diverse sizes and shapes without employing
toxic reagents [621].

In the above-described beneficial context, biogenic NPs, including those based on
Se, offer significant advantages over their analogs synthesized by conventional methods,
such as a better stability of up to several months that leads to simple, rapid, nontoxic,
cost-effective, and handy sensing strategies [42,622–625]. Indeed, different proteins and
biomolecules present in the reaction medium bind to the surface on the NPs, preventing
their aggregation or flocculation, and conferring to them long-term stability [626–628].
Furthermore, green-chemistry techniques can potentially improve biosensing applications,
such as transducers or electroactive labels, especially in NP-based electrochemical detection
systems [629,630]. Thus, the emerging greener biosensors can be relevant for point-of-care
handling due to their biocompatibility [631].

Hydrogen peroxide (H2O2) has received particular attention as an important analyte
for human metabolism because any imbalance between its generation and consumption can
damage lysosomal membranes and DNA or induce apoptosis [632–634]. Therefore, reliable,
accurate, and rapid sensing techniques for cellular peroxide detection are of paramount
importance [635]. For instance, biogenic Se nanorods (SeNRs), fabricated using citric acid
and flavonoids from lemon juice, serve as an H2O2 spectrometric sensor with interfering
ions and a visual color change technique from reddish to faint pink [636]. This study also
demonstrates a morphology change by chemical surface leaching from nano-rod to nano-
oval, proving the selectivity of Se nanomaterials to preferentially detect peroxide over other
cellular cationic ions based on surface plasmon resonance. Moreover, spherical monoclinic
SeNPs, synthesized using B. subtilis, exhibit high electrocatalytic activity in detecting H2O2
with a detection limit of 8 × 10−8 M, and show good adhesive ability and biocompatibility
towards its substrates such as heme-containing proteins/enzymes [637]. Furthermore,
colloidally stable SeNPs, produced using B. pumilus cell-free extract, enable the design of a
low cost, sensitive, and reproducible H2O2 biosensor [638]. In addition, biogenic SeNPs,
fabricated using the bacterial isolate P. aeruginosa, are used to design a biosensor for the
visual assessment of the relative toxicity of a variety of chemicals, involving the inhibition of
the bioreduction process of SeO3

2− in NP-treated bacterial culture supernatant, as a toxicity
end-point [639]. This novel Se-bioassay could be easily applied to prescreen a plethora of
environmental toxicants including nanostructures prior to intensive toxicity investigations.
This adds up to the improved oxidase-like activity of CTS-SeNPs that provides a low-cost
colorimetric method for Hg2+ detection with a detection limit of 0.12 µM, broadening, thus,
the application of biogenic SeNPs in chemical sensor systems [640]. Lastly, Zhao et al.
performed a green and controlled synthesis of SeNPs through a self-assembled method
on molecular imprinting sites of zeolite-chitosan-TiO2 microspheres by coupling chitosan
biosorption and TiO2 photocatalysis [641]. These NPs were successfully employed for
dot-blot immunoassays with multiple native antigens for the prompt serodiagnosis of
human lung cancer.
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7.8.2. Cellular Imaging

SeNPs have become one of the most prospective and potential tools for cancer diagno-
sis and therapy. For example, Korany et al. fabricated SeNPs capped with glutathione as a
novel radio-platform for tumor imaging by studying the radiochemical yield of radioactive
technetium-99m (99mTc) in intravenous and intratumoral routes [346]. Sun et al. showed
that luminescent Ru(II)-thiol SeNPs possess high tumor-targeted fluorescence imaging in
HepG2 and HUVEC malignant cells while displaying improved antitumor efficacy and
decreased systemic toxicity [642]. These functional SeNPs exhibit a well-defined, time-
dependent increase in fluorescence intensity from 115 ± 17 a.u. after 0.5 h to 1171 ± 127 a.u.
after 4 h. Huang et al. used SeNPs to build a smart drug-delivery nanoplatform to achieve
simultaneous diagnosis, real-time monitoring, and therapy of cancer [643]. In this platform,
epidermal growth factor receptor (EGFR) is used as the targeting molecule, gadolinium
chelate as the magnetic resonance imaging contrast agent, polyamidoamine (PAMAM)
and 3,3′-dithiobis (sulfosuccinimidyl propionate) as the response agents of intratumoral
glutathione, 5-fluorouracil (5Fu) and cetuximab as drug payloads, and the pH as the release
stimulus for the combined diagnosis and treatment of nasopharyngeal carcinoma (NPC)
using SeNPs.

Vitamin C is a notable antioxidant human vitamin widely employed as a coating in
NPs to prevent aggregation and achieve enhanced size and shape control and stabilization.
Vitamin C-stabilized SeNPs (Vit C-SeNPs), labeled with 99mTc for further in vivo studies on
normal and solid tumors induced in mice, exhibit an enhanced antioxidant activity leading
to improved uptake and retention by tumor cells [34]. Moreover, functional SeNPs are
used to develop a siRNA-delivery system for vascular endothelial growth factor (VEGF),
a known signaling molecule involved in cancer [644]. This design comprises two nanos-
tructures, SeNPs@siRNA and G2/PAH-Cit/SeNPs@siRNA; the latter is a pH-sensitive
delivery system able to improve siRNA loading. Importantly, the utilization of pH-sensitive
functional SeNPs results in no lesions in major target organs, thereby offering a novel, safe,
and promising cancer treatment. Furthermore, photodynamic SeNPs, modified with photo-
sensitive and macrophage-targeting bilayers, control activated macrophages and quench
the intracellular H2O2 and NO that are associated with chronic inflammation diseases [560].
The first layer of the photosensitive system consists of, principally, a conjugate of a pho-
tosensitizer (rose bengal, RB) and a thiolated chitosan (chitosan-glutathione), while the
second layer is made by conjugating hyaluronic acid with folic acid using an ethylenedi-
amine linker. In addition, the intense and long-lasting intrinsic fluorescence of individual
SeNPs in the visible to near infrared range enables their application for real-time tracking
and imaging in cells, without the need of any chemical tags or dyes [645]. Further, biogenic
SeNPs, produced using a Se-tolerant strain of S. maltophilia, exhibit a higher ability to emit
light (photoluminescence) than organic fluorophores, thus constituting potential markers
for bioimaging and fluorescence lifetime imaging microscopy (FLIM) [219].

8. Translational Nanomedicine: Recent Progress, Emerging Challenges, and Future
Prospects for Biogenic Selenium Nanoparticles

Nanotechnology has triggered tremendous developments that benefit different fields
of science, especially biomedicine [646–650]. To improve human health, scientific discov-
eries, which start at “the bench” as a result of fundamental research, must be translated
into practical applications by progressing to the clinical stage, named “bedside” [651]. The
use of nanotechnology in molecular medicine offers a plethora of advantages, such as
local and ultrafast strategies at the nanometer length scale (i.e., diffusion, intermixing,
and sensor response), controlled and intensified physical and chemical processes, direct
access to biomarkers, and real time studies [652]. Successfully translating nanomedicine
agents from pre-clinical proof-of-concept to demonstrated therapeutic value in the clinic
remains challenging since it is of paramount importance to develop more precise and better
translatable nanodevices towards a patient-focused and disease-specific targeting from the
outset [357,653]. Hence, nanosystems must grow substantially in safety and sophistication
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before focused smart nanomedicine can become a reality in which a single platform per-
forms seamless processes ranging from ultrasensitive diagnosis to pinpoint therapy [654].
To enhance nanomedicine translation and performance, targeted therapies should employ
a specific decision-making framework: correct tissue/exposure, correct target/efficacy,
correct safety, correct patient, and correct commercial potential [655]. Moreover, translation
strategies usually require innovation in the laboratory that must be supported by the pillars
of evidence-based medicine for predictable regulatory outcomes.

Extensive research on engineered nanomaterials has led to the design of numerous
nano-based formulations, i.e., nanomedicines, for theranostic applications with one of the
significant benefits lying in the ability to formulate a drug without using dose-limiting toxic
excipients present in many current marketed formulations, often enhancing tolerability and
containing more active molecules to be administered to patients [655,656]. To date, SeNPs
have demonstrated great preclinical applications in diagnosis and gene and drug delivery
in cancer therapy owing, particularly, to their selective and effective accumulation in tumors
through the enhanced permeability and retention (EPR) effect [119,657]. Nevertheless, there
is a lack of research about the benefits of SeNPs in clinical settings, although they constitute
a good candidate for advanced-stage clinical research due to their low toxicity and excellent
biocompatibility [61,67].

The development of safer SeNPs with enhanced therapeutic efficacy in clinical settings
requires a better understanding of the toxicity, possible side effects, and interaction with
the biological environment. Before envisaging their application in humans, it is important
to test their biosafety, degradation rate, long-term metabolic activity, pharmacokinetics
and pharmacodynamics, and interaction with cells, organoids, etc. [658]. Nanomaterials
usually interact with biomolecules in the physiological milieu, such as plasma proteins,
which results in corona formation [656]. This corona can alter the NM stability, targeting
ability, bio-identity, cellular uptake, dissolution properties, and change their biodistribution
and in vivo toxicity [24,342,393,659,660]. Therefore, the nano–bio interface of SeNPs needs
further assessments in terms of biomedical safety following rigorous methodologies, such
as ADME-Tox as pointed out earlier.

The design and delivery of therapeutics to the brain has been an ongoing challenge in
the treatment of brain tumors, especially due to the blood–brain barrier (BBB) that impedes
reaching a proper local drug concentration [661–664]. Nanotechnology advances, such as
the adequate surface functionalization, have improved the NP penetration across the BBB
by receptor-mediated transcytosis [391,665]. For example, SeNPs coated with B6 peptide
and functionalized with sialic acid (B6-SA-SeNPs) inhibit Aβ aggregation and pass the
BBB, becoming a potential therapeutic nanovehicle to treat Alzheimer’s disease [666].

Although biogenic NPs are inexpensive, clean, non-toxic, and facile to produce via
scalable processes, there has not yet been much work on their application in the fields of
diagnostics and therapeutics, notably at the clinical stage [667–671]. The promising clinical
applications of plant-synthesized metallic NPs have fueled a swelling interest switching
from routine antioxidant and antimicrobial studies on trivial microbial lines to antibiotic-
resistant pathogens and antitumor studies [672]. Furthermore, biogenic colloidal metallic
NPs, especially those made of silver and gold, are found to be multifunctional theranostic
agents [673]. However, more research should be directed towards developing facile and
greener techniques for the large-scale fabrication of SeNPs using biological resources,
as they hold potential applications in different aspects of nanomedicine, especially in
combating cancer (Table 4). Indeed, selenium has been drawing great interest in the
following clinical aspects: radioprotection of normal tissues, radiosensitizing in malignant
tumors, antiedematous activity, prognostic impact, and effects on primary and secondary
cancer prevention [674].

In a comprehensive review on strategies to enhance the success of clinical translation
of cancer nanomedicines, van der Meel et al. listed four important factors: (i) stratification
and selection of patients likely to respond to nanomedicine-based therapy, (ii) rational drug
choice rather than opportunistic preferences, (iii) combination and multimodal therapies
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for synergistic effects, and (iv) empowering immunotherapy [653]. Hence, the engineering
strategy of NPs, including those made of selenium, needs to reach important goals to
boost the desirable effects and achieve transformation from formulation-driven research to
disease-driven rational development. These goals include highly stable association of drug
and carrier in systemic circulation, enhanced drug delivery to cancer cells, and controlled
and prolonged release of active drugs in affected tissues [675]. Furthermore, the benefits of
nanostructure-based diagnostics lie in their potentially higher sensitivity and selectivity
compared to classical methods, thus enabling the earlier diagnosis of diseases resulting in
enhanced resolution and sensitivity that will, ultimately, lead to novel, fast, convenient,
and inexpensive screening, diagnostic, and therapeutic tools in medicine [652,676,677].

Another challenge to overcome for the “next-generation nanomedicines” resides in the
regulatory classification, because the lack of knowledge regarding biosafety and long-term
effects of nanomaterials leads to a regulatory uncertainty and deficient standards and
protocols for scale-up manufacturing and safe clinical uses [678,679]. This twilight zone
in the nanomedicine market affects the effective collaborative work between stakeholders
from industrial/academic R&D, professionals in the health system, regulatory bodies, and
society (Figure 12). Moreover, classical methods of drug development and (non-)clinical
assessments are expensive and encompass some uncertainties, delaying the advent of
innovative approaches and the elucidation of safety concerns. For instance, the wrong
information or the lack of full characterization of current nanoparticle-drug products leads
to failures in follow-on versions, making further evaluation and manufacturing processes
tedious before even envisaging any regulatory approval and marketing [679,680].

Advances in nanoscience and nanobiotechnology, combined with the call for person-
alized medicine based on nanotheranostics, have given rise to a cutting-edge, exciting,
and fast-growing research area, where nanoscale Se formulations, including biogenic
ones, are occupying a significant niche. It is necessary to precisely utilize engineered,
nanotechnology-enabled solutions to face the challenges of the current drug delivery, imag-
ing, therapeutics, and diagnostics procedures. Therefore, nanomedicine can lead to the next
generation of biomedical breakthroughs by accelerating the translation of therapies with
greater efficacy and reduced side effects into personalized/precision nanomedicine since
innovative and clinically effective nanotherapeutics hold the potential to revolutionize
nanoscale healthcare and pharmaceutical products and applications [681].
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9. Conclusions and Perspectives

Selenium is a significant trace element which, in its elemental form or in the form
of its various chemical species and Se-containing biomolecules, offers unique biological
properties for the proper function of the body. Due to its high bioavailability, low toxicity,
and affordability, nano-sized selenium has proven to be a proper nutritional supplement
and an efficient theranostic agent. Based on these properties and the great versatility in
their control thanks to green, biogenic routes for their synthesis and modification, SeNPs
are emerging as a research hotspot in nanomedicine with the potential for promising
benefits in clinical settings. Since biogenic SeNPs are free from toxic/hazardous compo-
nents, they are well suited in biomedicine and therapeutics. Current findings highlight
the outstanding physicochemical and biological properties of biogenic SeNPs that pave
the way for extensive biomedical contributions, including pharmaceutical, therapeutic,
imaging, and diagnostic applications. As such, SeNPs have been shown to combat cancer,
pathogenic infections, diabetes, inflammatory syndromes, cardiovascular and neurological
diseases, and drug-induced cyto- and geno-toxicity, among others. In addition to their
antimicrobial and antiparasitic applications, SeNPs possess a potential utility in curbing
viral outbreaks including the ongoing Covid-19 pandemic. Importantly, SeNPs constitute
valuable nanoplatforms with multiple desired features for clinical translation. Thanks to
the possibility of precise calibration and rational modification of their physicochemical
properties, novel SeNPs are particularly attractive as therapeutic agents easily transportable
in the organism and offering stability in the physiological microenvironment of target tis-
sues. However, researchers are still in need of investigation into possible side effects due
to the relatively narrow therapeutic window of Se compounds. Se nanoparticle-based
diagnosis and therapy are in their early stages and preparing to progress into clinical trials.
At this stage, many of these compounds could offer new mechanistic insights and pave
the way towards the rational design of novel therapeutics following extensive analyses
of structure–activity relationships (SARs). Thus, it is still necessary to accomplish further
preclinical safety and selectivity studies before these new eco-friendly SeNPs are safely
translated into clinical practice.
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478. Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [CrossRef]
479. Azeez, L.; Lateef, A.; Adebisi, S.A. Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances

antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Appl. Nanosci. 2017, 7, 59–66. [CrossRef]
480. Flieger, J.; Flieger, W.; Baj, J.; Maciejewski, R. Antioxidants: Classification, natural sources, activity/capacity measurements, and

usefulness for the synthesis of nanoparticles. Materials 2021, 14, 4135. [CrossRef]
481. Guillin, O.M.; Vindry, C.; Ohlmann, T.; Chavatte, L. Interplay between selenium, selenoproteins and HIV-1 replication in human

CD4 T-lymphocytes. Int. J. Mol. Sci. 2022, 23, 1394. [CrossRef]
482. Chen, W.; Cheng, H.; Xia, W. Construction of Polygonatum sibiricum polysaccharide functionalized selenium nanoparticles for the

enhancement of stability and antioxidant activity. Antioxidants 2022, 11, 240. [CrossRef] [PubMed]

http://doi.org/10.1515/ntrev-2022-0034
http://doi.org/10.1016/j.impact.2021.100297
http://doi.org/10.3390/biom12010031
http://doi.org/10.21931/RB/2016.01.04.7
http://doi.org/10.3390/molecules25143246
http://doi.org/10.1016/j.enzmictec.2016.06.008
http://doi.org/10.1016/j.coche.2011.12.002
http://doi.org/10.1021/sc300118u
http://doi.org/10.1016/j.colsurfb.2018.05.045
http://www.ncbi.nlm.nih.gov/pubmed/29860217
http://doi.org/10.2147/IJN.S127683
http://www.ncbi.nlm.nih.gov/pubmed/28442906
http://doi.org/10.1021/acsomega.9b00304
http://www.ncbi.nlm.nih.gov/pubmed/31459969
http://doi.org/10.2147/IJN.S163399
http://doi.org/10.3390/ijms19124100
http://doi.org/10.1016/j.jddst.2018.05.023
http://doi.org/10.1016/j.ijsu.2014.03.017
http://doi.org/10.1007/s40097-021-00435-4
http://doi.org/10.4172/2157-7439.1000194
http://doi.org/10.3390/bioengineering7040129
http://www.ncbi.nlm.nih.gov/pubmed/33081248
http://doi.org/10.1021/ab500171a
http://www.ncbi.nlm.nih.gov/pubmed/33445243
http://doi.org/10.1016/j.aquaculture.2020.734942
http://doi.org/10.1007/s12011-020-02416-0
http://doi.org/10.1016/j.ejmech.2020.112891
http://doi.org/10.1007/s00204-020-02689-3
http://doi.org/10.1007/s13204-017-0546-2
http://doi.org/10.3390/ma14154135
http://doi.org/10.3390/ijms23031394
http://doi.org/10.3390/antiox11020240
http://www.ncbi.nlm.nih.gov/pubmed/35204123


Nanomaterials 2023, 13, 424 63 of 70

483. Chauhan, S.S.; Ponnampalam, E.N.; Celi, P.; Hopkins, D.L.; Leury, B.J.; Dunshea, F.R. High dietary vitamin E and selenium
improves feed intake and weight gain of finisher lambs and maintains redox homeostasis under hot conditions. Small Rumin. Res.
2016, 137, 17–23. [CrossRef]

484. Adeyemi, J.A.; Ogunwole, G.A.; Bamidele, O.S.; Adedire, C.O. Effects of pre-treatment with waterborne selenium on redox
homeostasis and humoral innate immune parameters in African catfish, Clarias gariepinus (Burchell, 1822), experimentally
challenged with Serratia marcescens. Fish Physiol. Biochem. 2022, 48, 409–418. [CrossRef] [PubMed]

485. Li, Y.; Fan, M.; Qiu, Q.; Wang, Y.; Shen, X.; Zhao, K. Nano-selenium and Macleaya cordata extracts improved immune function and
reduced oxidative damage of Sows and IUGR piglets after heat stress of Sows in late gestation. Biol. Trace Elem. Res. 2022, 200,
5081–5090. [CrossRef]

486. Ma, Y.; Shi, Y.; Wang, Y.; Wu, Q.; Cheng, B.; Li, Y.; Wang, Z.; Chai, X.; Ren, A.; Li, G. Role of endoplasmic reticulum stress in
nano-selenium alleviating prehierarchical follicular atresia induced by mercury in laying hens. Biol. Trace Elem. Res. 2022, 200,
5205–5217. [CrossRef]

487. Mellinas, C.; Jiménez, A.; Garrigós, M.D.C. Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles
using Theobroma cacao L. bean shell extract. Molecules 2019, 24, 4048. [CrossRef]

488. Wang, Y.-Y.; Qiu, W.-Y.; Sun, L.; Ding, Z.-C.; Yan, J.-K. Preparation, characterization, and antioxidant capacities of selenium
nanoparticles stabilized using polysaccharide–protein complexes from Corbicula fluminea. Food Biosci. 2018, 26, 177–184. [CrossRef]

489. Chen, W.; Yue, L.; Jiang, Q.; Xia, W. Effect of chitosan with different molecular weight on the stability, antioxidant and anticancer
activities of well-dispersed selenium nanoparticles. IET Nanobiotechnol. 2019, 13, 30–35. [CrossRef]

490. Kokila, K.; Elavarasan, N.; Sujatha, V. Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their
biological applications. New J. Chem. 2017, 41, 7481–7490. [CrossRef]

491. El-Zayat, M.M.; Eraqi, M.M.; Alrefai, H.; El-Khateeb, A.Y.; Ibrahim, M.A.; Aljohani, H.M.; Aljohani, M.M.; Elshaer, M.M. The
antimicrobial, antioxidant, and anticancer activity of greenly synthesized selenium and zinc composite nanoparticles using
Ephedra aphylla extract. Biomolecules 2021, 11, 470. [CrossRef]

492. Liu, X.; Mao, Y.; Huang, S.; Li, W.; Zhang, W.; An, J.; Jin, Y.; Guan, J.; Wu, L.; Zhou, P. Selenium nanoparticles derived from Proteus
mirabilis YC801 alleviate oxidative stress and inflammatory response to promote nerve repair in rats with spinal cord injury.
Regen. Biomater. 2022, 9, rbac042. [CrossRef] [PubMed]

493. Akçay, F.A.; Avcı, A. Effects of process conditions and yeast extract on the synthesis of selenium nanoparticles by a novel
indigenous isolate Bacillus sp. EKT1 and characterization of nanoparticles. Arch. Microbiol. 2020, 202, 2233–2243. [CrossRef]

494. Qi, Y.; Yi, P.; He, T.; Song, X.; Liu, Y.; Li, Q.; Zheng, J.; Song, R.; Liu, C.; Zhang, Z.; et al. Quercetin-loaded selenium nanoparticles
inhibit amyloid-β aggregation and exhibit antioxidant activity. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125058.
[CrossRef]

495. Mittal, A.K.; Kumar, S.; Banerjee, U.C. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparti-
cles and their antitumor and antimicrobial potential. J. Colloid Interface Sci. 2014, 431, 194–199. [CrossRef]

496. Qiao, L.; Dou, X.; Yan, S.; Zhang, B.; Xu, C. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate
diquat-induced intestinal barrier dysfunction in C57BL/6 mice through their antioxidant activity. Food Funct. 2020, 11, 3020–3031.
[CrossRef] [PubMed]

497. Xu, C.; Guo, Y.; Qiao, L.; Ma, L.; Cheng, Y.; Roman, A. Biogenic synthesis of novel functionalized selenium nanoparticles by
Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli
K88. Front. Microbiol. 2018, 9, 1129. [CrossRef] [PubMed]

498. Xu, C.; Qiao, L.; Guo, Y.; Ma, L.; Cheng, Y. Preparation, characteristics and antioxidant activity of polysaccharides and proteins-
capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohydr. Polym. 2018, 195, 576–585. [CrossRef]

499. Xu, C.; Qiao, L.; Ma, L.; Yan, S.; Guo, Y.; Dou, X.; Zhang, B.; Roman, A. Biosynthesis of polysaccharides-capped selenium nanoparticles
using Lactococcus lactis NZ9000 and their antioxidant and anti-inflammatory activities. Front. Microbiol. 2019, 10, 1632. [CrossRef]
[PubMed]

500. Zhang, W.; Zhang, J.; Ding, D.; Zhang, L.; Muehlmann, L.A.; Deng, S.-E.; Wang, X.; Li, W.; Zhang, W. Synthesis and antioxidant
properties of Lycium barbarum polysaccharides capped selenium nanoparticles using tea extract. Artif. Cells Nanomed. Biotechnol.
2018, 46, 1463–1470. [CrossRef]

501. Menon, S.; Shrudhi Devi, K.S.; Agarwal, H.; Shanmugam, V.K. Efficacy of biogenic selenium nanoparticles from an extract of
ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid Interface Sci. Commun. 2019, 29, 1–8. [CrossRef]

502. Salem, S.S.; Fouda, M.M.G.; Fouda, A.; Awad, M.A.; Al-Olayan, E.M.; Allam, A.A.; Shaheen, T.I. Antibacterial, cytotoxicity and
larvicidal activity of green synthesized selenium nanoparticles using Penicillium corylophilum. J. Clust. Sci. 2020, 32, 351–361.
[CrossRef]

503. Lin, W.; Zhang, J.; Xu, J.-F.; Pi, J. The Advancing of selenium nanoparticles against infectious diseases. Front. Pharmacol. 2021, 12,
682284. [CrossRef] [PubMed]

504. Souza, L.M.D.S.; Dibo, M.; Sarmiento, J.J.P.; Seabra, A.B.; Medeiros, L.P.; Lourenço, I.M.; Kobayashi, R.K.T.; Nakazato, G.
Biosynthesis of selenium nanoparticles using combinations of plant extracts and their antibacterial activity. Curr. Res. Green
Sustain. Chem. 2022, 5, 100303. [CrossRef]

http://doi.org/10.1016/j.smallrumres.2016.02.011
http://doi.org/10.1007/s10695-022-01059-3
http://www.ncbi.nlm.nih.gov/pubmed/35184248
http://doi.org/10.1007/s12011-022-03103-y
http://doi.org/10.1007/s12011-021-03084-4
http://doi.org/10.3390/molecules24224048
http://doi.org/10.1016/j.fbio.2018.10.014
http://doi.org/10.1049/iet-nbt.2018.5052
http://doi.org/10.1039/C7NJ01124E
http://doi.org/10.3390/biom11030470
http://doi.org/10.1093/rb/rbac042
http://www.ncbi.nlm.nih.gov/pubmed/35855111
http://doi.org/10.1007/s00203-020-01942-8
http://doi.org/10.1016/j.colsurfa.2020.125058
http://doi.org/10.1016/j.jcis.2014.06.030
http://doi.org/10.1039/D0FO00132E
http://www.ncbi.nlm.nih.gov/pubmed/32243488
http://doi.org/10.3389/fmicb.2018.01129
http://www.ncbi.nlm.nih.gov/pubmed/29967593
http://doi.org/10.1016/j.carbpol.2018.04.110
http://doi.org/10.3389/fmicb.2019.01632
http://www.ncbi.nlm.nih.gov/pubmed/31402902
http://doi.org/10.1080/21691401.2017.1373657
http://doi.org/10.1016/j.colcom.2018.12.004
http://doi.org/10.1007/s10876-020-01794-8
http://doi.org/10.3389/fphar.2021.682284
http://www.ncbi.nlm.nih.gov/pubmed/34393776
http://doi.org/10.1016/j.crgsc.2022.100303


Nanomaterials 2023, 13, 424 64 of 70

505. Zonaro, E.; Lampis, S.; Turner, R.J.; Qazi, S.J.S.; Vallini, G. Biogenic selenium and tellurium nanoparticles synthesized by
environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front. Microbiol. 2015, 6, 584.
[CrossRef] [PubMed]

506. Cittrarasu, V.; Kaliannan, D.; Dharman, K.; Maluventhen, V.; Easwaran, M.; Liu, W.C.; Balasubramanian, B.; Arumugam, M.
Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial,
mosquitocidal and photocatalytic activities. Sci. Rep. 2021, 11, 1032. [CrossRef] [PubMed]

507. Sonkusre, P.; Cameotra, S.S. Biogenic selenium nanoparticles inhibit Staphylococcus aureus adherence on different surfaces. Colloids
Surf. B Biointerfaces 2015, 136, 1051–1057. [CrossRef]

508. Chudobova, D.; Cihalova, K.; Dostalova, S.; Ruttkay-Nedecky, B.; Rodrigo, M.A.; Tmejova, K.; Kopel, P.; Nejdl, L.; Kudr, J.;
Gumulec, J.; et al. Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth
reveals potential for selenium particles to prevent infection. FEMS Microbiol. Lett. 2014, 351, 195–201. [CrossRef]

509. Alghuthaymi, M.A.; Diab, A.M.; Elzahy, A.F.; Mazrou, K.E.; Tayel, A.A.; Moussa, S.H. Green biosynthesized selenium nanoparti-
cles by cinnamon extract and their antimicrobial activity and application as edible coatings with nano-chitosan. J. Food Qual. 2021,
2021, 6670709. [CrossRef]

510. Menon, S.; Agarwal, H.; Rajeshkumar, S.; Rosy, P.J.; Shanmugam, V.K. Investigating the antimicrobial activities of the biosynthe-
sized selenium nanoparticles and its statistical analysis. Bionanoscience 2020, 10, 122–135. [CrossRef]

511. Kheradmand, E.; Rafii, F.; Yazdi, M.H.; Sepahi, A.A.; Shahverdi, A.R.; Oveisi, M.R. The antimicrobial effects of selenium
nanoparticle-enriched probiotics and their fermented broth against Candida albicans. DARU J. Pharm. Sci. 2014, 22, 48. [CrossRef]

512. Hu, D.; Yu, S.; Yu, D.; Liu, N.; Tang, Y.; Fan, Y.; Wang, C.; Wu, A. Biogenic Trichoderma harzianum-derived selenium nanoparticles
with control functionalities originating from diverse recognition metabolites against phytopathogens and mycotoxins. Food
Control 2019, 106, 106748. [CrossRef]

513. Shakibaie, M.; Ezzatkhah, F.; Gabal, E.; Badparva, E.; Jahanbakhsh, S.; Mahmoudvand, H. Prophylactic effects of biogenic
selenium nanoparticles on acute toxoplasmosis: An in vivo study. Ann. Med. Surg. 2020, 54, 85–88. [CrossRef] [PubMed]

514. Beheshti, N.; Soflaei, S.; Shakibaie, M.; Yazdi, M.H.; Ghaffarifar, F.; Dalimi, A.; Shahverdi, A.R. Efficacy of biogenic selenium
nanoparticles against Leishmania major: In vitro and in vivo studies. J. Trace Elem. Med. Biol. 2013, 27, 203–207. [CrossRef]
[PubMed]

515. Vahidi, H.; Barabadi, H.; Saravanan, M. Emerging selenium nanoparticles to combat cancer: A systematic review. J. Clust. Sci.
2019, 31, 301–309. [CrossRef]

516. Xu, X.; Ho, W.; Zhang, X.; Bertrand, N.; Farokhzad, O. Cancer nanomedicine: From targeted delivery to combination therapy.
Trends Mol. Med. 2015, 21, 223–232. [CrossRef]

517. Nie, S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine 2010, 5, 523–528. [CrossRef]
518. Barabadi, H.; Ovais, M.; Shinwari, Z.K.; Saravanan, M. Anti-cancer green bionanomaterials: Present status and future prospects.

Green Chem. Lett. Rev. 2017, 10, 285–314. [CrossRef]
519. Song, X.; Chen, Y.; Zhao, G.; Sun, H.; Che, H.; Leng, X. Effect of molecular weight of chitosan and its oligosaccharides on

antitumor activities of chitosan-selenium nanoparticles. Carbohydr. Polym. 2020, 231, 115689. [CrossRef]
520. Ullah, A.; Mu, J.; Wang, F.; Chan, M.W.H.; Yin, X.; Liao, Y.; Mirani, Z.A.; Sebt-E-Hassan, S.; Aslam, S.; Naveed, M.; et al. Biogenic

selenium nanoparticles and their anticancer effects pertaining to probiotic bacteria—A Review. Antioxidants 2022, 11, 1916.
[CrossRef]

521. Sholkamy, E.; Ahmad, M.; Yaser, M.M.; Ali, A.; Mehanni, M. Anticancer activity of biostabilized selenium nanorods synthesized
by Streptomyces bikiniensis strain Ess_amA-1. Int. J. Nanomed. 2015, 10, 3389–3401. [CrossRef]

522. Anu, K.; Singaravelu, G.; Murugan, K.; Benelli, G. Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum):
Biophysical characterization and cytotoxicity on Vero cells. J. Clust. Sci. 2016, 28, 551–563. [CrossRef]

523. Cruz, L.Y.; Wang, D.; Liu, J. Biosynthesis of selenium nanoparticles, characterization and X-ray induced radiotherapy for the
treatment of lung cancer with interstitial lung disease. J. Photochem. Photobiol. B Biol. 2019, 191, 123–127. [CrossRef] [PubMed]

524. Sonkusre, P. Specificity of biogenic selenium nanoparticles for prostate cancer therapy with reduced risk of toxicity: An in vitro
and in vivo study. Front. Oncol. 2020, 9, 1541. [CrossRef] [PubMed]

525. Ramamurthy, C.; Sampath, K.S.; Arunkumar, P.; Kumar, M.S.; Sujatha, V.; Premkumar, K.; Thirunavukkarasu, C. Green synthesis
and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst.
Eng. 2013, 36, 1131–1139. [CrossRef]

526. Srivastava, P.; Kowshik, M. Anti-neoplastic selenium nanoparticles from Idiomarina sp. PR58-8. Enzym. Microb. Technol. 2016, 95,
192–200. [CrossRef]

527. A Wadhwani, S.; Gorain, M.; Banerjee, P.; Shedbalkar, U.U.; Singh, R.; Kundu, G.C.; A Chopade, B. Green synthesis of selenium
nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells. Int. J.
Nanomed. 2017, 12, 6841–6855. [CrossRef]

528. Shakibaie, M.; Khorramizadeh, M.; Faramarzi, M.A.; Sabzevari, O.; Shahverdi, A.R. Biosynthesis and recovery of selenium
nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol. Appl. Biochem. 2010, 56, 7–15. [CrossRef]

529. Cui, D.; Liang, T.; Sun, L.; Meng, L.; Yang, C.; Wang, L.; Liang, T.; Li, Q. Green synthesis of selenium nanoparticles with extract of
hawthorn fruit induced HepG2 cells apoptosis. Pharm. Biol. 2018, 56, 528–534. [CrossRef]

http://doi.org/10.3389/fmicb.2015.00584
http://www.ncbi.nlm.nih.gov/pubmed/26136728
http://doi.org/10.1038/s41598-020-80327-9
http://www.ncbi.nlm.nih.gov/pubmed/33441811
http://doi.org/10.1016/j.colsurfb.2015.10.052
http://doi.org/10.1111/1574-6968.12353
http://doi.org/10.1155/2021/6670709
http://doi.org/10.1007/s12668-019-00710-3
http://doi.org/10.1186/2008-2231-22-48
http://doi.org/10.1016/j.foodcont.2019.106748
http://doi.org/10.1016/j.amsu.2020.04.010
http://www.ncbi.nlm.nih.gov/pubmed/32405413
http://doi.org/10.1016/j.jtemb.2012.11.002
http://www.ncbi.nlm.nih.gov/pubmed/23219368
http://doi.org/10.1007/s10876-019-01671-z
http://doi.org/10.1016/j.molmed.2015.01.001
http://doi.org/10.2217/nnm.10.23
http://doi.org/10.1080/17518253.2017.1385856
http://doi.org/10.1016/j.carbpol.2019.115689
http://doi.org/10.3390/antiox11101916
http://doi.org/10.2147/IJN.S82707
http://doi.org/10.1007/s10876-016-1123-7
http://doi.org/10.1016/j.jphotobiol.2018.12.008
http://www.ncbi.nlm.nih.gov/pubmed/30616036
http://doi.org/10.3389/fonc.2019.01541
http://www.ncbi.nlm.nih.gov/pubmed/32010628
http://doi.org/10.1007/s00449-012-0867-1
http://doi.org/10.1016/j.enzmictec.2016.08.002
http://doi.org/10.2147/IJN.S139212
http://doi.org/10.1042/BA20100042
http://doi.org/10.1080/13880209.2018.1510974


Nanomaterials 2023, 13, 424 65 of 70

530. Rajasekar, S.; Kuppusamy, S. Eco-friendly formulation of selenium nanoparticles and its functional characterization against breast
cancer and normal cells. J. Clust. Sci. 2020, 32, 907–915. [CrossRef]

531. Krishnan, V.; Loganathan, C.; Thayumanavan, P. Green synthesized selenium nanoparticle as carrier and potent delivering agent
of s-allyl glutathione: Anticancer effect against hepatocarcinoma cell line (HepG2) through induction of cell cycle arrest and
apoptosis. J. Drug Deliv. Sci. Technol. 2019, 53, 101207. [CrossRef]

532. Chen, T.; Wong, Y.-S.; Zheng, W.; Bai, Y.; Huang, L. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide
solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf. B Biointerfaces 2008, 67, 26–31.
[CrossRef] [PubMed]

533. Jia, X.; Liu, Q.; Zou, S.; Xu, X.; Zhang, L. Construction of selenium nanoparticles/β-glucan composites for enhancement of the
antitumor activity. Carbohydr. Polym. 2015, 117, 434–442. [CrossRef] [PubMed]

534. Nonsuwan, P.; Puthong, S.; Palaga, T.; Muangsin, N. Novel organic/inorganic hybrid flower-like structure of selenium nanoparti-
cles stabilized by pullulan derivatives. Carbohydr. Polym. 2018, 184, 9–19. [CrossRef] [PubMed]

535. Ren, J.; Liao, W.; Zhang, R.; Dong, C.; Yu, Z. Novel walnut peptide–selenium hybrids with enhanced anticancer synergism: Facile
synthesis and mechanistic investigation of anticancer activity. Int. J. Nanomed. 2016, 11, 1305–1321. [CrossRef] [PubMed]

536. Fan, T.J.; Han, L.H.; Cong, R.S.; Liang, J. Caspase family proteases and apoptosis. Acta Biochim. Biophys. Sin. 2005, 37, 719–727.
[CrossRef]

537. Spyridopoulou, K.; Aindelis, G.; Pappa, A.; Chlichlia, K. Anticancer activity of biogenic selenium nanoparticles: Apoptotic and
immunogenic cell death markers in colon cancer cells. Cancers 2021, 13, 5335. [CrossRef] [PubMed]
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