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Abstract: Water pollution is one of the most important problems in the field of environmental
protection in the whole world, and organic pollution is a critical one for wastewater pollution
problems. How to solve the problem effectively has triggered a common concern in the area of
environmental protection nowadays. Around this problem, scientists have carried out a lot of
research; due to the advantages of high efficiency, a lack of secondary pollution, and low cost,
photocatalytic technology has attracted more and more attention. In the past, MnO2 was seldom
used in the field of water pollution treatment due to its easy agglomeration and low catalytic activity
at low temperatures. With the development of carbon materials, it was found that the composite
of carbon materials and MnO2 could overcome the above defects, and the composite had good
photocatalytic performance, and the research on the photocatalytic performance of MnO2-carbon
materials has gradually become a research hotspot in recent years. This review covers recent progress
on MnO2-carbon materials for photocatalytic water treatment. We focus on the preparation methods
of MnO2 and different kinds of carbon material composites and the application of composite materials
in the removal of phenolic compounds, antibiotics, organic dyes, and heavy metal ions in water.
Finally, we present our perspective on the challenges and future research directions of MnO2-carbon
materials in the field of environmental applications.
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1. Introduction

With the rapid development of modern industry and agriculture and the rapid
growth of population, agricultural, industrial and domestic water use has increased
tremendously [1,2]. Refractory toxic pollutants such as pesticides [3], antibiotics [4], textile
dyes [5], and heavy metals [6,7] are discharged into water bodies, posing a huge threat
to aquatic ecosystems and human health. Water pollution has become among the most
pressing issues in the whole world [8]. Hence, green, highly efficient, and low-cost wa-
ter treatment technologies are in urgent demand. Photocatalysis has been recognized as
an ideal tool to eliminate recalcitrant contaminants in aqueous environments owing to its
high efficiency, energy savings, low cost, environmental friendliness, lack of secondary
pollution, and other characteristics [9–11].

Photocatalytic materials are the core of photocatalytic technology [2,12–14]. In recent
years, semiconductors based on metal oxides are mostly used as photocatalysts for en-
vironmental remediation, such as MnO2 [15], TiO2 [16], ZnO [17], Fe2O3 [18], SnO2 [19],
etc. Photocatalytic reactions are initiated by absorbing light energy equal to or more than
the bandgap of semiconductor photocatalysts, so the bandgap is an important parameter
in defining the applicability of semiconductors in specific photocatalytic reactions [20,21].
Narrow bandgap semiconductors can improve the utilization of visible light, which is more
beneficial for water purification applications [22]. Therefore, compared to wide-bandgap
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semiconductor photocatalysts, narrow-bandgap manganese dioxide (MnO2) can degrade
organic pollutants under visible light irradiation [23,24]. In addition, MnO2 is the most
promising environment-friendly photocatalytic candidate material due to its low cost,
non-toxic properties, ease of synthesis, rich structures and morphologies, outstanding
adsorption, and oxidation capacity [25–27]. Cao and Steven [28] first validated its photo-
catalytic activity through the oxidation of 2-propanol in 1994. However, MnO2 has low
conductivity, the rate of charge transfer is slow, the photogenerated electron-hole pairs
are prone to be recombined, and its efficiency as a photocatalyst is often restricted [29,30].
Meanwhile, the photocatalytic efficiency of MnO2 is affected by its crystal form (α-, β-,
γ-, δ-, and λ-types), morphology and structure. These factors are directly related to the
preparation method, process, and parameters [31–35]. At present, a large number of studies
have found that α-MnO2 has good photocatalytic performance, and the catalytic efficiency
can be further improved after MnO2 and carbon are compounded [36–40]. MnO2 has good
compatibility with carbon materials, so many researchers combine MnO2 with carbon
materials to improve its photocatalytic efficiency [38,41–43].

Carbon-based materials are extensively used in water treatment as they are economi-
cal, abundant in nature, and environmentally friendly, and they show many advantages
due to their excellent characteristics [44]. Carbon materials have a well-known electron-
storage capacity, which can accept photon-excited electrons to promote charge separation
and inhibit electron-hole pair recombination [43,45]. As adsorbents, carbon materials
can offer a larger surface area and adsorb a large number of pollutants to the catalyst
surface [46]. At the same time, as dopants and sensitizers, carbon materials can improve
the solar absorbance range of MnO2 to improve photocatalytic activity [47]. There is
a good coupling effect between carbon materials and MnO2, so their composite has become
an important field to be explored. Diverse types of MnO2-carbon composites have been
investigated as photocatalysts to achieve better photocatalytic activity as well as more
stable cycling performance. Many researchers have indicated that combining MnO2 with
carbon-based materials can diminish the recombination of charge carriers and enhance its
photocatalytic performance [30,48–50].

Graphene [51], graphitic carbon nitride (g-C3N4) [52], carbon nanotubes (CNT) [53],
carbon quantum dots (CQDs) [54], carbon fibers (CFs) [55], and other carbon materials have
many unique properties like rich pore structure and active sites, high specific surface area,
good electrical conductivity, excellent electron transport and adsorption ability, which are
considered as the superior carriers or co-catalyst of semiconductor photocatalysts [56–59].

In recent years, multi-component composites based on MnO2 and carbon materials
have become a research hotspot in the application field of water treatment. There are
many articles on the synthesis and application research of MnO2-carbon materials, but
it is a big challenge to choose a suitable preparation process to make it more suitable for
specific applications. We studied the photocatalytic degradation of organic compounds
by MnO2-graphene. The photocatalytic efficiency of MnO2-graphene three-dimensional
(3D) composites prepared by thermal reduction was as high as 92%. The primary goal of
this review is to investigate the current application of MnO2-carbon materials for compre-
hensive adsorption and photocatalytic treatment of water. We summarize the preparation
methods of different types of carbon materials combined with MnO2, then analyze the
application development of MnO2-carbon composites in photocatalytic degradation of
various refractory organic or inorganic pollutants in water, last, we discuss the existing
problems and future prospects.

2. Preparation Methods of MnO2-Carbon Composites
2.1. Hydrothermal Method

The hydrothermal method with water as the reaction medium has become one of the
common methods to prepare MnO2-carbon composites because of its economic simplicity
and environmental protection [60–62]. Nanoparticles with different particle sizes, crystal
forms, and morphologies can be obtained by adjusting hydrothermal conditions with high
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reactivity, controllable conditions, and various synthesis types. In addition, the closed
environment with high temperature and high pressure can effectively enhance the close
contact between MnO2 and carbon materials, improve the transmission speed of electrons,
and improve the photocatalytic activity of the composite materials to some extent [63,64].
The hydrothermal method is widely used, which can prepare different dimensions and
types of MnO2-carbon composites [65–75].

For example, Chhabra et al. [43] prepared α-MnO2-RGO nanocomposite by a facile hy-
drothermal method with RGO reduced by chemical reduction (Figure 1a). In the nanocom-
posite, the one-dimensional (1D) rod-shaped MnO2 increases the flow of electrons in the
longitudinal direction and reduces the possibility of electron-hole pair bonding. On the
other hand, two-dimensional (2D) RGO nanosheets have a large surface area and pore
volume, which can prevent charge recombination by aiding in the quick transport of
the charges. With the introduction of RGO nanosheets, the surface area of the material
increased to 87.159 m2g−1, and the composite photocatalyst exhibited efficient adsorp-
tive photocatalytic performance. Wang et al. [76] prepared CNT-MnO2 composite film
by depositing MnO2 nanosheets on CNT film using the hydrothermal method. Under
different hydrothermal times, the coverage of MnO2 on CNTs films will change. The
optimized composite film can be folded into different sizes and shapes, exhibiting excellent
flexibility and stability. Doping metal or non-metal on carbon materials or MnO2 can in-
corporate the unique characteristics of different materials to improve performance [77–86].
Shan et al. [87] first prepared K and Na atom doped g-C3N4 via the thermal treatment
of thiourea and KBr/NaBr, respectively, and then added them into KMnO4 solution for
hydrothermal reaction to synthesize K/Na doped g-C3N4@MnO2 composite. The MnO2
nanosheets were vertically assembled on the surface of g-C3N4 with a stable structure
and shortened the diffusion path lengths for electrons. Metal atoms intercalated into the
g-C3N4 interlayers, which enhanced the conductivity, served as the charge transfer chan-
nel between adjacent layers to promote charge transfer and hinder the recombination of
photogenerated carriers.
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In addition to 2D composites, nano-sized MnO2 can be uniformly incorporated into
the porous structure of 3D carbon materials via the hydrothermal method, thus improv-
ing the photocatalytic activity of hybrid catalysts [93–97]. Nui et al. [98] synthesized
Graphene/nano α-MnO2 hybrid aerogel in an isopropanol-water system via hydrothermal-
thermal reduction. The needlelike α-MnO2 nanoparticles are covalently bonded with
graphene without damaging the integrity of the graphene structure and are doped in the
graphene aerogel uniformly. Due to the porous structure of the hybrid aerogel and the high
dispersibility of the MnO2 on graphene, the as-prepared composite exhibits good catalytic
activity. Wan et al. [88] prepared flower-like core-shell MnO2-coated carbon aerogels via the
hydrothermal method as a superior photocatalyst to remove organic dyes from an aqueous
solution (Figure 1b). Dong et al. [99] prepared 3D MnO2/N-doped graphene hybrid aerogel
by self-assembly. MnO2 nanosheets and nanotubes were first synthesized by a double aging
method and hydrothermal method, respectively, then N-doped graphene aerogels were
created via hydrothermal-freeze drying process using ethylenediamine as the reductant
and nitrogen source. The size and morphology of MnO2 play an important role in tailoring
the structures and properties of 3D graphene aerogels. The laminar structure of MnO2
nanosheets with the graphene conductive substrate is beneficial to enhancing the charge
transfer, shortening the diffusion pathway of pollutants, and affording more active sites.
However, excessive MnO2 nanosheets on graphene might aggregate and inactivate, which
adversely affects the overall catalytic activity.

In order to further improve the properties of MnO2-carbon materials, many researchers
also add green and economical polymers, oxides, or other carbon materials to the MnO2-
carbon materials to prepare ternary composites, and the hydrothermal method is the
most common preparation scheme [100–102]. For example, Iqbal et al. [103] prepared
PANI@CNT/MnO2 ternary composite with rough interwoven fibrous and porous struc-
ture by the combination of hydrothermal methodology and in situ oxidative polymer-
ization of aniline. The synergistic effect of the three enhances the specific surface area,
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thermal and electrical conductivity, and provides channels for the transport of charge
carriers, thus enhancing the performance of the material. Wang et al. [89] also utilized
the α-Fe2O3 core/shell configuration to modify g-C3N4, and prepared a dual Z-scheme
α-Fe2O3@MnO2/g-C3N4 ternary composite by two-step hydrothermal method (Figure 1c).
The Fe2O3@MnO2 core/shell promoter modulates the electronic structure through the
dual Z-scheme heterojunction, thus improving the separation efficiency of photo-generated
electron-hole pairs. Due to its narrow bandgap, the composite material has a broad ab-
sorption in the visible light region, low cost and excellent performance, which is more
conducive to practical application. Xu et al. [104] selected CC as the substrate for the
growth of MnO2, coated RGO on the surface of CC, and synthesized CC/RGO/MnO2
composites by dipping method and hydrothermal method. CC/RGO can provide a large
specific surface area as the skeleton, and the good conductivity of carbon materials can
accelerate electron transfer, the resulting composite shows good photoelectrochemical
activity. Li et al. [105] synthesized CNT/rGO@MnO2 particles through a hydrothermal
reaction and then obtained a sandwich-like film with a 3D multilevel porous conductive
structure via vacuum filtration and freeze-drying treatment. Nano-sized pores increase the
specific surface area and provide a large number of active sites. MnO2 grows in situ on the
carbon skeleton, and the two are tightly connected, which facilitates electron transportation
and enhances structural stability.

Solvothermal and microwave irradiation are improved methods of hydrothermal
synthesis [61]. Among them, the solvothermal method is based on the same principle
as the hydrothermal method. As water-sensitive compounds cannot be synthesized by
the hydrothermal method, water can be replaced with an organic solvent to carry out the
reaction [106–109]. For example, Asif et al. [90] synthesized an urchin-like morphology
Ni-doped MnO2/CNT nanocomposites by a one-step solvothermal reaction (Figure 1d). Ni
doping enhances the conductivity of MnO2 and increases the surface area and cycle stability
of the composite. Microwave irradiation heating reduces energy consumption compared to
hydrothermal reactions, effectively shortens the synthesis time of complexes, and improves
product homogeneity [110–112]. For example, Sivaraj et al. [110] reported a microwave-
assisted process to synthesize the hybrid CNTs-MnO2 nanocomposite. The dispersed
MnO2 nanospheres are uniformly attached to the CNTs' side walls, and a synergistic effect
increases the light absorption range, promotes charge separation, and enhances stability.

2.2. In Situ Redox Deposition

Although hydrothermal self-assembly is economical and environmentally friendly,
and widely used, it requires high temperature and pressure and a long reaction time, which
is not suitable for large-scale production and applications [113]. In situ redox deposition
is mild, simple, and suitable for the compounding of a wide range of metal oxides with
carbon materials, which is another important method for the preparation of MnO2-carbon
composites. It uses the carbon material as a substrate and involves the in situ deposition of
MnO2 nanostructures onto the surface of carbon materials through a redox reaction to form
a nanocomposite, using the carbon material as a substrate, where the MnO2 has uniformly
and tightly adhered to the surface of the carbon material [114–125].

For example, Qu et al. [91] adopted the modified Hummers method and prepared
a pristine GO/MnSO4 suspension, then the pristine suspension of GO/MnSO4 was in situ
transformed into GO/MnO2 composites in combination with KMnO4, and finally further
into RGO/MnO2 composites by means of glucose-reduction (Figure 1e). Singu et al. [126]
synthesized CNTs-MnO2 nanocomposites through the in situ reduction of KMnO4 using
MWCNTs as the reducing agent and supporting substrate. During the preparation process,
the loading of MnO2 can be adjusted by varying the amount of KMnO4, thereby optimizing
the performance of the composite material. Wang et al. [127] adsorbed Mn2+ on the surface
of g-C3N4 through the NH2 groups in g-C3N4 for the first time, underwent a redox reaction
with KMnO4, and synthesized a novel 2D MnO2/g-C3N4 heterojunction composite by in
situ deposition of δ-MnO2. The bandgaps of MnO2 and g-C3N4 synthesized have a wide
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visible light response and light absorption range, which are 1.56 eV and 2.69 eV, respectively.
At the same time, the matched band structures and the heterojunctions with solid (C-O)
bonding between them interface promoted the transfer/separation of photogenerated
charge carriers, enhanced the light-harvesting ability, thus the photocatalytic activity can
be greatly enhanced. Peng et al. [128] also synthesized N-doped CNT (NCNT) by chemical
vapor deposition, and deposited MnO2 onto the NCNT surface using in situ oxidation to
prepare MnO2/NCNT composites. The synergistic effect of MnO2 and NCNT obviously
improved interfacial electron transfer, which can replace noble metals for the catalytic
oxidation of organics.

In carbon materials, the existence of π-π interactions and van der Waals forces between
the graphene nanosheets make it easy to aggregate and stack during processing, resulting in
reduced surface areas and hidden active sites [129,130]. The quantitative loss of nanoscale
materials during the recycling process may influence the fate of adsorbed contaminants,
thus causing potential environmental risks [131]. The porous structure of composite films
and aerogels can prevent the aggregation of nanosheets and afford more active sites for
pollutant diffusion and oxidation. The structure is stable and easily recycled for reuse,
which is a superior support for MnO2 in the treatment of water, while in situ deposition
of MnO2 can also improve the mechanical and electron transport properties of carbon
materials [132–137]. For example, Lv et al. [92] used 3D CQDs/graphene composite
aerogels formed by the hydrothermal method as the reducing agent, which reacted with
KMnO4 to synthesize stable MnO2/CQDs/graphene composite aerogel (Figure 1f). The
3D network structure avoided the reunion of the graphene nanosheets and the MnO2
nanoparticles, and the CQDs served as a bridge for connecting MnO2 and graphene, which
effectively improved the conductivity and stability of the composite. Jyothibasu et al. [138]
prepared cellulose/f-CNT/MnO2 composite films via the direct redox deposition method to
uniformly grow MnO2 nanostructures on cellulose/functionalized CNT (f-CNT) conductive
substrates. The synthetic procedure is simple, inexpensive, environmentally friendly, and
can be synthesized in large-scale batches. The synthesized materials have unique porous
structures, large specific surface areas, and excellent conductivities.

2.3. Electrochemical Deposition

Electrochemical deposition is an effective strategy for the synthesis of nanoscale mate-
rials and functionalized composites [106] and has been widely used in synthesizing carbon
materials such as MnO2-modified carbon cloth and graphene [139–146]. Zhang et al. [141]
synthesized hierarchical MnO2 nanostructures on activated carbon cloth via a high-voltage
anodic electro-deposition process, and the activated carbon cloth substrate enhanced the
conductivity and hydrophilicity of the material. Zhu et al. [147] synthesized PANI@γ-
MnO2/CC ternary hybrid material via hydrothermal and in situ electrochemical poly-
merization (Figure 2a). The coating PANI layer with a 3D hierarchical structure provides
a high specific surface area (96.3389 m2g−1), which is higher than that PANI@γ-MnO2
(41.8632 m2g−1) and CC(21.1902 m2g−1) and accelerates the ion diffusion and electron
transfer. Li et al. [148] synthesized mesoporous MnO2 with high density pores on carbon
aerogels substrate by electrochemical deposition. Mesoporous materials can increase the
active sites and enhance the electric conductivity, which is more conducive to the transport
of electrons and ions. In photocatalytic applications, they can effectively prevent the recom-
bination of photogenerated electrons and holes to improve photocatalytic activity. At the
same time, the obtained MnO2/carbon aerogel composites are green, low-cost and good in
cycle stability, which have potential research and application value.
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CNT@NCT@MnO2 composites. (I) CNTs were sequentially coated with a thick SiO2 layer and carbon
layer; (II) the removal of the SiO2 layer; (III) the growth of ultrathin MnO2 nanoflowers on the carbon
layer. Figures reprinted with permission from ref. [150]. Copyright 2019; Elsevier Ltd. (d) Schematic
representation of the preparation of CQDs/MnO2 nanoflowers. Figures reprinted with permission
from ref. [151]. Copyright 2017; Electrochemical Society.

2.4. Co-Precipitating Method

The chemical co-precipitation method is a simple process, with low calcination tem-
peratures and good homogeneity of the prepared complexes, and is one of the com-
mon methods for the preparation of carbon composites at low temperatures [64,152–154].
Zeng et al. [155] synthesized 1D α-MnO2 nanowires and 2D GO nanowires to prepare
α-MnO2/GO nanohybrids by mechanical grinding and co-precipitating method. The
sub-micron GO sheets can occupy the interspace of the interconnected network of α-
MnO2 nanowires so that the two can be better combined. By comparing the materials
prepared by the two methods, it can be found that the co-precipitating method is more
conducive to the tight binding of MnO2 and GO and facilitates heat and electron transfer
between these two materials. However, mechanical grinding may destroy the layered
structure of GO and produce more defects, which is not conducive to photon absorption
and electron transfer. Liu et al. [149] first synthesized α-MnO2 nanofibres/carbon nan-
otubes hierarchically assembled microspheres (α-MnO2/CNT HMs) via a facile chemical
precipitation/spray-granulation combined methodology (Figure 2b). The α-MnO2 NFs
were homogeneously anchored on a highly conductive CNTs framework, forming a close-
packed network structure, which remarkably improved the electron-transfer capability.
The composite material has excellent stability and cycling durability, low cost, and wide
application prospects. Kumar et al. [156] prepared an Ag-doped MnO2-CNT nanocompos-
ite using a co-precipitation route. The spheroidal-shaped Ag nanoparticles covered the
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CNT surface, and its high surface area to volume ratio provides a large number of active
sites, showing excellent adsorption performance. Xia et al. [157] grew MnO2 nanosheets in
situ on the surface of exfoliated g-C3N4 nanosheets by a wet-chemical method, forming
a 2D/2D g-C3N4/MnO2 heterojunction. The photoinduced electrons in MnO2 can com-
bine with the holes in g-C3N4 to enhance the extraction and utilization of photo-generated
carriers and improve the degradation rate of pollutants.

2.5. Template Method

The template method is mostly used for the preparation of 3D composites [158,159].
Le et al. [160] used diatomite as a template for the massive production of 3D porous
graphene by the chemical vapor deposition method. After removing the template, the
3D graphene was N-doped by a hydrothermal reaction, and then the N-doped 3D porous
graphene@MnO2 hybrid structure was obtained by deposition of MnO2 nanosheets. The
MnO2 nanosheets with a brushy structure were uniformly deposited on the surface of
porous graphene, and the synergistic interactions between them enhanced the stability
of the composite. After removing the diatomite, the composite retained the 3D structure
and surface features of the diatomite template. Moreover, the abundant edges and defects
formed during the template removal process and defects caused by nitrogen doping
improve the conductivity and charge transfer rate of the composite. The MnO2 nanosheets
with a brushy structure were uniformly deposited on the surface of porous graphene,
and the synergistic interactions between them enhanced the stability of the composite.
Wang et al. [150] fabricated 3D CNT@NCNT@ MnO2 composites with unique tube-in-tube
nanostructures through the sacrificial template method (Figure 2c). The composite has
an N-doped 3D double-carbon layers hollow structure and attaches tightly with MnO2
nanoflowers grown on its surface, exhibiting large pores, high conductivity, large specific
surface areas, and fast diffusion of electrons. Shan et al. [161] also prepared C-doped
g-C3N4 (CCN) using polyporous melamine foam (MRF) as a template and then exploited
the synergistic advantages of 2D architectures, coupled CCN with MnO2 nanosheets by
a hydrothermal method to prepare efficient CCN@MnO2 composite. The doping of carbon
promoted electron transfer, and the MRF template can prevent the aggregation of sulfourea
crystals, thereby reducing the thickness of CCN nanosheets and increasing the specific
surface area (40.2 m2g−1).

2.6. Ultrasonic-Assisted and Sonochemical Methods

The Sonochemical-assisted uses sound energy to agitate the composite solution, caus-
ing it to undergo a physical or chemical transformation [162]. It can prevent material
stacking, enlarge the interlayer spacing of carbon materials such as graphene, facilitate
uniform loading of MnO2 and enhance the photocatalytic properties of the synthesized
semiconductors [64,106]. As a result, it is widely used to prepare various MnO2-carbon
nanocomposites [163–169]. Chai et al. [170] synthesized S,O co-doped graphite, carbonitride
quantum dots (S, O-CNQDs) by a solid-state reaction method, and in situ synthesized MnO2
nanosheets in S,O-CNQDs dispersion solution to prepare MnO2 -S,O-CNQDs nanocom-
posite with the ultrasonic-assisted. The as-prepared composite material has uniform size
and good dispersion, which is a promising nanomaterial. Xu et al. [151] synthesized the
CQDs/MnO2 nanoflowers through the sonochemical method (Figure 2d), which has a high
specific surface area (168.8 m2g−1) and excellent cycle stability. CQDs were uniformly dis-
tributed on the transparent petals of δ-MnO2, which improved the conductivity of MnO2
nanoflowers and provided a large number of functional groups and active sites.

2.7. Other Methods

Many other novel options are also used to prepare MnO2-carbon materials [171–173].
For example, Jia et al. [174] prepared CNTs/MnO2 composites by in situ synthesis of CNTs
on MnO2 nanosheets using the hydrothermal method and the chemical vapor deposition
method. The vertically aligned MnO2 nanosheets shortened the ion diffusion path, the
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in situ formed CNTs improved the electrical conductivity and structural stability, and the
hierarchical porous structure increased the specific surface area (20.4 m2g−1 to 38.2 m2g−1)
and active sites. Abdullah et al. [175] used polyacrylonitrile (PAN) as a carbon precursor to
prepare nanofibers (NFs) by an electrospinning process and incorporated MnO2 nanopar-
ticles into ACNFs to prepare composite activated carbon nanofibers (ACNFs/MnO2) by
carbonization and activation. The incorporation of MnO2 increased the specific surface
area (478.2 to 599.4 m2g−1), pore size (0.285 cm3g−1), and total pore volume (0.299 cm3g−1)
of the composite material. Wei et al. [176] prepared MnO2/3D graphene composites by
the reverse microemulsion method. In this reaction, the graphene substrate was used as
a sacrificial reductant to undergo a redox reaction with KMnO4 to grow MnO2 in situ on
3D graphene, and the MnO2 mass loading of the composite was controlled by changing the
ultrasonication time in the in situ growth process. Nanoscale MnO2 layers were uniformly
coated on the internal surface of 3D graphene, and the continuous 3D interpenetrating
microstructures prevented the restacking of graphene sheets. Zhu et al. [177] prepared
free-standing 3D graphene/MnO2 hybrids by depositing MnO2 nanosheets onto a 3D
graphene framework through a solution-phase assembly process. Unlike 1D MnO2, the
flower-like architecture of deposited MnO2 nanosheets have a larger specific surface area
and are uniformly anchored on a 3D graphene framework with strong adhesion, there
is a strong interaction between them, so the prepared hybrids showed good mechanical
properties. Pang et al. [178] proposed a simple room-temperature water bath method to
deposit crystalline MnO2 on CNTs to prepare CNT-MnO2 nanocomposites. This scheme
can control the phases and morphologies of the composite products by changing the pH of
the reaction solution. Wang et al. [179] assembled GO, MnOx, and polymer carbon nitride
(CN) into free-standing GO/MnOx/CN ternary composite film by employing the vacuum
filtration method. The prepared composite film has good stability, mechanical property,
and recyclability and is more suitable for the practical application of photocatalysis.

To sum up, MnO2-carbon composites can be prepared and modified in various ways,
and the finally obtained multifunctional materials have great application potential in water
treatment. Each preparation method has its own unique advantages, and the fabrica-
tion of specific nanocomposites can be improved by selecting the most suitable prepara-
tion method, which can be used to treat various types of sewage treatment to different
pollutants (Table 1).

Table 1. Summary of preparation methods, products, and morphological characteristics of synthesiz-
ing MnO2-carbon materials.

MnO2 Carbon Material Synthesis Method Composite Product Morphology Ref.

ultrafine
MnO2 nanowires CC hydrothermal MnO2@CC

Weedy 1D ultrafine MnO2
nanowire interconnection
network covered on the

surface of CC.

[74]

MnO2 g-C3N4
In situ

redox deposition MnO2/g-C3N4

flower-like MnO2
nanosheets deposited on

g-C3N4, resulting in
surface roughness.

[125]

MnO2
3D Graphene

Networks
Electrochemical

deposition 3D Graphene/MnO2

MnO2 nanoporous
structures were uniformly
coated on a 3D graphene

network skeleton.

[146]

α-MnO2 HMCNTs Co-precipitating MnO2/HMCNTs
MnO2 was deposited on the

surface of CNTs and
provided active sites.

[154]
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Table 1. Cont.

MnO2 Carbon Material Synthesis Method Composite Product Morphology Ref.

MnO2 g-C3N4 Sonochemical g-C3N4/MnO2

Different sizes of materials
were obtained by
ultrasound with

different amplitudes.

[169]

MnO2
Polyhedron
Precursors

Bulk-g-C3N4
nanosheets Calcination 3D/2D MnO2/g-C3N4

Nanocomposite
MnO2 was wrapped by the

g-C3N4 layers. [171]

MnO2 Nanorods Mn-modified
alkalinized g-C3N4

Impregnation

Z-scheme
MnO2/Mn-modified

alkalinized
g-C3N4 heterojunction

In the process of Mn
modifying alkalinized

g-C3N4, slender rod-shaped
MnO2 was formed.

[172]

layered MnOX GO hydrothermal GO/MnOX
composites nanosheets [75]

α-MnO2
nanorods MWCNTs direct pyrolysis MWCNTs/MnO2

nanocomposite

MnO2 nanorods are
uniformly attached to the

surface of MWCNTs.
[173]

3. Applications of Photocatalytic Technology in Water Treatment

With the growth of population and continuous development of industry and agricul-
ture, the problem of water pollution has become increasingly prominent [180–182]. Various
organic and inorganic pollutants have been detected in surface, ground, sewage, and
drinking waters [183,184]. Among them, the pollutants (phenols, antibiotics, organic dyes,
heavy metal, etc.) produced by agriculture [185], aquaculture [186,187], carbon aerogels,
textiles [188,189] and other industries are highly toxic and difficult to biodegrade [180]. The
pollution of water bodies will not only destroy the ecosystem but also seriously threaten
human health [190,191]. These stubborn compounds have become important contaminants
in water that need to be removed urgently. As common green materials, MnO2 and carbon
materials can use solar energy to degrade many types of pollutants, and the photocatalytic
process is economical and environmentally friendly [192]. Therefore, the combination
of the two has momentous research potential and application prospects in the field of
photocatalytic water treatment, and the photocatalytic degradation of various pollutants
by MnO2-carbon materials has also been widely studied [193].

3.1. Phenolic Wastewater

Phenolic compounds are typical aromatic organic compounds that exist in sewage
discharged from petroleum refineries, manufacturing of paints, pulp and paper manufac-
turing plants, and other industries [194–196]. At the same time, they are also a kind of
important organic raw materials in the field of agricultural production and are widely used
in the manufacture of pesticides, insecticides, and herbicides [197–199]. Their wide use in
industry and agriculture makes them a large number of residues in the environment and
a common organic pollutant in water, which have potential carcinogenicity, teratogenicity,
and mutagenicity, with wide source, great harm and refractory degradation [200–202].
Among them, phenol and its derivatives (such as bisphenol A, chlorophenol, nitrophenol,
etc.) are common phenolic pollutants in the water environment, which are highly toxic and
cause serious pollution even at low concentrations [194,203–206]. Compared with other
organic substances, they have a great impact on the environment.

Phenolic compounds usually have one or more hydroxyl groups attached to the aro-
matic ring [194]. In the photocatalytic process, hydroxyl radicals attack the cyclic carbon to
produce various oxidation intermediates (such as hydroquinone, catechol, p-benzoquinone,
etc.) [195]. These organic compounds are less harmful than the parent compounds and will
eventually be photomineralized to carbon dioxide (CO2), so as to achieve the purpose of
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degradation [207]. Table 2 summarizes the progress in the photocatalytic degradation of
phenolic compounds by various MnO2-carbon materials. For example, Mehta et al. [207]
prepared MnO2@CQDs nanocomposites with a bandgap of 1.3 eV by a one-step hydrother-
mal method, which was used to degrade phenol under visible light. The spherical CQDs
were deposited on the surface of MnO2 nanorods, and the nanocomposite had a high
specific surface area (95.3 m2g−1). The optimal operating parameters were obtained after
optimization under different reaction conditions, and after 50 min of visible light irradiation,
the degradation rate of phenol reached 90%. The degradation rate was basically unchanged
after three consecutive cycles, and the degradation rate can still reach 80% after five cycles,
which the stability is good. Xia et al. [157] synthesized g-C3N4/MnO2 heterostructured
photocatalyst via in situ growth of MnO2 nanosheets on the surface of exfoliated g-C3N4
nanosheets using a wet-chemical method. MnO2 nanosheets and the g-C3N4 layers are
closely combined, and the 2D layered structure can provide abundant active sites and
shorten the transport distance of photogenerated charge carriers. Under the irradiation
of xenon lamps, the ability of the composite material to degrade phenol is significantly
increased, and it has good durability. Preparing the photocatalyst of the MnO2-carbon
composites with low bandgap can make full use of solar energy and provide a sustainable
green approach for photocatalytic water treatment, and its application potential needs to
be further developed [208–212].

Table 2. Study on MnO2-carbon materials for photocatalytic degradation of phenolic compounds in
aqueous solution.

Photocatalyst Target Pollutant Light Source Photocatalyst
Amount

Initial
Concentration Activity Ref.

Titanium
dioxide-manganese

oxide/multi-walled CNT
(TiO2-MnO2/ MWCNT)

phenol

UV light
150 W

fluorescent
lamp

90 mg 300 mL
100 mg/L 40 min 100% [208]

CQDs decorated MnO2
nanorods

(MnO2@CQDs)
phenol visible light / 100 mg/L 50 min 90% [207]

MnO2/g-C3N4
(MG3) phenol visible light 50 mg 100 mL 5 mg/L 100 min 98% [209]

2D g-C3N4/MnO2
heterojunctions

(2D g-C3N4/MnO2)
phenol

visible light
300 W

Xenon lamp
50 mg 50 mL 50 mg/L 180 min 73.6% [157]

2D/1D protonated
g-C3N4/α-MnO2 (CNM) phenol

visible light
300 W Xe
arc lamp

40 mg 80 mL 10 mg/L 120 min 93.8% [67]

g-C3N4/MnO2/Pt Phenol;
Bisphenol A

Solar source
300 W

Xenon lamp

50 mg
20 mg PMS

100 mL
20 mg/L

30 min
20%→57%;
13%→97%

[210]

Dye-loaded MnO2 and
chlorine-intercalated

g-C3N4
(MO/CN-Cl)

Phenol;
2,4-

dichlorophenol

visible light
150 W Xe lamp 200 mg 50 mL 20 mg/L 1 h 47%;

1 h 60% [211]

Graphene oxide/MnO2
nanocomposite
(rGO/MnO2)

2-naphthols visible light
20 W LED 100 mg 144 mg 12 h 97.2% [193]

3 wt% MnO2 modified
exfoliated porous

g-C3N4 nanosheet (GM3)
aromatic alcohols

visible light
150 W

xenon lamp
/ 20 mL

100 mg/L 80 min 78% [212]
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3.2. Antibiotic Wastewater

Antibiotics can prevent and treat a variety of bacterial infections in humans and
animals and are widely used for human beings, animal husbandry, and aquaculture
industries [213–215]. However, the overuse of antibiotics has imposed severe water envi-
ronment problems [215]. According to statistics, approximately 60–90% of antibiotics cannot
be completely metabolized by the human or animal body and will be excreted through
feces [216–219]. These wastes may be dumped directly into wastewater or enter farmland
as fertilizer and enter nearby water bodies through rainfall and irrigation [220,221]. Due to
the poor biodegradability of most antibiotics, the sustained use of antibiotics makes them
stay in the water for a long time, which may generate antibiotic-resistant genes (ARGs)
and antibiotic-resistant bacteria (ARBs), resulting in increased microbial resistance, which
poses a potential threat to human health and ecological systems [222–224]. Therefore, the
degradation of antibiotics in water is an important and urgent task.

It has been reported that sunlight-driven photocatalytic technology can effectively
remove antibiotics from water, among which the visible light-responsive MnO2-carbon
composite photocatalyst has great practical application potential [225,226]. We selected
and listed the photocatalytic degradation rates of different types of antibiotics using MnO2-
carbon as a photocatalyst (Table 3). Du et al. [227] synthesized g-C3N4/MnO2/GO het-
erojunction photocatalyst by wet-chemical method (Figure 3a). Composites with different
ratios of g-C3N4, MnO2, and GO have different catalytic activities, and the composites, after
optimization, can degrade 91.4% of TC at most after 60 min of visible light irradiation. The
TC removal rate only decreases by 10% after four cycles, and the sample structure has no
change (Figure 3b–d). Excellent stability is more conducive to the practical application of
photocatalysis. Liu et al. [228] synthesized the pumice-supported reduced graphene oxide
and MnO2 (PS@rGO@MnO2) as a solid photocatalyst by a two-step hydrothermal method,
which can effectively degrade 80% ciprofloxacin within 6 h under simulated sunlight,
and the performance was not obviously decreased after three cycles, and all characteristic
peaks remained intact, which proved its excellent reusability. In addition, the catalytic
performance of PS@rGO@MnO2 solid photocatalyst under actual sunlight is comparable to
that under simulated sunlight, it has good removal performance for ciprofloxacin in actual
natural water, and it can also degrade other antibiotics in water, which has great potential
in the treatment of drinking water and surface water.

Table 3. Study on MnO2-carbon materials for photocatalytic degradation of antibiotic in aqueous solution.

Photocatalyst Target
Pollutant Light Source Photocatalyst

Amount
Initial

Concentration Activity Ref.

Porous Z-scheme
MnO2/Mn-modified
alkalinized g-C3N4

heterojunction
(MnO2/

CNK-OH-Mn15%)

tetracycline visible light
300 W Xe lamp 50 mg 100 mL

10 mg/L 120 min 96.7% [172]

Carbon
nanosheet/MnO2/BiOCl

(Cs/Mn/Bi-1/1)

tetracycline
hydrochloride

UV light
300 W

mercury lamp
20 mg 100 mL

20 mg/L 30 min 80% [225]

g-C3N4/
diatomite/MnO2

tetracycline
hydrochloride visible light 30 mg 100 mL

50 mg/L 60 min 87% [226]

g-C3N4/MnO2/GO
(CMG-10)

tetracycline
hydrochloride

visible light
300 W

xenon lamp
50 mg 100 mL

10 mg/L 60 min 91.4% [227]
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Table 3. Cont.

Photocatalyst Target
Pollutant Light Source Photocatalyst

Amount
Initial

Concentration Activity Ref.

g-C3N4-MnO2
(CMn2)

tetracycline
hydrochloride

visible
light LED 30 mg 75 mL 20 mg/L 135 min 92.47% [169]

Pumice-loaded
rGO@MnO2

PS@rGO@MnO2

ciprofloxacin
sunlight
300 W

xenon lamp
300 mg 30 mL 5 mg/L 6 h 80% [228]

g-C3N4/MnO2/Pt sulfadiazine
Solar source

300 W
Xenon lamp

50 mg
20 mg PMS

100 mL
20 mg/L

30 min
11%→68% [210]
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3.3. Dye Wastewater

Dyes can impart or alter the color of a substance, which are widely used in a wide
variety of industries, including textile, printing, leather, agriculture, pharmaceutical, and
food industries [229–232]. According to statistics, more than 7 × 105 tons of dyes are
produced annually worldwide, and about 15% of dyes will enter the environment with the
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loss of wastewater during manufacturing and application processes [233,234]. The dyes
have a complex structure, high biological toxicity, and are easily soluble in water but have
poor biodegradability, which may accumulate in the water environment [132,235]. The
colored dyes in the water will affect the transparency of water bodies, absorb and reflect
sunlight entering the water, hinder the photosynthesis of aquatic plants and abolish the
ecological balance of the water body [230,236]. In addition, its potential carcinogenicity,
teratogenicity, and mutagenicity will also cause negative effects on human health [237,238].

Photocatalytic technology has the remarkable ability to degrade and decolorize organic
dyes. In environment-cleaning applications, different kinds of semiconductor compounds
play an important role in the photocatalytic removal of dyes [229]. In recent years, MnO2-
carbon materials have shown excellent performances in the photocatalytic degradation
of organic dyes, which has attracted extensive research by researchers [239–249] (Table 4).
Park et al. [250] synthesized PANI-rGO-MnO2 ternary composites by polymerizing aniline
with rGO and incorporating MnO2. PANI can act as an excellent electron donor and hole
conductor, as channels for electron transport and storage, and is a suitable substrate for
visible light-responsive photocatalysts. The ternary heterostructure reduced the recombina-
tion of photogenerated electron-hole pairs and extended the light absorption range. The
composites showed excellent photocatalytic activity, and 90% of methylene blue (MB) could
be degraded under visible light irradiation within 2 h (Figure 4). Panimalar et al. [251] con-
structed the MnO2/g-C3N4 heterostructure, which showed higher photocatalytic activity
than pristine MnO2 and g-C3N4 after 100 min of visible light irradiation. The degra-
dation rate of MO could reach 92%. After five cycles, the composite photocatalyst was
not obviously inactivated, showing high stability. This sort of material could be used as
a photocatalytic practical device for wastewater treatment.

Table 4. Study on MnO2-carbon materials for photocatalytic degradation of organic dye in
aqueous solution.

Photocatalyst Target
Pollutant Light Source Photocatalyst

Amount
Initial

Concentration Activity Ref.

MnO2/CNT MB visible light
solar radiation 20 mg 50 mL 20 mg/L 75 min 70% [239]

Cu-doped MnO2/r-GO MB visible light
200 W tungsten bulb 20 mg 50 mL 5 mg/L 90 min 86.69% [240]

PANI-rGO-MnO2 MB

visible light
150 W halogen bulb
with Halogen cold

light source

10 mg 5 mg/L 120 min 91% [250]

MnO2/BC MB 27 ◦C sunlight
45 ◦C 10 mg 10 mL 10 mg/L 120 min 85%

97% [241]

α-MnO2
nanowire/activated
carbon hollow fibers

(MnO2@ACHF)

MB visible light 20 mg 33 mg/L 240 min 99.8% [38]

poly(3,4-
ethylenedioxythiophene)/

GO/MnO2
(PEDOT/GO/MnO2)

MB UV light sunlight 20 mg 50 mL 7 h 97.1%
7 h 98.9% [242]

graphene nano
sheets/CNT/MnO2
(GNS/CNT/MnO2)

MB
MG

visible light
400 W metal
Philips lamp

60 mg 250 mL
60 mg/L

60 min 71%
60 min 89% [243]

GO@Fe3O4-MnO2
MG

tartrazine sunlight 10 mg 50 mL 10 mg/L 70 min 99.9%
80 min 98% [244]
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Table 4. Cont.

Photocatalyst Target
Pollutant Light Source Photocatalyst

Amount
Initial

Concentration Activity Ref.

Carbon
nanosheet/MnO2/BiOCl

(Cs/Mn/Bi-1/1)

RhB
MB

UV light
300 W mercury lamp 10 mg 100 mL

10 mg/L
25 min 97%
40 min 98% [225]

g-C3N4/
diatomite/MnO2

RhB visible light 30 mg 100 mL
10 mg/L 50 min 94% [245]

2D/1D protonated
g-C3N4/α-MnO2 (CNM) RhB visible light

300 W Xe arc lamp 40 mg 80 mL 10 mg/L 60 min 98.8% [67]

2D g-C3N4/MnO2 RhB
visible light

300 W
Xenon lamp

50 mg 50 mL 10 mg/L 60 min 91.3% [157]

MnO2@GO
(MG 0.4) RhB

visible light
500 W

xenon–mercury lamp
40 mg 50 mL 20 mg/L 65 min 93.86% [246]

g-C3N4/MnO2
(GCN/MnO2) RhB sunlight 4 mg 20 mL 9.6 mg/L 90 min 100% [247]

Boron-doped carbon
nitrides/MnO2
(BCN/MnO2)

RhB visible light 25 mg 50 mL 10 mg/L 180 min 61.1% [248]

g-C3N4/MnO2/Pt RhB
MO

Solar source
300 W

Xenon lamp

50 mg
20 mg PMS

100 mL
20 mg/L

30 min 99%
30 min 97% [210]

nitrogen-doped
grapheme/MnO2

NG-MnO2

MO visible light 5 mg 5 mL 20 mg/L 70 min 95% [77]

MnO2/g-C3N4 (MG3) MO visible light 50 mg 100 mL 5 mg/L 100 min 92% [251]

Fe3O4/C/MnO2/C3N4 MO 400 W metal
halide lamp 20 mg 20 mL 10 mg/L 140 min 94.11% [249]
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Table 4. Study on MnO2−carbon materials for photocatalytic degradation of organic dye in aqueous 
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Photocatalyst 
Target Pollu-

tant Light Source 
Photocatalyst 

Amount 
Initial Concen-

tration Activity Ref. 

MnO2/CNT MB 
visible 

lightdengfei-
solar radiation 

20 mg 50 mL 20 mg/L 75 min 70% [239] 

Cu−doped MnO2/r−GO MB 

visible 
lightdengfei200 

W tungsten 
bulb 

20 mg 50 mL 5 mg/L 90 min 86.69% [240] 

PANI −rGO−MnO2 MB 

visible 
lightdengfei150 
W halogen bulb 
with Halogen 

cold light 
source 

10 mg 5 mg/L 120 min 91% [250] 

MnO2/BC MB 
27 °C sun-

lightdengfei45 °
C 

10 mg 10 mL 10 mg/L 120 min 
85%dengfei97% 

[241] 

α−MnO2 nanowire/activated car-
bon hollow fi-

bersdengfei(MnO2@ACHF) 
MB visible light 20 mg 33 mg/L 240 min 99.8% [38] 

poly(3, 4−ethylenedioxythio-
phene)/GO/MnO2dengfei(PE-

DOT/GO/MnO2) 
MB 

UV light sun-
light 20 mg 50 mL 

7 h 
97.1%dengfei7 

h 98.9% 
[242] 

graphene nano 
sheets/CNT/MnO2dengfei(GNS/

CNT/MnO2) 
MBdengfeiMG 

visible 
lightdengfei400 
W metal Philips 

lamp 

60 mg 
250 mL 60 

mg/L 

60 min 
71%dengfei60 

min 89% 
[243] 

Figure 4. Application schematic illustration of the ternary PANI-rGO-MnO2 composite for photocat-
alytic degradation of organic dye MB under sunlight irradiation. Figures reprinted with permission
from ref. [250]. Copyright 2021; Elsevier Ltd.
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3.4. Heavy Metal Wastewater

The high solubility, bioaccumulation, and non-biodegradability of heavy metals
make them easily accumulate in living beings through the food chain and drinking
water [252–254]. The heavy metals entering the organism are easy to bind with essen-
tial cellular components such as proteins, nucleic acids, and enzymes, destroying organic
cells in the body and endangering the health of organisms and human bodies [195,255].
However, the toxicity, mutagenicity, and carcinogenicity of heavy metals are strongly de-
pendent on the oxidation state [256]. Reducing a high-valence state and highly toxic heavy
metal ion into a low-valence state and low-toxic or non-toxic heavy metal ion is an effective
way to mitigate the potential hazards of heavy metals [257–259].

It has been reported that MnO2-carbon materials can be used as photocatalysts to
reduce toxic heavy metals to non-toxic metals using light energy. Padhi et al. [260] reported
a highly efficient hydrothermal method to fabricate an RGO/α-MnO2 nanorod composite,
which showed outstanding photoreduction ability. A 97% reduction in Cr(VI) under
visible light irradiation for 2 h and no significant loss of photoreduction ability up to
the third cycle. Wang et al. [261] prepared MnO2@g-C3N4 composite photocatalyst by
compounding MnO2 on g-C3N4 via the hydrothermal method for the treatment of uranium-
containing wastewater. Under optimal conditions, the photocatalytic reduction rate of
U(VI) reached 96.3% under visible light irradiation for 120 min. There is little research on
the photoreduction of heavy metals by MnO2-carbon materials, and related applications
still need further exploration.

4. Conclusions and Outlook

Photocatalytic technology has attracted extensive attention from researchers because
of its green, energy-saving, and high efficiency. It is significant to develop low-cost and
non-toxic, environmentally friendly photocatalysts. MnO2 and carbon materials are com-
monly green and low-cost materials, the composite methods are simple and diverse, and
different methods can synthesize photocatalytic materials of various dimensions and sizes.
Compared with a single photocatalyst, the photocatalytic activity of MnO2-carbon compos-
ites is significantly improved, and a variety of pollutants can be removed efficiently. At
present, many synthetic methods have been developed to prepare MnO2-carbon materials
for degrading various pollutants, but the practical application is still in the early stage, and
no major breakthrough has been made. The transition from the laboratory to the actual
water body is still facing great challenges. In future research, the following aspects need
further exploration and development.

(1) The performance optimization of MnO2-carbon materials. The photocatalytic
efficiency of MnO2-carbon composites is mostly around 80% or 90%, and the photocatalytic
activity needs to be improved further. Therefore, the improvement of photocatalytic
performance of MnO2-carbon materials is the core problem of photocatalytic technology
improvement, and the proportion and preparation process of MnO2-carbon composite
material fundamentally determine its photocatalytic performance. On the one hand, the
properties of MnO2-carbon materials can be optimized by adjusting the ratio of MnO2 and
carbon materials. On the other hand, it can be improved by doping metal or nonmetal,
adding polymers, oxides, or other carbon materials.

(2) The separation and recovery of MnO2-carbon materials. Powdered MnO2-carbon
materials not only have the disadvantages that cannot be dispersed evenly and recovered
difficulty, but the quantitative loss during the recycling process may influence the fate
of adsorbed contaminants, thus causing potential environmental risks. Therefore, it is
necessary to explore effective methods to prepare high-dimensional materials that are
more conducive to recycling, such as hydrogels, aerogels, and flexible films. Compared
with low-dimensional materials, high-dimensional materials have broader prospects in
practical applications.

(3) The large-scale application of photocatalytic technology. The application of photo-
catalytic treatment of MnO2-carbon materials mostly stays in the laboratory stage, and it is
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difficult to use it on a large scale. To achieve large-scale utilization, we need to consider
the cost, stability, and quantifiable productivity of photocatalysts. Therefore, it is necessary
to explore 3D MnO2-carbon materials with better stability, enlarge the size of materials
in equal proportion and test their properties, improve the reuse rate of the materials, and
reduce the material costs. The stability of MnO2-carbon materials and the amplified photo-
catalytic performance are crucial issues to be solved to realize the large-scale application of
photocatalytic technology.

(4) The research on MnO2-carbon materials in actual water treatment. Most of the
MnO2-carbon materials are studied for single pollutants, but the pollutants in actual water
bodies have complex components, various kinds, and different concentrations, which are far
more complicated than the laboratory simulation. Therefore, we need to evaluate the ability
of MnO2-carbon materials as a photocatalyst to treat multiple pollutants simultaneously,
explore the potential adverse effects of multiple pollutants, develop different sizes and
types of MnO2-carbon materials, select the study area, collect wastewater samples from
actual water bodies, and study the photocatalytic performance of MnO2-carbon materials
for actual wastewater treatment. The use of MnO2-carbon materials for photocatalytic
degradation of various organic pollutants in water bodies, from laboratory study to practical
water application, is a major challenge and a key research direction for the future.
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