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Abstract: One-dimensional nanomaterials have drawn attention as an alternative electrode material
for stretchable electronics. In particular, silver nanowires (Ag NWs) have been studied as stretchable
electrodes for strain sensors, 3D electronics, and freeform-shaped electronic circuits. In this study,
Ag NWs ink was printed on the pre-stretched silicone rubber film up to 40% in length using a
drop-on-demand dispenser. After printing, silicone rubber film was released and stretched up to 20%
as a cyclic test with 10-time repetition, and the ratios of the resistance of the stretched state to that of
the released state (Rstretched/Rreleased) were measured at each cycle. For Ag NWs electrode printed
on the pre-stretched silicone rubber at 30%, Rstretched/Rreleased at 10% and 20% strain was 1.05, and
1.57, respectively, which is significantly less than about 7 for Ag NWs at the 10% strain without
pre-stretched substrate. In the case of 10% strain on the 30% pre-stretched substrate, the substrate is
stretched and the contact points with Ag NWs were not changed much as the silicone rubber film
stretched, which meant that Ag NWs may slide between other Ag NWs. Ag NWs electrode on the
40% pre-stretched substrate was stretched, strain was concentrated on the Ag NWs electrode and
failure of electrode occurred, because cracks occurred at the surface of silicone rubber film when
it was pre-stretched to 40%. We confirmed that printed Ag NWs on the pre-stretched film showed
more contact points and less electric resistance compared to printed Ag NWs on the film without
pre-stretching.

Keywords: silver nanowires; pre-stretching; printing; stretchable electrode; sliding; resistance

1. Introduction

Typical applications of flexible and stretchable electronic devices include stretchable
displays [1–4], skin sensors of pressure [5,6], electronic textile [7], and muscle-like soft
actuators [8]. Electrode of the stretchable and flexible electronic device should maintain
the initial electrical conductivity in despite of various deformations. One-dimensional
nanomaterials have drawn attention as an alternative electrode material for stretchable
electronics [9–12]. Especially, silver nanowires (Ag NWs) have been studied as stretch-
able electrodes materials for strain sensors [13], 3D electronics [14] and freeform-shaped
electronics [15], and printed circuit boards [16,17].

Ag NWs electrode for stretchable electronics have been made using diverse coat-
ing [18,19] and printing methods [20–22]. The drop-on-demand (DOD) printing method
using a dispenser has several advantages, such as preventing nozzle clogging due to the
high aspect ratio of Ag NWs and wider ink viscosity range, compared with the inkjet print-
ing method. Additionally, data for floor plans saved in computers is directly transferred to
a dispenser printer as fully digitalized manufacturing process, and the pattern is embodied.

In order to avoid failure of electrodes upon stretching, the dominant approach is
making electrodes wavy or buckled shape [23,24]. The alternative approach is using the
networks of one-dimensional nanomaterials, which are highly conductive and stretchable
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conductive materials. In order to increase the contact points with nanomaterials, stretchable
elastomers are pre-stretched before formation of conductive components [25,26].

Currently, a method of printing or coating in a pre-stretched state is widely used
when forming a silver nanowire electrode on a stretchable substrate. However, a few
extensive research projects on physical behavior of Ag NWs on the elastic substrate with
the continuous electrical resistance measurement have been performed as Ag NWs printed
on pre-stretched substrate was stretched and released [27,28]. In this study, Ag NWs line
was printed on the pre-stretched silicone rubber film using DOD dispenser with various
pre-stretching percent of silicone rubber film. After sintering, silicone rubber film was
released and stretched up to 20% as a cyclic test with 10-time repetition. While applying
tensile strain, electrical resistance was measured in situ. The effect of the pre-stretching
substrate on the electrical resistance of printed Ag NWs was further investigated in detail.

2. Experiment

The composition of Ag NWs ink (Flexioink, SG Flexio, Daejeon, Republic of Korea)
consisted of 0.14 wt% Ag NWs (20 nm diameter, 20 µm length), dispersed in deionized water.
Recommended sintering temperature is 120 ◦C for 30 min. Ag NWs ink was printed on the
pre-stretched silicone rubber film (thickness 300 µm) using the DOD dispenser (MDV3200A,
Vermes, Plain city, OH, USA), based on piezo technology. The nozzle diameter of dispenser
was 150 µm. The pre-stretching percent was varied from 10% to 40%. The experimental
procedures is as follows. As shown in Figure 1a, silicone rubber film was stretched at
first using automatic stretching equipment (Sciencetown, ST1, Incheon, Republic of Korea).
Before pre-stretching, UV/O3 treatment was performed to change the hydrophobic surface
to hydrophilic surface for 25 min. After stretching, stretched silicone rubber film was fixed
using the fixing jig, which was custom made. Ag NWs line (20 mm in length, 1.1 mm
in width) was printed on silicone rubber film on the fixing jig. Additionally, printed
Ag NWs line was dried and sintered on the fixing jig at 120 ◦C for 30 min (Figure 1b).
Liquid metal (EGaIn, Sigma-Aldrich, St. Louis, MO, USA) and copper wire were used
as electrical pad to measure the electrical resistance in situ. In order to fix the liquid
metal and copper wire during stretching test, liquid metal and copper wire were covered
with Polydimethylsiloxane (PDMS), and then curing PDMS was performed at 70 ◦C for
20 min (Figure 1c). After curing, pre-stretched silicone rubber film was released. Released
silicone rubber film was stretched to 10% and 20% as a cyclic test with 10 time repetition
(Figure 1d). During a cyclic test with 10-time repetition, the electrical resistance was
measured in situ using multi-meter (8540A Fluke, Everett, WA, USA) at intervals of one
second. The electrical resistance of Ag NWs was related to the change of morphology. In
order to observe morphology, change of Ag NWs, FESEM (Hitachi, SU8010, Tokyo, Japan)
measurement was carried out.
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Figure 1. Schematic images of the experimental procedures: (a) fixing the pre-stretched silicone
rubber film; (b) printing, drying, and sintering of Ag NWs line; (c) connecting the liquid metal and
copper wire; (d) cyclic stretching test.
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3. Results

Figure 2 shows the in situ resistance change of Ag NWs electrode on variously pre-
stretched silicone rubber film during a cyclic test with 10 times repetition applying 10%
strain. As pre-stretching of silicone rubber film percent increases, the ratios of the resistance
of the stretched state to that of the released state (Rstretched/Rreleased) at first cycle decrease
up to pre-stretching 30%. Figure 3 shows the crack formation at the surface of silicone
rubber film at 0% strain and cutting of Ag NWs at 10% strain in the case of 40% pre-
stretching. It is thought that at pre-stretching 40%, this resulted in the increase of the ratio
of Rstretched/Rreleased. The ratios of the resistance of Rstretched/Rreleased at pre-stretching 10,
20, 30, and 40% were 2.02, 1.22, 1.05, and 1.1, respectively. At pre-stretching 30%, the ratio
of Rstretched/Rreleased was minimum.

Nanomaterials 2023, 13, x FOR PEER REVIEW 3 of 9 
 

 

3. Results 

Figure 2 shows the in situ resistance change of Ag NWs electrode on variously pre-

stretched silicone rubber film during a cyclic test with 10 times repetition applying 10% 

strain. As pre-stretching of silicone rubber film percent increases, the ratios of the re-

sistance of the stretched state to that of the released state (Rstretched/Rreleased) at first cycle 

decrease up to pre-stretching 30%. Figure 3 shows the crack formation at the surface of 

silicone rubber film at 0% strain and cutting of Ag NWs at 10% strain in the case of 40% 

pre-stretching. It is thought that at pre-stretching 40%, this resulted in the increase of the 

ratio of Rstretched/Rreleased. The ratios of the resistance of Rstretched/Rreleased at pre-stretching 10, 

20, 30, and 40% were 2.02, 1.22, 1.05, and 1.1, respectively. At pre-stretching 30%, the ratio 

of Rstretched/Rreleased was minimum. 

  

(a) (b) 

  

(c) (d) 

Figure 2. In situ resistance change of Ag NWs electrode on variously pre-stretched silicone rubber 

film during a cyclic test with 10 times repetition applying 10% strain: (a) 10% pre-stretched; (b) 20% 

pre-stretched; (c) 30% pre-stretched; and (d) 40% pre-stretched. 

Figure 2. In situ resistance change of Ag NWs electrode on variously pre-stretched silicone rubber
film during a cyclic test with 10 times repetition applying 10% strain: (a) 10% pre-stretched; (b) 20%
pre-stretched; (c) 30% pre-stretched; and (d) 40% pre-stretched.
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Figure 3. FESEM plan view images of Ag NWs printed on the 40% pre-stretched silicone rubber film:
(a) 0% strain, (b) 10% strain.

As applying 20% strain, the resistance change of Ag NWs electrodes on pre-stretched
silicone rubber film during a cyclic test with 10 times repetition is shown in Figure 4. As
shown in Figure 2, the ratios of the resistance of the stretched state to that of the released
state (Rstretched/Rreleased) at first cycle decrease up to pre-stretching 30%. At pre-stretching
40%, the ratio of Rstretched/Rreleased increases. However, at pre-stretching 30 and 40%,
failure of Ag NWs electrode occurred at 9th cycle and 4th cycle, respectively. The strain
was concentrated on Ag NWs electrodes due to cracks in silicone rubber film formed
during pre-stretching the cracks of silicone rubber film was formed [28]. The ratios of the
resistance of Rstretched/Rreleased at pre-stretching 10, 20, 30, and 40% was 5.88, 3.35, 1.57, and
2.04, respectively. Likewise, 10% strain, the ratios of the resistance of Rstretched/Rreleased at
pre-stretching 30% was the minimum.
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Figure 4. In situ resistance change of Ag NWs electrode on variously pre-stretched silicone rubber
film during a cyclic test with 10 times repetition applying 20% strain; (a) 10% pre-stretched; (b) 20%
pre-stretched; (c) 30% pre-stretched; and (d) 40% pre-stretched.

Figure 5 represents the ratio change of Rstretched/Rreleased of Ag NWs electrode with
pre-stretching percent of silicone rubber film at first cycle. At pre-stretching 10%, the value
of Rstretched/Rreleased applying 10% strain was approximately 3 times higher than that of
Rstretched/Rreleased applying 20% strain. As increasing pre-stretching strains, the difference
of Rstretched/Rreleased applying 10 and 20% strain decreased. At pre-stretching 30%, the
value of Rstretched/Rreleased was minimum. At pre-stretching 40%, Rstretched/Rreleased began
to increase. In the case of Rstretched/Rreleased of Ag NWs without pre-stretching was 7 at
10% strain. The resistance of Ag NWs was not changed much in the stretched state.
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when film was released).

Figure 6 shows the cross sectional FESEM images of Ag NWs electrodes. In Figure 6a,
the wavy structure of Ag NWs electrode was not shown at 10% pre-stretching. At 0%
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strain, the wavy structure began to be shown from 20% pre-stretching. From 30% pre-
stretching, Ag NWs electrode had the clear wavy structure. The number of Ag NWs with
pre-stretching increased. The contact point with Ag NWs increased at pre-stretched silicone
rubber film. As shown in Figure 6b, at 10% pre-stretching, Ag NWs electrode are not
changed much after 10 and 20% cyclic stretching test. However, Ag NWs electrode printed
on the 30 and 40% pre-stretched silicone rubber film was separated from the silicone rubber
film. As shown in Figure 3, in the case of pre-stretching 40%, the silicone rubber film had
the crack at 0% strain. The crack resulted from the formation of silicon oxide by UV/O3
treatment to change the hydrophobic surface of silicone rubber film to the hydrophilic
surface [29]. At 40% pre-stretching, a wavy pattern was observed at the surface of silicone
rubber film. These wavy patterns are thought to have been caused by the surface of silicone
rubber film that was partially damaged when pre-stretched. Therefore, when tensile strain
is repeatedly applied, cracks are formed in this part, and it is thought that the Ag NWs
electrode is broken in the tensile strain of more than 20%. In Figure 7, Ag NWs was
bent. At pre-stretching 40%, Ag NWs are cut off after 10% cyclic stretching test, which red
rectangle part is enlarged. At 20% strain, the contact point between printed Ag NWs on
40% pre-stretched silicone rubber film was reduced as shown in Figure 7.
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It was reported that the reason, why the resistance of the nanowire electrode formed
on the pre-stretched substrate did not differ significantly during tensile strain being applied
and removed, resulted from the reversible sliding of nanowire [27]. Figure 8 showed the
schematics that Ag NWs movement when that Ag NWs ink was printed, dried, and sintered
on pre-stretched silicone rubber film. When printed Ag NWs electrode was released, the
contact point with Ag NWs increased. As printed Ag NWs electrode was stretched at
low strain, the number of contact point with Ag NWs at stretched and released state is
maintained by reversible sliding of Ag NWs. However, as printed Ag NWs electrode
was stretched at high strain, the number of contact point with Ag NWs at stretched state
decreased compared to the number of contact point with Ag NWs before the stretching test
by sliding and rotation of Ag NWs, which was due to the poor adhesion between Ag NWs
and silicone rubber film [30]. As strain increased, the resistance of Ag NWs electrode at
stretched state increased. As the number of cyclic increased, the number of contact point
between Ag NWs is also gradually reduced due to the rotation and sliding of Ag NWs, as
shown in Figure 7. It resulted in gradual increase of resistance of printed Ag NWs electrode
at released and stretched state.
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4. Summary

Ag NWs electrode was printed on the various pre-stretched silicone rubber film
using DOD dispenser. The difference of Rstretched and Rreleased of Ag NWs printed on the
pre-stretched silicone rubber film is much smaller than that of Ag NWs printed on the
silicone rubber film without pre-stretching. At pre-stretching 30%, Rstretched/Rreleased is the
minimum at strain 10 and 20%. For Ag NWs electrode printed on the pre-stretched silicone
rubber at 30%, Rstretched/Rreleased at 10%, and 20%, strain was 1.05, and 1.57, respectively,
which are significantly less than about 7 for Ag NWs at the 10% strain without pre-stretched
substrate. It is thought that the number of contact points with Ag NWs at the stretched
state is almost the same as that of a contact point with Ag NWs at released state due to
the reversible sliding of Ag NWs. As pre-stretching is above 30%, crack formation on the
surface of silicone rubber film caused the Ag NWs to be disconnected. Pre-stretching of
silicone rubber film can minimize the resistance difference of stretched and released state.
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