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Abstract: The monolithic integration of InGaN-based micro-LEDs is being of interest toward devel-
oping full-color micro-displays. However, the color stability in InGaN red micro-LED is an issue
that needs to be addressed. In this study, the modified distributed Bragg reflectors (DBRs) were
designed to reduce the transmission of undesired spectra. The calculated optical properties of the
InGaN red micro-LEDs with conventional and modified DBRs have been analyzed, respectively. The
CIE 1931 color space and the encoded 8-bit RGB values are exhibited for the quantitative assessment
of color stability. The results suggest the modified DBRs can effectively reduce the color shift, paving
the way for developing full-color InGaN-based micro-LED displays.

Keywords: InGaN; micro-LED; modified DBR; color stability

1. Introduction

Nowadays, micro-LEDs are deemed as a promising technology for advanced display
applications such as augmented reality and virtual reality (AR/VR) as well as visible light
communication (VLC) [1,2]. Compared with liquid-crystal and organic LED displays,
micro-LED ones have a lot of excellent properties including high brightness, low power
consumption, and high resolution [3,4]. In addition, the high stability of its inorganic
materials makes micro-LEDs less restrictive and more advantageous for outdoor display
applications. Its simple, thin, and compact architecture enables it to achieve a small size or
even a flexible display with high pixel density. Despite these excellent characteristics of
micro-LEDs, there are challenges including the efficiency degradation by size effect and
sidewall effect, high-density defects in the epitaxial layer, mass transfer issues, and other
difficult processes. Recently, atomic layer deposition (ALD) passivation has been shown
as an effective process to suppress sidewall defects and further increase photoelectric
performance [5,6]. Lee et al. fabricated InGaN-based blue LED with an external quantum
efficiency (EQE) enhancement of 73.4% by using ALD treatment [7]. Shaping the LED
structure is also a valid way to improve device performance, e.g. the tapered structure with
a top black matrix can effectively enhance light extraction efficiency and mitigate the color
shift of micro-LEDs [8]. To ease the mass-transfer process, the blue or UV LEDs with the
color conversion structure such as phosphor or quantum dot (QD) layers are commonly
used to achieve a full-color display. The advantages of QDs include a broad absorption
spectrum, stable and narrow emission linewidths, and emission of pure and saturated
colors which render them more suitable than phosphor for developing full-color micro-LED
displays [9,10]. However, QD layers on the top of micro-LEDs still pose big problems for
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the resolution and uniformity of QD pattern, color conversion efficiency, reliability, and
lifetime [11–13].

Red, green, and blue (RGB) micro-LEDs are particularly promising for VLC applica-
tions since they can be utilized for both displays and multi-channel optical communication
simultaneously. The ultra-small LEDs are used in assembling RGB micro-LEDs to achieve
full-color displays and allow the brightness of each pixel to be controlled in a dynamic
range. In general, RGB micro-LED pixels can be obtained from the mass transfer, In-
GaN/AlGaN core-shell nanowire heterostructure [14], multi-quantum wells (MQW), or
different InGaN-based substrates and monolithically integrated for achieving full-color
displays [15]. Among them, InGaN-based blue and green micro-LEDs have attracted a
lot of attention due to the efficiency and modulation bandwidth. Hong et al. reported
visible-color-tunable LEDs with changeable electroluminescence (EL) color by external
electric bias. On GaN nanorod arrays, color-tunable LEDs were created using InGaN/GaN
MQW structures and Mg-doped p-GaN overlayers. The EL color varied from red to blue as
the applied bias voltage grew from 3.0 V to 10.0 V, covering virtually the whole visible-color
spectrum [16]. A full-color micro-LED display with two types of MQWs was reported by
Wang et al. which realized a multi-wavelength emission from 450 nm to 620 nm with the
increasing injection current [17]. Additionally, monolithically integrating the RGB pixels
on the same substrate is also a viable method. Most blue and green micro-LEDs are made
of InGaN materials and have been demonstrated without significant loss in their optical
performance [18,19]. However, the red micro-LED chips made of AlInGaP are still a big
concern due to the dramatic efficiency drops with shrinking size [20]. The efficiency drops
have been attributed mostly to the higher surface recombination velocity of AlInGaP LEDs
compared to that of InGaN ones. As a result of sidewall damage, AlInGaP LEDs suffer
from more Shockley-Read-Hall (SRH) nonradiative recombination, resulting in a drop
in the EQE for small-size devices [20]. The efficiency of AlInGaP red micro-LEDs is also
very sensitive to temperatures due to the carrier leakage over the quantum barriers and
electron-drift-induced reduction in injection efficiency [21]. Hence, extending the emission
wavelength of InGaN-based micro-LEDs from blue/green to red appears to be an option
for replacing AlInGaP red micro-LEDs due to the size-independent EQE and robust tem-
perature property of InGaN materials. According to a previous paper, InGaN-based RGB
micro-LEDs cover 84% of Rec. 2020 [22], and Hartensveld also demonstrated 5 × 5 passive
matrices with V-groove color tunable micro-LEDs with the full range of colors from red to
blue [23], which are very promising for full-color displays.

A high-In-content InGaN/GaN QW structure is necessary to achieve red emission.
However, the large lattice mismatch between InN and GaN makes the epitaxial process
more challenging since a high number of defects and lattice strain would be generated
during the growth of high-In-content QWs. Also, the performance of InGaN red micro-
LEDs severely suffers from the quantum-confined Stark effect (QCSE), which leads to
a low external quantum efficiency (EQE) and the blue shift of emission wavelength as
increasing the injected current [24–26]. (Figure 1) With electric field applied perpendicular
to the quantum well (QW) layer, electrons and holes are separated toward opposite sides
of the layer, resulting in a lower radiative recombination rate, and a corresponding Stark
shift in the excitonic absorption [14]. Masui, H. et al. reported the electroluminescence
(EL) intensities of InGaN-based LED soared because of forward current injection. The
emission peak shifted towards higher energy owing to the band-filling and screening
effect of injected carriers [27]. The QCSE in InGaN-based micro-LEDs comes from a large
polarization-induced electric field, which is also called a built-in electron field, it bends the
energy bands in the QW, and reduces the transition energy from the first electron subband
to the first hole subband, causing the red-shift of EL emission. When applying the forward
bias, excess carriers are injected into the QW and then screen part of the polarization field,
leading to a blue shift of spectrum with increasing current density [28]. In previous studies,
Lin et al. showed a 9 nm blue shift of EL emission in a 2 × 2 green micro-LED array [29]
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and Lan et al. also found a slight blue shift both in single-QW and triple-QW GaN-based
blue micro-LEDs [30].
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Figure 1. The schematic diagram of the quantum-confined Stark effect (QCSE) in InGaN-based
micro-LEDs.

The blue shifts of EL emission in the InGaN-based blue and green micro-LEDs were
not enough to significantly affect the color gamut, but the QCSE in the red ones can be more
critical. Although micro-LEDs are driven at low current densities for most microdisplays,
some applications such as light engines in projection systems and head-mounted displays,
which require high brightness levels, need micro-LEDs to be operated at high current
densities. The blue shift caused by QCSE will be non-negligible under high operating
current densities and will seriously affect the user experience. To address these issues,
several approaches have been found to suppress the QCSE of InGaN red micro-LEDs and
enhance the device performance, including growth on semipolar or polar surfaces, use
of the patterned sapphire substrate (PSS), use of nanowire or nanocolumn structures and
use of superlattice as a strain relaxed layer [31]. Horng et al. studied the relationship
between emission wavelength, chip sizes, and injection current densities. As the size of the
micro-LED decreased, the blue shift of the emission wavelength became more obvious [32].
Iida et al. demonstrated an epitaxy structure of InGaN red LEDs with a peak wavelength
of 633 nm and a blue shift of 40 nm [33], and Zhang et al. also reported a LED device with
optimized QW structure and showed a peak wavelength of 608 nm and a blue shift of
around 30 nm [34]. Zhuang et al. demonstrated a 47 × 47 µm2 InGaN amber micro-LED
with a peak wavelength of 606 nm and a 33 nm blue shift [35]. Even though there were
several studies of InGaN red micro-LEDs, the EQE and the blue shift phenomenon of
the device still have much room for improvement. In our previous work published in
2022 [36], a 25 µm-sized micro-LED was grown on a c-plane patterned sapphire substrate
(PSS) by metal-organic vapor-phase epitaxy (MOVPE). The mainly epitaxial structures
include an undoped-GaN layer to reduce the residual stress, 15 pairs of GaN/In0.08Ga0.92N
superlattices (SL) layers, an InGaN blue single-quantum well (SQW), an InGaN red double-
quantum well (DQWs) with a high indium content, a barrier layer, and contact layers.
Furthermore, a thick Al2O3 layer was deposited by ALD as a passivation layer which
helps to repair surface damage caused by dry etching to enhance the performance of the
device. Circular-shaped active areas and electrodes were designed to improve current
spreading and light extraction efficiency. Although the SL layers improved the quality of
the following InGaN QW and released the stress in the structure, thereby mitigating the
effect of QCSE, the EL spectra still showed a blue shift of 38 nm, which is much larger
than that in InGaN-based blue and green micro-LEDs. As current density increased, the
shifted EL emission from 652 nm to 614 nm and the increased full width at half maximum
(FWHM) from 48 nm to 64 nm were found. It could seriously affect the color stability of
displays and distort the rendered image. To solve this problem, a promising way is to add
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a color filter at the top of the micro-LEDs to reduce the transmission of undesired spectra.
However, the traditional color filter is not suitable for micro-LEDs since its bulky size and
non-negligible energy consumption. Therefore, a color filter with a size in the micron range,
low absorption in the visible band, and moderate process cost is needed.

A distributed Bragg reflector (DBR) is a reflector constructed with multiple layers of
alternating materials with varying refractive indices. In the multilayer structure with a
periodic high-low contrast in the optical index of refraction, when the thicknesses of the in-
dividual layers equal to a quarter of the wavelength, the partial reflections at each interface
combined with constructive interference and the multilayers act as a high-quality reflector
with a tunable reflectivity and bandwidth. The DBR technology was first demonstrated in
the 1940s and has been commonly used for vertical cavity surface emitting lasers [37–42].
The DBRs can achieve near-unity reflectance at the selected wavelengths. Moreover, the
high reflectance in the stop band of DBRs can be properly designed as a color filter for opti-
cal devices [43,44]. Along with the development of LED display technology, the improved
performance of LED devices with DBR structures has attracted a lot of attention. Recent
studies have shown that the DBR structure can not only improve light extraction efficiency
but also serve as a strain-released layer for InGaN-based micro-LEDs [45–48]. Although the
DBR structures are often used as a mirror, the degree of freedom in reflective wavelengths
and the high contrast between reflectance and transmittance is advantageous for filters.
Considering the chip size, the difficulty of processing, and the spectrum purity after the
filter, a promising way to solve the problem of color shifting is to add a DBR as a color
filter on the micro-LED which can completely block the shifting wavelengths. In this study,
based on the experimental results of InGaN red micro-LED in our previous work [36], the
modified DBRs were proposed as color filters of the InGaN red micro-LEDs (Figure 2).
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2. Experiments

The DBR structures were designed in RSoft Photonics computer-aided design (CAD)
Suite (version 2021.09-1, Synopsys, Mountain View, CA, USA) and the optical simulations
were carried out by using 2D diffraction mode. The material parameters for building the
structure along with the dispersive complex-valued refractive index models were acquired
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from the built-in material library of RSoft. The background index used in the simulation is
1. For the quantitative assessment of the color stability in InGaN-based red micro-LEDs
with different DBR structures, the calculated spectra were converted to the tristimulus
values in CIE 1931 color space by MATLAB (academic, R2021a).

2.1. Conventional DBRs

For conventional DBR structures, the wavelength (λ) of incident light determines the
thicknesses of the high- and low- refractive index (n) layers by Equation (1):

Thickness = λ/4n (1)

When the refractive index difference between the two materials becomes larger, a
higher and broader reflection spectrum occurs. For designing a long pass filter for InGaN
red micro-LED, the central wavelength of the reflection spectrum should be less than
600 nm so that the edge of the reflection spectrum can be located at a proper wavelength to
block the light caused by blue shift.

In this study, TiO2 and SiO2 were adopted as the high-n and low-n materials for
the DBR structures, respectively. The refractive index and extinction coefficients for the
materials were obtained from the library of the RSoft software together with the report
from Sarkar et al. [49,50]. In the wavelength range of visible light, refractive index of TiO2
is above 2.5, and that of SiO2 is about 1.5. Furthermore, the strong absorption only appears
at 300 nm to 400 nm due to the high extinction coefficient of TiO2 in that region, which is
far from the red light region and has little effect on the transmission spectra. This means
that the energy loss caused by material absorption of DBR in the red light region is almost
negligible. Hence, the DBR with the central wavelength of 540 nm was designed to block
wavelengths below 620 nm, the thickness of TiO2 film and SiO2 film were 62 nm and 92 nm,
respectively (Figure 3a). Based on the transfer matrix method (TMM) and geometrical
optics [51], the transmittance and reflectance spectra of the DBR structures consisting of
TiO2/SiO2 pairs were calculated.
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2.2. Modified DBRs

In general, the strong spectral ripples of conventional DBR are associate with the
high-order interference in the high-n/low-n structure [52]. These ripples are detrimental to
micro-LED display performance such as luminance, efficiency, or the vividness of colors.
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To reduce or even annihilate the undesired ripples, the modified DBR structures were
proposed by Lin et al. in 2021 [52]. There are two architectures labeled with 1st modified
DBR and 2nd modified DBR shown in Figure 3b,c. To maximize the reflectance of the DBRs
at the blocking region, the electric field should be minimized at the exiting interface. The
node appears at the interface between two adjacent pairs where the electric field should
be closed to zero, and the antinode would occur at the high-n/low-n interface in a pair.
The 1st modified DBR structure, with the standing wave peak deviated from the interface,
can weaken high-order interference and remain the same resonant wavelength. Based on
the conventional structure, the thicknesses of the high-n and low-n layers in 1st modified
DBR are relatively smaller and larger than the quarter of the central wavelength. For the
1st modified DBR, the thickness of TiO2 and SiO2 was 34 nm and 140 nm, respectively
(Figure 3b).

Ideally, a flat transmission spectrum with a transmittance over 90% in the long wave-
length range is desired. Although the strong ripples can be reduced in the 1st modified DBR
structure, the advanced design that can eliminate the high-order modes of constructive
interference was proposed as 2nd modified DBR. The thicknesses of the first and last pairs
were adjusted respectively for eliminating the ripples. For the optimized structure, the first
pair of SiO2/TiO2 (50 nm/5 nm), the last pair of SiO2/TiO2 (130 nm/24 nm) were designed
(Figure 3c).

3. Results and Discussion

The calculated transmittance and reflectance spectra of the conventional and two
modified DBR structures are shown in Figure 4a–c, and their convolutions with the EL
spectra of the InGaN red micro-LED in our previous work (Figure 4d–f). The conventional
DBR was designed with 18 pairs of TiO2/SiO2 to achieve a sharp edge of the transmission
spectrum. As Figure 4a shown, the conventional DBR can highly reflect the wavelengths
from 500 nm to 630 nm, but generate the undesired ripples above 630 nm. The ripples
are respectively centered at 630, 660, 700, and 740 nm, which can be detrimental to the EL
emission in the InGaN red micro-LED. The calculated EL spectra of the InGaN red micro-
LED with the conventional DBR are shown in Figure 4d, which exhibit the multi-peaks
due to the blocking from the ripples. Although the wavelengths below 620 nm can be
totally blocked by the conventional DBR structure, the existence of ripples could seriously
affect the color stabilization. In the 1st modified DBR structure, the modification was based
on the conventional configuration. (Figure 3b) As a result, only a small ripple appears at
700 nm, as shown in Figure 4b. Although the edge of the spectrum is not as sharp as the
conventional configuration, a high transmittance of over 90% can be remained with only
8 pairs of SiO2/TiO2. The edge of the high reflection region is located nearby 650 nm, and
the transition region where the reflectance dropped from 0.9 to 0.1 is wider than that of the
conventional DBR, leading to the smooth Gaussian-like spectra (Figure 4e). The blue shift
of EL emission peak can be observed as increasing current density.

The calculated results of the 2nd modified DBR are shown in Figure 4c,f. It is obvious
that the ripples are effectively suppressed due to the thickness optimization of the modified
structure. The edge of the high reflection region is slightly blue-shifted compared to that of
the 1st modified DBR. As a result, the higher intensity of EL emission can be observed due
to the high transmission over 650 nm.

The central wavelength and FWHM of the EL mission as a function of current density
for the InGaN red micro-LEDs with 1st and 2nd modified DBRs are shown in Figure 5. As
Figure 5a shown, the peak position of the EL emission shows a blue shift of 16 nm which is
much smaller than that in our previous work [36]. The FWHM of EL emission is broadened
from 40 nm to 53 nm when the current density increased from 32 A/cm2 to 400 A/cm2. In
Figure 5b, a blue shift of 21 nm for the EL mission of InGaN red micro-LED with the 2nd
modified DBRs can be found. Compared to the 1st modified DBR, the peak shift is 5 nm
larger, but the intensity of EL emission is improved by 40% (Figure 4b,c) that is important
for color purity.
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For the quantitative assessment of color stability, we converted the calculated spectrum
into the tristimulus values in CIE 1931 color space. The tristimulus values were calculated
by the integration of the EL spectra and the CIE standard colorimetric observer curve based
on the distribution of cones in the eye [53,54]. The CIE xy chromaticity is specified by the
two derived parameters x and y, two of the three normalized values being functions of
all three tristimulus values X, Y, and Z. By converting the spectra into the chromaticity
diagram, the color stability of the InGaN red micro-LEDs with the DBR structures can be
quantitatively analyzed.

The normalized tristimulus values and the CIE 1931 xy chromaticity were calculated
and plotted (Figure 6) [55]. The CIE 1931 chromaticity diagram for the InGaN red micro-
LED with DBR structures operated at current densities are displayed. The calculated
results suggest that all tristimulus values are in the red-light region. At the lowest current
density of 32 A/cm2, each value is located at the corner of the color map. With the current
density increased, the color coordinates move from the corner to the inner part, narrowing
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down the range of the color gamut. In Figure 6, the data for both modified DBR ones are
respectively labeled with blue star and cyan square, suggesting a less shift compared with
the conventional DBR and bare ones (w/o DBR) [52]. In order to analyze the difference
among these designs, the distances of color shift were calculated in detail. For the InGaN
red micro-LED without DBR, the color coordinate shifts from (0.7156, 0.2843) to (0.6169,
0.3591) as the current density increased from 32 A/cm2 to 400 A/cm2. When a conventional
DBR acts as a color filter, the coordinate shift from (0.7193, 0.2807) to (0.5277, 0.2006).
Compared to the bare one, the straight-line distance of the color shift for the conventional
DBR increased by 67%, which indicates the negative effect for color stability. The result is
reasonable since the spectra of the conventional DBR one show multi peaks (Figure 4d)
which can decrease the color purity. The 1st modified DBR one shows the coordinates
shifted from (0.7195, 0.2804) to (0.6474, 0.305), a straight-line distance of 0.076 which is 38%
less than the bare one. The coordinates for the 2nd modified DBR one shift from (0.7179,
0.2801) to (0.6351, 0.3117) with a straight-line distance of 0.071 that is 42% less than the bare
one. Also, this result indicates that the modified DBR design can be used as a novel color
filter with a small form factor to effectively improve the color stability in InGaN-based red
micro-LEDs.
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At the current density of 32 A/cm2, the coordinates for different designs are all around
(0.71, 0.28) in the CIE color space. While the current density increased to 400 A/cm2, the
color become amber and magenta for the InGaN red micro-LEDs without and with conven-
tional DBR. In contrast, the colors for the ones with modified DBRs are not significantly
changed. To further identify the color difference between both modified DBR designs, the
8-bit encoded RGB values were calculated and listed in Table 1 [56,57].

Table 1. The calculated x, y value in the CIE 1931 color space and the corresponding RGB color code
for the InGaN red micro-LED with different DBRs.

Current Density Format w/o DBR w/Conventional DBR w/1st Modified DBR w/2nd Modified DBR

32 A/cm2 XYZ 1 (0.7156, 0.2843) (0.7193, 0.2807) (0.7195, 0.2804) (0.7179, 0.2821)
RGB 2 [255, 0, 0] [255, 0, 0] [255, 0, 0] [255, 0, 0]

400 A/cm2 XYZ 1 (0.6169, 0.3591) (0.5277, 0.2006) (0.6474, 0.305) (0.6531, 0.3117)
RGB 2 [255, 78, 0] [255, 0, 143] [255, 0, 43] [255, 0, 25]

1 CIE XYZ color space, the format is represented by (x, y). 2 8-bit encoded RGB, the format is represented by
[R, G, B].
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4. Conclusions

In summary, we have developed the modified DBRs to mitigate the blue shift in the
InGaN red micro-LEDs. The optical properties of three different DBR designs, including
the conventional DBR, the modified DBRs without and with thickness optimization were
elaboratively compared. The calculated spectra were converted into the CIE 1931 color
space and the 8-bit encoded RGB values for the quantitative assessment of color stability.
As a result, the conventional DBR increased the color shift by 67% since the spectral ripples
reduced the color purity, leading to the color changed from red to magenta. In contrast,
the modified DBRs without and with thickness optimization decreased the color shift of
the InGaN red micro-LEDs by 38% and 42%, respectively. It has been demonstrated that
the modified DBR structure can effectively improve the color stability, which holds great
promise for developing full-color displays of InGaN-based micro-LEDs.
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