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Abstract: Textile effluents pose a massive threat to the aquatic environment, so, sustainable ap-
proaches for environmentally friendly multifunctional remediation methods degradation are still
a challenge. In this study, composites consisting of bismuth oxyhalide nanoparticles, specifically
bismuth oxychloride (BiOCl) nanoplatelets, and lignin-based biochar were synthesized following a
one-step hydrolysis synthesis. The simultaneous photocatalytic and adsorptive remediation efficiency
of the Biochar–BiOCl composites were studied for the removal of a benchmark azo anionic dye,
methyl orange dye (MO). The influence of various parameters (such as catalyst dosage, initial dye
concentration, and pH) on the photo-assisted removal was carried out and optimized using the
Box–Behnken Design of RSM. The physicochemical properties of the nanomaterials were charac-
terized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction,
thermogravimetric analysis, nitrogen sorption, and UV–Vis diffuse reflectance spectroscopy (DRS).
The maximum dye removal was observed at a catalyst dosage of 1.39 g/L, an initial dye concentration
of 41.8 mg/L, and a pH of 3.15. The experiment performed under optimized conditions resulted in
100% degradation of the MO after 60 min of light exposure. The incorporation of activated biochar
had a positive impact on the photocatalytic performance of the BiOCl photocatalyst for removing the
MO due to favorable changes in the surface morphology, optical absorption, and specific surface area
and hence the dispersion of the photo-active nanoparticles leading to more photocatalytic active sites.
This study is within the frames of the design and development of green-oriented nanomaterials of
low cost for advanced (waste)water treatment applications.

Keywords: Biochar; BiOCl; photocatalysis; wastewater; azo dye remediation; lignin for material;
RSM optimization

1. Introduction

The extreme expansion of industrialization, urbanization, and the world’s population
speed up the consumption of natural clean energy and causes severe environmental pollu-
tion [1–3]. Wastewater treatment and sustainable ways to manage environmental pollutants
are among the most critical global challenges of the last few decades [4–9]. Due to their low
biodegradability, high toxicity, high chemical stability, and complex cyclic structure, dyes
and pigments seriously threaten aquatic ecosystems [10–12]. A significant amount of dye
enters the environment through industrial effluents from the textile, food, petrochemical,
and pharmaceutical industries [13,14]. Furthermore, this wastewater can harm public
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health and natural ecosystems due to its improper treatment. Therefore, an eco-friendly,
sustainable, and cost-effective way to resolve this issue is necessary, bringing photocatalysis
into perspective [15–19]. Photocatalysis allows using clean, safe, and naturally available
energy with semiconductor photocatalysts for degrading organic pollutants, which is a
significant advancement [20–22].

BiOCl is a semiconductor with several advantages such as a visible light response,
high catalytic activity, controllable morphology, simple preparation process, and low
environmental toxicity; hence it can be used as photocatalytic material [23]. BiOCl’s layered
structure and internal electric field allow for its extensive application in degrading water
pollutants, dyes [24,25], phenolic groups [26–28], and antibiotics [29]. However, some of
its drawbacks are the large band gap of BiOCl (~3.4 eV) and its weak charge separation
efficiency. Many researchers have demonstrated that constructing composite materials
could enhance the photocatalytic performance of BiOCl [30–36]. Carbon materials have
been reported to promote the separation of photogenerated electron-hole pairs, but they also
suffer drawbacks such as complex synthesis procedures, high cost, etc. [37,38]. Therefore,
developing a low-cost, abundant carbon material with better photocatalytic and optical
properties than BiOCl is necessary to overcome these drawbacks.

Lignin is an essential cell wall constituent and the second most abundant poly-
mer. Worldwide, about five million metric tons of lignin are produced yearly as a non-
commercialized waste product; only two percent of total industrial lignin is valorized
yearly [39]. Currently, lignin-based waste products are highly undervalued and are pri-
marily used to produce energy. Kraft lignin is the prime by-product of the paper and pulp
industry produced after the kraft process and is the most underutilized material. Employ-
ing process modifications and cost-effective methods to extract Kraft lignin provides a more
efficient and value-added utilization of lignin. Therefore, lignin offers a novel, sustainable,
eco-friendly, and cost-effective approach to biochar production.

Biochar is a low-cost, environmentally friendly, and sustainable carbonaceous material
obtained from the pyrolysis of available waste biomass under limited oxygen conditions.
Biochar has excellent potential for managing industrial waste biomass, thus decreasing the
environmental pollution load. The use of different waste biomasses as biochar precursors
is sustainable as well as economical. Waste biomass considered for biochar production
includes paper mill waste, crop residues, food processing waste, municipal solid waste,
forestry waste, and sewage sludge [40,41]. Biochar has tunable functional groups, a devel-
oped surface structure, chemical stability, and unique photoelectric properties favorable [42]
for doping with photocatalysts that have received researchers’ attention. Biochar-supported
photocatalysts have been used in novel, environmentally friendly, and effective methods
for organic pollutants removal from wastewater [43,44].

The conventional way to evaluate photodegradation depends on changing an indepen-
dent variable such as the pH, catalyst dosage, and initial concentration while keeping other
parameters constant [45]. Consequently, the traditional method needed extra chemicals,
time, and energy consumption to evaluate each variable. Therefore, to resolve the issue,
RSM is used for process optimization and the design of experiments through different
models such as the Box–Behnken design (BBD), central composite design (CCD), etc. RSM
mainly establishes relations between independent variables and their responses using a
minimum number of experiments [38]. The RSM technique is used in various applications
such as in pharmaceuticals, chemical processes, microbiology, etc., to evaluate and optimize
the interactive effect among the influencing factors [46,47].

In this study, we utilize chemically activated biochar prepared from lignin to fabricate
BC-BiOCl composite photocatalysts via a one-step hydrolysis method. Herein, we degrade
MO dye to evaluate the enhancement in photocatalytic performance of BiOCl after intro-
ducing activated biochar. Different characterization tests were performed to determine the
composition, morphology, structure, and surface chemical properties of the as-prepared
samples. The photocatalytic degradation of MO under different operating states, such
as the initial dye concentration, catalyst dosage, and pH, was investigated. BBD of RSM
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is employed to optimize the experimental variables and evaluate the relation between
operating factors.

2. Materials and Methods
2.1. Materials

Ethylene glycol (C2H6O2, assay 98%), potassium chloride (KCl, assay 99%), potassium
hydroxide (KOH, assay 85%), and bismuth nitrate pentahydrate Bi(NO3)3.5H2O, assays
98%) were purchased from Molychem. Methyl orange (MO) from Spectrum reagents
and chemicals, alkaline lignin from the Tokyo chemical industry, absolute ethanol (assay
99%) from Changshu Hongsheng fine chemicals, sodium hydroxide pellets (NaOH, assay
97%) from Isochem laboratories, and hydrochloric acid (HCl, assay 35%) were used as
reagents. Distilled water was used to prepare solutions and the chemicals were used
without alteration.

2.2. Synthesis of Biochar and BC-BiOCl Photocatalyst

Biochar was prepared using alkaline lignin as a raw material via a one-step prepara-
tion method [48]. Alkaline lignin and the activating agent potassium hydroxide (KOH)
were taken in a 1:1 weight ratio and impregnated. The mixture was then subjected to
carbonization in a muffle furnace at 700 ◦C for 60 min. After getting cooled, the generated
activated biochar was washed withM HCl, warm water, and normal distilled water three
times. The sample was then dried at 100 ◦C for 6 h and stored.

The BC-BiOCl photocatalysts were prepared via a one-step hydrolysis method [49]. At
first, two mmol of bismuth nitrate pentahydrate Bi(NO3)3.5H2O was completely dispersed
in 20 mL of ethylene glycol at room temperature. Then for different weight ratios, a
particular amount of biochar was added to the Bi(NO3)3.5H2O solution. After that, in
20 mL of distilled water, 2 mmol of KCl was dissolved and added dropwise to the biochar
and bismuth nitrate suspension. The mixture was stirred for 12 h at room temperature
and filtered through filter paper. Then the filtered product was washed with pure ethanol
and deionized water three times and dried at 60 ◦C. Samples with different weight ratios
of biochar to BiOCl, namely 0%, 5%, 10%, 15%, and 20% were prepared and marked as
BiOCl, 5% BC-BiOCl (5BCPC), 10% BC-BiOCl (10BCPC), 15% BC-BiOCl (15BCPC), and 20%
BC-BiOCl (20BCPC), respectively.

2.3. Characterization of BiOCl-Biochar

The surface morphology of different samples was characterized using field emission
scanning electron microscopy (FESEM; Carl Zeiss GeminiSEM 300, 2.00 kV). In addition, the
elemental surface distribution was obtained using energy-dispersive X-ray spectroscopy
(EDX; EDAX-Ametek, 0–10 KeV), with the focused elements being Bi, O, Cl, and C. Crys-
talline structures of the prepared samples were characterized using X-ray diffraction (XRD;
Malvern PANalytical Empyrean 3rd Gen, Cu Kα wavelength = 1.54 Å, 45 kV, 40 mA)
between 3◦ to 80◦ with a scan rate of 8◦ per minute. To determine the sample’s optical
absorption and band gap energy, UV–Vis DRS was conducted. The synthesized samples’
absorbance and band gap energy were determined in the wavelength range of 300 to
800 nm. The thermal properties of the as-prepared samples were determined through
Thermogravimetric Analysis (TGA) using the thermal analyzer TGA4000. At a heating
rate of 10 ◦C/min, the samples were heated in the temperature range of 30 to 800 ◦C. The
pHpzc was evaluated using the pH drift method by agitating solutions of 0.01 M NaCl
solution with the pH varying from 2 to 12 containing 0.15 g of photocatalyst for 48 h. N2
adsorption–desorption studies were conducted to determine the adsorption capabilities of
different samples using a Brunauer–Emmett–Teller (BET) analyzer (Autosorb IQ-XR-XR,
Anton Paar, Austria). Before each adsorption measurement, the samples were degassed for
5 h under nitrogen at 80 ◦C.
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2.4. Photocatalytic Degradation Studies

Solutions of MO were subjected to adsorption under dark conditions for 150 min to
evaluate the adsorption capacity and kinetics of the synthesized photocatalyst. The general
parameters for the preliminary study were 200 mL of 30 ppm concentrated MO solution at
the unadjusted pH of 6.3 with 0.2 g of photocatalyst in a 300 mL crystallizing dish under
350 rpm stirring. The solution was exposed to a single UV-A (λ = 356 nm) lamp with 6 W
power, fixed at a distance of 10 cm throughout the study. The best-performing photocatalyst
was selected based on the preliminary experiments for further studies. Different parameters
governing MO degradation, such as dye concentration (10–50 ppm), photocatalyst dosage
(0.5–1.5 g/L), and pH (3–7), were investigated. Preceding the photocatalytic experiment,
the MO solution with the photocatalyst was stirred in the dark for 30 min to achieve an
equilibrium between the photocatalyst and dye solution. After 30 min of dark adsorption,
the solution was irradiated under UV-A light for 2 h. After every 30 min, 2.5 mL of sample
was collected using a 0.45 µm syringe filter, and the supernatant was analyzed using a
UV–Vis spectrophotometer (Shimadzu UV 2600) at a maximum adsorption wavelength
of 464 nm for the MO. To calculate the MO degradation efficiency the following formula
was used:

Degradation efficiency (%) = [(C0 − Ct)/C0] × 100% (1)

where C0 is the initial dye concentration (ppm) and Ct is the dye concentration at a specified
time interval t.

2.5. Experiment Design and Analysis

The Box–Behnken design (BBD) of RSM was employed to design the experiment and
validate the model for MO degradation using the BC-BiOCl photocatalyst. The experiment
design consisted of three factors and three levels for each factor. The catalyst dosage
(g/L), dye concentration (ppm), and pH were selected as independent factors, and the MO
degradation (%) was taken as the dependent factor for the RSM analysis. The selected
independent factors were normalized at three different levels, i.e., high (+1), center (0), and
low (−1). Furthermore, the range for these independent parameters was chosen based on
preliminary studies. The BBD model analyzed the experimental data and fitted them in a
quadratic equation of the form:

Y = +∑n
i=1 aixi+∑n

i=1 aiixi2+∑n−1
i=1 ∑n

i=1 aijxixj + ε (2)

where Y refers to the predicted response, a0 is the coefficient constant, ai is the linear
coefficient, aii is a quadratic coefficient, aij is the interaction coefficient among the factors,
xi and xj are coded values of parameters, and ε is the model error [50].

3. Results and Discussion
3.1. Characterization of the Pure Phases (BiOCl Nanoparticles and Lignin-Derived
Activated Biochar)

The first task was to examine the physicochemical features of the received “pure”
inorganic phase in order to conclude if the followed synthetic protocol led to nanostructured
BiOCl. From the scanning electron microscopy (SEM) and high resolution, the SEM (HR-
SEM) it can be concluded that the obtained material consisted of uniform platelet/disk-like
shaped nanoparticles (Figure 1a) with a thickness of 15–25 nm and diameter in the range
from 55 to 160 nm, with an average of 95 nm. The XRD pattern of the pure BiOCl-NPs
fit absolutely with the standard tetragonal BiOCl data (JCPDS No. 85–861), with the
characteristic reflection at (011), (110), and (012) (Figure 2) to be the predominant ones. As
it was expected, the values of the textural parameters as estimated from the N2 sorption
tests were not so high, but in accordance with analogues reported in the literature for the
same class of materials. The BiOCl sample presented a specific surface (SBET) of 19 m2/g
and a non-porous nature (total pore volume of 0.037 cm3/g), with the formed “pores” to be
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as a result of the formed inter-particles, inter-clusters, or/and inter-aggregate cages/spaces
within the nanoparticles [51].
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of lignin-derived biochar.

Regarding the pure alkaline lignin-derived biochar, it had a uniform structure (Figure 1b)
of a not-densely packed nature, where uneven cages and cracks with openings at the
macro-scale exist. The nitrogen sorption isotherm (Figure 3) revealed that the material had
a broad pore size distribution, but was predominately micro-porous since the isotherm
can be designated as Type I(b) [52], although a significant volume of wider micro- and
narrow mesopores also existed. The SBET was measured as 1161 m2/g. The above textural
characteristics are assumed as beneficial for utilization as a support/composite-filler, in
order to enable the dispersion of the photo-active inorganic phase [53–56] and to promote
mass transfer/diffusion phenomena [57]. The XRD pattern of biochar clearly indicated that
the material was amorphous and no other crystallinities existed as impurities.
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biochar, BiOCl, and 15BCPC.

3.2. Characterization of BiOCl-Biochar Composites

The first goal of the multifunctional composites’ design and development concept
was to determine which amount of biochar can be assumed as the optimum one. Hence,
four different loadings of biochar were studied. As can be seen from the XRD patterns
(Figure 2), the addition of the organic phase did not affect the crystallization process. On the
contrary, the intensity of the diffractions for BiOCl crystals increased while the theoretical
amount of the used powder for the tests decreased due to the addition of biochar. This can
suggest that bigger crystals were formed as a result of the biochar acting as a substrate for
crystallization. Based on the preliminary photocatalytic tests (the most important will be
presented herein afterward at the discussion of the kinetic analysis), the composite with a
15% theoretical amount of biochar (15BCPC) presented the best performance and so the
experiments were focused on this sample.

The SEM images of the composite (Figure 1c) revealed that the structure and mor-
phology of either biochar or BiOCl nanoparticles did not change, with the former acting
as a substrate for the NPs. The uniform dispersion of the nanoparticles can be concluded
both based on the SEM images and more importantly from the EDX analysis (Figure 4)
where the homogeneous dispersion of Bi and Cl is observable. It should be pointed out
that micro-scaled aggregations of BiOCl were found, although few.
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The thermogravimetry analysis (TGA) curves in helium of BiOCl, biochar, and 15BCPC
are shown in Figure 5. BiOCl was found very stable even up to 700 ◦C. The thermal profile
of biochar shows two significant weight loss phases. The first and big one of around
29.5 wt.%. until 130 ◦C can be linked to the removal of adsorbed water/humidity [58]
or/and volatile substances from the pores. It can be linked to the high surface area and in
addition, can suggest great hydrophilicity of the biochar’s surface [59,60]. Considering that
the weight loss up to 180 ◦C is negligible for BiOCl, ~30% for the biochar and ~5.6% for the
composite, it can be concluded that the organic porous biochar phase was around 19% per
mass. This value is as expected slightly higher than the targeted 15%, due to the differences
in the crystallization process. The total weight losses at 800 ◦C for BiOCl, biochar, and
15BCPC were around 18%, 72, and 32%, respectively.
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The surface area of the composite was found to be 126 m2/g. If the material was a
physical mixture, the expected surface area taking into account the wt.% of biochar (as
derived from TGA), would be (19% × 1160 + 81% × 19 =) 236 m2/g. This difference in SBET
can be assigned to the blockage of the pores’ entrance/window as well as to possible arising
synergistic effects [61,62]. From the isotherms and the pore size distribution (Figure 3b)
plots can be assured that the porous network consisted of pores with a wide range of
diameters, which is an important feature for adsorption and catalytic applications since
the diffusion of the molecules to the active catalytic sites through the network of pores is
promoted. In addition, it can be seen that the wide micropores and the small macropores
that were expected due to the presence of the biochar cannot be found, a fact that supports
the above-mentioned.

The optical features of the sample were evaluated using diffuse reflectance spec-
troscopy in the electromagnetic range UV-A-visible and the adsorption spectra are shown
in Figure 6a. We can observe that the pristine BiOCl presented negligible light adsorption in
the visible range of light but strong adsorption from 380 nm and below. The introduction of
biochar resulted in a significant enhancement of light adsorption in the visible range, which
is a key feature upon utilization of the nanomaterial for ambient solar light applications.
This is in agreement with the color of the materials from white for pure BiOCl to light
grey for the composite, as was also reported previously in the case of the incorporation of
carbonaceous phases towards composite formation [62]. The Tauc plots (Figure 6b) derived
using the Kubelka–Munk function were used for the estimation of the band gap (Eg) ener-
gies that were found as 3.43 and 3.30 eV for BiOCl and 15BCPC, respectively. Distinctly, the
band gap energy of the sample decreased with the addition of biochar because biochar acts
as a sensitizer and creates a delocalized state inside the BiOCl band gap [63].
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The point of zero charge (pHpzc) was evaluated to determine the surface charge of
15BCPC. At different pH solutions, the interaction of the photocatalyst surface particles
with the solvent ions is distinct, giving rise to different charges on the photocatalyst surface.
The pHpzc is the point where pHfinal = pHinitial, and we observed in Figure 7 that the pHpzc
for 15BCPC is 4.09. Therefore, we can infer that the surface of 15BCPC has a positive
charge for a pH < 4.09 and a negative charge for pH > 4.09. Moreover, since we are
degrading an anionic dye, i.e., MO, adsorption, and photocatalytic degradation of the dye
are favorable at a pH < 4.09 due to the electrostatic attraction. The degradation efficiency of
the photocatalyst is supposed to decrease for a pH > 4.09 due to repulsive force since both
15BCPC and MO have a negative charge at this pH.

Nanomaterials 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

 
(a) (b) 

Figure 6. The UV–Vis diffuse Reflectance Spectra of BiOCl and 15BCPC (a) and the derived Tauc 
plots (b) for the estimation of the band gap. 

The point of zero charge (pHpzc) was evaluated to determine the surface charge of 
15BCPC. At different pH solutions, the interaction of the photocatalyst surface particles 
with the solvent ions is distinct, giving rise to different charges on the photocatalyst sur-
face. The pHpzc is the point where pHfinal = pHinitial, and we observed in Figure 7 that the 
pHpzc for 15BCPC is 4.09. Therefore, we can infer that the surface of 15BCPC has a positive 
charge for a pH < 4.09 and a negative charge for pH > 4.09. Moreover, since we are de-
grading an anionic dye, i.e., MO, adsorption, and photocatalytic degradation of the dye 
are favorable at a pH < 4.09 due to the electrostatic attraction. The degradation efficiency 
of the photocatalyst is supposed to decrease for a pH > 4.09 due to repulsive force since 
both 15BCPC and MO have a negative charge at this pH. 

 
Figure 7. The pHpzc plot of 15BCPC using a 0.1 M NaCl solution. 

Based on the above-presented physicochemical characterizations, it is of utmost im-
portance to conclude that some unique features of each counterpart were maintained. The 
first one is the elevated surface area and the micro- and meso-pores network, which is 
expected to promote the diffusion of the organic pollutants towards the reactive site in 
order to be converted or/and adsorbed. The high porosity can be linked to the biochar that 
acted as a support and its presence led to a homogeneous dispersion of the inorganic 
photo-active phase. What is also important is that the crystallinity and the nanoscale size 
of the photoactive nanoparticles were maintained when the synthesis took place with the 
co-presence of the biochar. The derived synergistic effects upon the composite formation 
and interaction of the inorganic–organic phase were expected to have a positive impact 
on the bifunctional adsorptive and photocatalytic remediation efficiency. This was ex-
pected not only for the narrowing of the Eg in the case of the composite, but also for the 
well-known effect of the carbonaceous phase when it is used as fillers to favor the 

Figure 7. The pHpzc plot of 15BCPC using a 0.1 M NaCl solution.

Based on the above-presented physicochemical characterizations, it is of utmost im-
portance to conclude that some unique features of each counterpart were maintained. The
first one is the elevated surface area and the micro- and meso-pores network, which is
expected to promote the diffusion of the organic pollutants towards the reactive site in
order to be converted or/and adsorbed. The high porosity can be linked to the biochar
that acted as a support and its presence led to a homogeneous dispersion of the inorganic
photo-active phase. What is also important is that the crystallinity and the nanoscale size of
the photoactive nanoparticles were maintained when the synthesis took place with the co-
presence of the biochar. The derived synergistic effects upon the composite formation and
interaction of the inorganic–organic phase were expected to have a positive impact on the
bifunctional adsorptive and photocatalytic remediation efficiency. This was expected not
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only for the narrowing of the Eg in the case of the composite, but also for the well-known
effect of the carbonaceous phase when it is used as fillers to favor the photoinduced e−/h+

pairs separation and delocalization within the entire photocatalyst’s mass [62,64,65].

3.3. Control Experiment

The main goal for the composite was to present multifunctionality and to be able
efficiently to combine the remediation features of the two counterparts against the targeted
organic pollutant, meaning for both to promote the photocatalytic decomposition of as well
as to show an elevated adsorption performance. From the point of view of remediation
tests, the main task was to optimize the removal bi-functional process using RSM studies.
It should be pointed out that the pyrolysis temperature was chosen also based on the
preliminary optimization tests.

The control experiments were performed in the dark and under UV light to determine
the role of photolysis and adsorption in removing the MO, as shown in Figure 8. The
photolysis experiments revealed that the MO is stable and resistant to UV light, since only a
6% decomposition was recorded for a solution of an initial concentration of 30 ppm, using
1 g/L photocatalyst, and at a pH of 6.3 (that remained unchanged through the experiment
without an acid/base addition). In the dark, BiOCl and 15BCPC resulted in 19% and
82% MO removal (after 150 min). These values are significantly high also considering the
textural features of the materials and suggesting that the composite can perform acceptably
even in the dark. Upon UV light irradiation, BiOCl and 15BCPC showed 30% and 99% MO
removal (after 150 min) indicating that both samples are photo-active. A clear outcome
is that the addition of biochar had a dramatically positive impact on the photo-assisted
remediation performance, since when using less than 20% per mass, a more than three
times higher remediation efficiency was achieved. In general, it can be concluded that
15BCPC possesses excellent adsorption and photocatalytic efficiency due to its porous
structure, high surface area, surface properties, and the homogeneous dispersion of the
photoactive phase.
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3.4. Kinetic Studies

The photocatalytic performance of BC-BiOCl towards the degradation of MO under
UV light was also examined kinetically. In Figure 9a the photo-assisted removals of BiOCl
composites with different amounts of biochar under the same conditions are collected. It can
be observed that 20BCPC exhibited the best photocatalytic performance, although 15BCPC
showed a very close performance. For both 15BCPC and 20BCPC, the MO removal reached
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100% in 120 min, which is significantly higher than the adsorptive and photocatalytic
efficiency of pristine BiOCl, 5BCPC, and 10BCPC within a limited time.
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its composites with different amounts of lignin-derived biochar (a) and the apparent rate constants of
the MO removal (b) under UV light irradiation.

To analyze the MO degradation kinetics and quantify the photocatalytic efficiency of
the prepared photocatalyst, the rate constant (k) was evaluated by fitting the experimental
data into a pseudo-first-order kinetic equation:

ln (C0/Ct) = −kappt

where C0, Ct, and t are the initial concentration of MO (mg/L), the concentration of MO
at time t, and the reaction time, respectively, and kapp denotes the apparent rate constant
(min−1) of the pseudo-first-order reaction. Figure 9b shows the apparent rate constants of
Biochar-BiOCl composite photocatalysts, and we can observe that 15BCPC has the best
photo-assisted MO removal rate. The kapp values of pristine BiOCl, 5BCPC, 10BCPC,
15BCPC, and 20BCPC are 0.00148, 0.0045, 0.01863, 0.02176, and 0.02029 min−1 respectively.
15BCPC showed the fastest removal rate, approximately 14.7 times higher than that of pure
BiOCl, demonstrating the enhancement in the bi-functional removal ability of samples after
introducing biochar. The photocatalytic efficiency of 20BCPC is less than that of 15BCPC
because the excessive biochar in the photocatalyst hampers the light absorption capability
of pure BiOCl and thus decreases the number of photogenerated carriers.

3.5. Statistical Analysis and Optimization Study of MO Removal

To determine the relationship between independent process variables (the catalyst
dosage (A), the dye concentration (B), and the pH (C)) and the dependent variable (MO
removal) after 60 min of photocatalysis, the results of the experiments designed by BBD
were fitted in a second-order polynomial equation. The experiment designed by BBD
had a total of 17 experimental runs with three defining factors, as shown in Table S1. The
quadratic polynomial equation, which establishes the relationship between the independent
variables and the response using the experimental results, is defined as follows:

R1 = 100 + 16.66 A − 16.63 B − 7.59 C + 16.37 AB + 6.42 AC − 8.91 BC − 9.99 A2 − 8.64 B2 − 6.75 C2.

In Table S2, the ANOVA results for the quadratic model are shown. The model F-value
of 190.40 and the corresponding p-value (<0.0001) imply that the model is significant since
there is only a 0.01% chance of having an F-value so substantial that it causes of the noise.
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A model term is regarded as significant if the p-value is less than 0.05 [66]; therefore, for
this model, A, B, C, AB, AC, BC, A2, B2, and C2 are significant model terms. Adequate
precision, i.e., the signal-to-noise ratio and a ratio greater than 4 [67], are preferable. For
this model, the ratio is 44.209 indicating an appropriate signal for moving forward with
this model to navigate the design space.

Figure 10 represents the correlation between predicted results and the experimental
results of the MO degradation and we can observe that the experimental data fit well into
this model. The R2 value of 0.9959 indicates a strong correlation between the polynomial
model and the experimental results; therefore, we can apply this model to estimate the
response for the MO removal within the studied range. The difference between the values of
Predicted R2 and Adjusted R2 is reasonable, i.e., less than 2, and the value of the C.V. is 2.37%
which is less than 10%, which reflects the accuracy and the reliability of the experiment.
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The impact of the catalyst dosage, initial dye concentration, and pH on the photo-
catalytic degradation of MO is shown through response surface graphs in Figure 10. The
effect of the dye concentration on MO degradation is shown in Figure 10a at a pH of 5
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and a reaction time of 60 min. In the Figure, for 0.5 g/L catalyst dosage, MO removal
efficiency decreased from 99.3161 to 30 % with the increase in dye concentration from 10 to
50 mg/L; this decrease was almost negligible at higher catalyst dosages such as 1.5 g/L.
The reduction in MO removal efficiency was mainly due to the decrease in the number
of composite molecules interacting with dye molecules and the decline in the number of
photons reaching the photocatalyst caused by the solution’s intensive color [68].

Figure 10b shows the impact of the catalyst dosage on MO removal efficiency at a
30 g/L dye concentration and reaction time of 60 min. We can observe from the graph
that the MO removal increased with the increase in the catalyst dosage from 0.5 to 1.1 g/L
but decreased gradually with the increase in catalyst dosage up to 1.5 g/L. The rise in
catalyst dosage increased the number of active sites available and, thereby, the degradation
efficiency; these results are more significant at a higher pH such as 7 (53.68–99.72%). The
MO removal efficiency decreased after a 1.1 g/L catalyst dosage due to the agglomeration
in the photocatalyst, which interrupted the light passage. A higher catalyst dosage caused
high turbidity, leading to increased light scattering and decreasing the number of photons
adsorbed by the photocatalyst [69].

Figure 10c shows the effect of the pH on MO removal efficiency at a catalyst dosage of
1 g/L and reaction time of 60 min. We can observe from the curve that at a dye concentra-
tion of 50 mg/L, the MO degradation efficiency decreased from 87.17% to 52.09% as the
pH changed from 3 to 7. This change in degradation efficiency is negligible at lower con-
centrations such as 10 mg/L. A change in the electrostatic attraction or repulsion between
the photocatalyst and dye molecules caused a decrease in the degradation efficiency of the
MO with a change in pH. The photocatalyst surface charge played a role significant in the
adsorption of the dye molecules and their dissociation in an aqueous solution. The pHpzc
for 15BCPC was determined earlier to be 4.09, which indicates that the photocatalyst sur-
face was positively charged at pH 3–4 and negative at pH 4–7. Therefore, the degradation
efficiency of MO, an anionic dye, increases for a pH < 4.09 due to electrostatic attraction
and decreases for a pH > 4.09 due to repulsion between the molecules.

3.6. Process Optimization and Model Validation

An optimization process was conducted to determine the optimum values of inde-
pendent variables for MO degradation by the 15BCPC photocatalyst. The independent
parameters such as the concentration of dye, photocatalyst amount, and pH were set as
“with range,” while the response was set as “maximize” to attain the maximum MO degra-
dation. The optimum conditions for the maximum MO removal (100%) proposed by the
model were 1.386 g/L of catalyst dosage, 41.785 mg/L of dye concentration, and a pH
of 3.147 after 60 min of photocatalysis. The optimization experiment was done twice to
verify the precision of the model, and the average result of these experiments was 100%
MO removal. Therefore, this confirms that the BBD model used is reliable and accurate in
predicting the MO removal in the studied range.

3.7. Reusability Study

The reusability of the 15BCPC photocatalyst for removal of MO was studied at opti-
mum conditions (catalyst dosage 1g/L, dye concentration 30 mg/L, and pH 5) for 180 min
up to 3 cycles. After every cycle, the photocatalyst was recovered by centrifuging (for
5 min at 8000 rotations per minute), filtering, and then washing the photocatalyst for up
to four consecutive cycles with deionized water and finally kept for drying in an oven
at 60 ◦C. Multiple tests were conducted to overcome the mass loss after each cycle and
to gather sufficient samples for the next cycle. The results show that 15BCPC exhibited
high photo-assisted removal even after 4 cycles as shown in Figure 11, indicating the
photocatalyst′s stability and sustainability. It should be pointed out that the almost 63%
removal after 4 cycles can be assumed as a high value, since no regeneration at a high
temperature or/and by extraction was followed.
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3.8. Photo-Remediation Mechanisms

It is well reported in the literature that bismuth oxyhalides (BiOX)-based materials are
assumed as an emerging class of photo-active candidates for photocatalytic applications,
due to their nano-scaled nature, their layered structure, and above all, their resilient
absorption of visible light [70,71]. The main reported active species and mechanisms
responsible for BiOX photocatalytic decomposition of MO can be seen in Figure 12. Among
the various oxygen-containing reactive species that can be created during photocatalytic
processes [72,73] and the photo-induced electrons and holes pairs, the ones that showed
to play a key role during the MO decomposition were the holes and the generated •O2

−

radicals, while electrons and hydroxyl radicals (•OH) did not play a direct intensive
role [74].
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Although, the photocatalytic performance of “pure” bismuth oxyhalide materials
was low. Hence, the functionalization/activation, as for instance the formation of oxygen
vacancies and defects by chemical treatment/modifications [70,74] or the designing of
composites with conductive phases such as graphite or graphitic carbon nitride, in order to
enhance the electron delocalization and as a result to prevent the e−/h+ (charge carries)
recombination [51,55,62,70,75,76], can affect positively the photocatalytic environmental
remediation efficiency, as it occurred in this study where lignin-derived biochar was used
as a filler towards photo-active nano-composites formation.
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4. Conclusions

In this work, a one-step hydrolysis method was used to synthesize a photo-active
composite consisting of lignin-derived biochar and bismuth oxychloride (BiOCl) nanopar-
ticles as bi-functional (photocatalytic and adsorptive) remediation media. The addition
of biochar had a positive impact on the removal of the dye MO, with the material having
around 20% of biochar to present the best performance. The dimensions of the photo-active
platelet/disk-like shaped nanoparticles were 55 to 160 nm in diameter with a thickness
of 15–25 nm. The best-performing composite (15BCPC) presented a specific surface area
of 126 m2/g. Since this value is almost half compared to the expected one in the case of
a physical mixture, it is clear that the crystallization of the nanoparticles on the biochar
acting as a support, led to the blockage of the pores’ entrance/window. The photocatalytic
removal of the MO using 15BCPC followed the pseudo-first-order reaction, and the value
of the removal rate constant (K) was found to be about 14.7 times that of pristine BiOCl.
BBD was used to design and analyze the experiment and the R2 value of 0.9959 verified
that the BBD model was fit to optimize the results. The effect of different process variables
was studied using response surface graphs. The optimized conditions for maximum degra-
dation (100%) of the MO were found at 1.386 g/L of the catalyst dosage, a pH of 3.147, and
a dye concentration of 41.785. The photocatalyst 15BCPC showed stable photocatalytic
efficiency (85%) even after three cycles of reusability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13040735/s1, Table S1: Experimental results for the three
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