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Abstract: Different amounts of sodium-alendronate (ALN) were loaded into layered zirconium
phosphates of alpha and gamma type (αZP and γZP) by means of topotactic exchange reactions
of phosphate with ALN. In order to extend the exchange process to the less accessible interlayer
regions, ALN solutions were contacted with colloidal dispersions of the layered solids previously
exfoliated in single sheets by means of intercalation reaction of propylamine (for αZP) or acetone (for
γZP). The ALN loading degree was determined by liquid P-nuclear magnetic resonance (NMR) and
inductively coupled plasma (ICP), and it was reported as ALN/Zr molar ratios (Rs). The maximum
R obtained for γZP was 0.34, while αZP was able to load a higher amount of ALN, reaching Rs equal
to 1. The synthesized compounds were characterized by X-ray powder diffractometry, scanning
electron microscopy (SEM), solid-state NMR, and infrared spectroscopy. The way the grafted organo-
phosphonate groups were bonded to the layers of the host structure was suggested. The effect of ZP
derivatives was assessed on cell proliferation, and the results showed that after 7 days of incubation,
none of the samples showed a decrease in cell proliferation.

Keywords: zirconium phosphate; gem-bisphosphonate; alendronate; topotactic exchange; solid-state
NMR; cytotoxicity

1. Introduction

The research on metal phosphonates has grown considerably over the last few decades [1]
due to an increased demand for new functional and versatile solids for applications in many
fields of materials chemistry. Specifically, the design of organically modified surfaces allows
access to materials possessing tunable properties. This modification can be performed by
grafting onto the surface appropriate functional molecules, thus, providing better control
of the density and orientation of the organic component at the surface [2].

As far as the synthetic approaches are concerned, zirconium phosphonates (ZPs) can
be prepared according to two main procedures: direct synthesis and a topotactic exchange
reaction that leaves the layer structure essentially unchanged. There are many examples in
the literature on the topotactic exchange reactions involving γ-type zirconium phosphate
(Zr(PO4)(H2PO4)·2H2O, hereafter γZP [3], while few papers report the topotactic synthesis
of α-type zirconium phosphonates from α-zirconium phosphate (Zr(HPO4)2·H2O, hereafter
αZP, by using both severe conditions of temperature and pressure and molten phosphonic
acid [4] and, more recently, quicker and milder conditions [5]. The great variety of functional
groups based on both monophosphonates and diphosphonates that can be incorporated
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into these metal phosphonate structures leads to unique chemistry [6]. However, until now,
no example of zirconium phosphonates based on geminal phosphonates has been reported.
The gem-bisphosphonate (BP) family constitutes a class of drugs used for the treatment of
bone diseases by promoting bone mineralization and inhibiting bone resorption. They are
characterized by a P-C-P bond, where Ps are phosphonate (-PO3

=) groups, and consequently,
they are analogs of pyrophosphate but are resistant to chemical hydrolysis. Individual BPs
differ in the two covalently bound side chains, R1 and R2, which complete the tetra valence
of the carbon atom [7]. Amino BPs, such as alendronate (ALN) (Scheme 1), can be delivered
by systemic delivery or otherwise by local delivery. Although the adsorption of BPs on the
implant is a simple procedure, it suffers from the out-of-control release of BPs over the long
term and may influence specific physiological responses [8].
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The effective immobilization of bioactive species on solid substrates without changing
their original structure and bioactivity, which allows for maintaining drug release over
a sustained period, has attracted increasing interest among researchers along with rapid
advances in biodevices [9,10]. The topotactic exchange method can be considered an
alternative to the preparation, via the intercalation reaction, of drug delivery systems based
on ZP compounds. In this scenario, the intercalation of drugs such as doxorubicin [11]
and 5-fluorouracil [12], chlorhexidine [13], methylene blue as a photosensitizer [14], and
NorA efflux pump inhibitors [15] was successfully performed on ZP supports. Thus, ZPs
have shown promising results as nanocarriers for drug delivery and other biotechnological
applications [1]. This research highlights the potential of the topotactic exchange method to
prepare modified ZP in which ALN is covalently anchored on the surface of the supports.
In this way, it is possible to obtain an efficient load of the drug and a mediated release,
reducing, at the same, the risk of the out-of-control release of BPs.

Here, novel zirconium phosphate phosphonates prepared by a topotactic exchange
reaction of αZP and γZP with ALN are reported. The loading of ALN in αZP and γZP is
determined by elemental analysis and liquid NMR. The connectivity of ALN to zirconium
in the α and γ layer is investigated, in detail, by X-ray diffraction and solid-state NMR.
Finally, the biocompatibility of αZP and γZP with ALN is investigated.

2. Materials and Methods
2.1. Materials

Alendronate sodium trihydrate C4H12NaNO7P2·3H2O was purchased from Farmala-
bor (Canosa di Puglia (BT), Italy). All other reagents were purchased from Merck (Milano,
Italy) and were used as received without further purification.

2.2. Synthesis of αZP and γZP

Semicrystalline αZP was synthesized as reported in [16]. Typically, a weighed amount
of zirconium oxide chloride was dissolved, under stirring at ambient conditions, in 35 mL of
an aqueous solution of oxalic acid, where Zr(IV) concentration was 0.1 M and the H2C2O4/
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Zr molar ratio was 10. Then, a volume of 14.8 M H3PO4 was added so that the P/Zr
molar ratio was 6. The solution obtained was heated for 24 h at 80 ◦C in a closed bottle.
The resulting precipitate was separated from the solution by centrifugation at 3000 rpm,
washed three times with a diluted HCl solution, dried overnight at 80 ◦C, and, finally,
stored in a desiccator at 53% relative humidity (RH). Crystalline γZP was prepared as
reported in [17]. Briefly, 50 mL of an aqueous solution of 0.034 M ZrOCl2·8H2O and a
concentrated HF solution (F/Zr molar ratio = 6) were mixed with a 50 mL solution of
0.94 M NH4H2PO4·H2O so that the molar ratio P/Zr was 55. The solution was placed at
80 ◦C in a closed bottle for 5 days. The precipitate obtained was separated from the solution
by centrifugation at 3000 rpm, washed three times with 10−3 M HCl, dried overnight at
80 ◦C, and, finally, stored in a desiccator over a saturated BaCl2·2H2O solution (90% RH).

2.3. Delamination of αZP and γZP

αZP was delaminated following the procedure reported in [18]. Briefly, 1 g of αZP
was suspended in 100 mL of water, and then, 33.2 mL of 0.1 M n-propylamine (N/P molar
ratio of 1:1) was added under vigorous magnetic stirring. A volume of 10 mL of HCl 1M
was added to the solution (so as to reach pH < 2) to remove the base and regenerate the
hydrogen form of ZP. The resulting solid was separated by centrifugation at 5000 rpm
from the solution and washed with copious amounts of water until the samples were free
of chloride ions. This gel sample labeled as αZPg was stored in a closed container. To
determine the content of solid in the gel, a weighted amount of the gel was dried in an oven
at 100 ◦C up to constant weight. The content of the solid was ca. 7 wt %. As for γZP, the
colloidal dispersion was obtained following the procedure reported in the literature [12]:
0.5 g of solid was suspended in 70 mL of water/acetone (1:1 v/v) at room temperature in a
closed container and then kept at 80 ◦C for 2 h under magnetic stirring [17]. The dispersion
was labeled as γZPg.

2.4. Preparation of ZP ALN-Based Compounds

A weighted amount of αZPg or γZPg containing 1 g of solid was added to a 0.1 M
aqueous solution of ALN using different ALN/Zr molar ratios (Rs), ranging from 0.5 to
2. The mixture was kept at 80 ◦C for five days in a closed vessel. The solid was recovered
and washed several times with deionized water to remove any remaining unreacted ALN
and, finally, dried at 50 ◦C overnight. All samples were stored over a saturated solution of
BaCl2·2H2O. The solids were labeled as αZPR and γZPR, where R = 0.5, 1, 2.

2.5. Analytical Procedures

ICP was used to determine zirconium and phosphorus contents using a Varian Liberty
Series II instrument working in axial geometry (Varian 700-ES series, Santa Clara, CA,
USA). The samples were mineralized with some drops of concentrated hydrofluoric acid
and concentrated nitric acid.

Carbon, nitrogen, and hydrogen contents were obtained by elemental analysis using
an EA 1108 CHN, (Fisons instrument, Glasgow, UK).

X-ray powder diffraction (XRD) patterns were collected with the Cu-Kα radiation on
a Bruker D8 Advance diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) equipped
with a Lynxeye XE-T detector. The long fine focus (LFF) tube was operated at 40 kV and
40 mA. The samples were carefully side-loaded onto a zero-background sample holder
to minimize preferential orientations of the microcrystals. The phase identification was
performed using Bruker DIFFRAC.EVA V5 software equipped with the COD database
(software version 2.0 up, © 2010–2019 Bruker AXS GmbH, Karlsruhe, Germany).

Field-emission scanning electron microscopy (FE-SEM) was employed to collect im-
ages using an LEO 1525 ZEISS instrument (Jena, Germany) working with an acceleration
voltage of 15 kV. The elemental mapping of metals in samples was conducted by using
energy-dispersive X-ray spectroscopy (EDX) (Ewing, NJ, USA).
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Attenuated total reflection (ATR) FT-IR measurements were carried out using a Shi-
madzu IR-8000 spectrophotometer (Kyoto, Japan). The spectral range measured was 400 to
4000 cm−1, with a spectral resolution of 4 cm−1 acquiring 100 scans.

Solid-state NMR spectra were collected on a Bruker Avance III 500 spectrometer
(Faellanden, Switzerland) and a wide bore 11.75 Tesla magnet with operational frequencies
for 1H, 13C, and 31P of 500.13, 125.77, and 202.46 MHz, respectively. A 4 mm triple resonance
probe in double resonance mode with magic angle spinning (MAS) was used in all the
experiments. The samples were loaded in a zirconia rotor, closed with a Kel-F cap, and
spun at a MAS rate of 15 kHz. 31P MAS spectra were collected with a 90-degree pulse,
and the magnitude of the radio frequency field was 70 kHz with 1H decoupling during
acquisition. Spectra were recorded with a spectral width of 100 kHz, and 16 transients were
accumulated at 300 K using a relaxation delay between accumulations of 300 s.

For the 13C{1H} cross-polarization (CP) MAS experiments, proton radio frequency (RF)
fields of 62 and 33 kHz were employed for initial excitation and decoupling, respectively.
During the CP period, the 1H RF field was ramped using 100 increments, whereas the
13C RF field was maintained at a constant level. A moderate ramped RF field of 55 kHz
was used for spin locking, while the carbon RF field (40 kHz) was matched to obtain the
optimal signal. During the acquisition, the protons were decoupled from the carbons by
using a Spinal-64 decoupling scheme. A CP contact time of 2 ms and a delay between
scans of 10 s (for ALN) and 1 s were used. Spectra were acquired with a spectral width of
42 kHz, and between 256 (for ALN) and 5120 transients were accumulated at 300 K. All
chemical shifts were reported using δ scale and were externally referenced to ammonium
dihydrogen phosphate at 0.8 ppm for 31P and TMS at 0 ppm for 13C.

2.6. Cell Cultures

MG-63 (human bone osteosarcoma) (Sigma Aldrich, Milano, Italy) was cultured
in minimum essential medium with 10 vol % fetal bovine serum, 2 mM L-glutamine,
0.1 mM MEM nonessential amino acids (NEAAs), 100 U·mL−1 penicillin, and 100 U·mL−1

streptomycin in an incubator set at 37 ◦C with 5% CO2. Cells were seeded on samples at a
density of 5 × 104 cells·cm2 [19,20].

2.7. Resazurin Reduction Assay

The resazurin reduction assay assesses cell viability; the resazurin solution was inlaid
directly to the samples with 10 vol % and incubated for 4 h. All the details are described
by Barbalinardo et al. [21] The plate reader used was a Thermo Scientific Varioskan Flash
Multimode Reader (Waltham, MA, USA).

3. Results and Discussion

Gamma zirconium phosphate has a layered structure, and each layer is made of two
planes of zirconium coordinated by tetradentate trivalent PO4 groups between them and
bidentate monovalent H2PO4 groups on the external part of each layer [22]. As a result,
these external dihydrogen phosphate groups can be easily replaced by other phosphonate
groups by contacting γZP with a solution of the proper incoming phosphonic acid through
a topotactic reaction, which leaves unaltered the remaining (covalent) connectivity of
gamma layer [23]. The topotactic process is especially efficient when colloidal dispersions
of exfoliated γZP are used as a substrate, where the solution has free access to the surface
of all layers. The amount of replacement is gradual with the formation of solids with the
general formula ZrPO4(H2PO4)1−x(O2PJJ’)x, in which J and J’ can be H, OH, or organic
groups. The x value generally depends on the steric and electronic features of the incoming
group and, given the above formula, at maximum can be 1.

Zirconium phosphate-ALN, with an increasing content of ALN, was prepared using
topotactic exchange reactions by contacting exfoliated γZP with solutions containing
different relative amounts of alendronate (R values of 0.5, 1, and 2). The samples prepared
with R ≥ 1 showed the same XRD profile and composition, determined by liquid NMR
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and ICP measurements, suggesting that γZP1 contained the maximum amount of ALN
supported by the gamma structure. No further phosphate groups, with respect to γZP1,
could be exchanged by using R = 2. Therefore, only γZP05 and γZP1 samples underwent
further analysis.

The XRD patterns of γZP-ALN samples in comparison with that of γZP are shown in
Figure 1. The topotactic exchange of phosphate groups by ALN caused some modifications
in the diffraction profile of the samples with respect to the pristine γZP: an increased
broadening of the reflections, the shift of the first reflection towards lower 2theta angles,
and the presence of more than one phase. The peak broadening can be associated with
the loss of order inside the structure; the reaggregation of lamellae functionalized with
ALN probably caused a disordered re-staking of the layers due to the bulky structure of the
phosphonic acid and to its random occupation of the surface sites of γ-sheets. As expected,
given the dimension of ALN, the interlayer distance of the samples increased from 12.2 Å
of pure γZP to 15.4 Å. The additional reflections at 7.7◦ 2θ (d = 11.4 Å) may likely be
ascribable to the half-sodium-exchanged forms of γZP, as previously reported [24]. The
formation of this phase can be explained considering that some phosphate groups remained
not exchanged, and the sodium cations, present as counter anions in ALN (Scheme 1),
exchanged the most acid protons of phosphate groups. The reflection at about 11.4 Å
disappeared (Figure S1) after washing the samples with 0.1 M HCl as a result of sodium
exchange with the proton; this confirms the attribution of this reflection to the hydrated
half-sodium-exchanged forms of γZP.
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Figure 1. Frame (A) XRD of γZP: γZP05 (a) and γZP1 (b). Frame (B) XRD patterns of αZPg, αZP05
(a), αZP1 (b), and αZP2 (c). All samples were conditioned over BaCl2 (90% RH).

αZP is also a layered compound, and the structure of the layers is simpler than γZP,
as each α-layer consists of a plane of zirconium atoms coordinated by tridentate HPO4
groups, which occupy both faces of the layers. Although these hydrogen phosphate groups
are tightly bonded, their topotactic replacement with other phosphonate groups is still
possible, especially in colloidal dispersions of exfoliated αZP samples. The samples of αZP
exchanged with ALN were also prepared from the colloidal dispersion of αZP by using R
values of 0.5, 1, and 2. As can be seen from the patterns in Figure 1, all hybrid compounds
based on αZP have a fairly disordered structure.

The low-angle region, which can give us information on the interlayer distance be-
tween the different phases, can be described by three broad reflections approximately
at d = 12.6, 11.1, and 8.4 Å, plus one peak at 7.6 Å, which is only present in αZP05 and
corresponds to a fraction of unreacted αZP.

At higher R values, there are no reflections typical of the starting αZP, except for the
peak at 33.8◦ 2θ, which is the characteristic 020 reflection of αZP-type structures, because
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it is associated with Zr-Zr atom separation inside the layers. It must be highlighted that
this peak at 2θ = 33.8◦ (d = 2.7 Å) is present in all XRD patterns. This may indicate that the
exchange of monohydrogen phosphate with the phosphonate groups of ALN occurred,
in any case, without altering the framework of the α-layer [18]. When the samples were
washed with 0.1 M HCl, two very broad reflections at d ≈ 11.7 Å and 8.2 Å appeared
(Figure S2) in all samples, while in the αZP05 pattern, the peak characteristic of the pristine
structure was still present.

Although the low degree of crystallinity of the powders does not allow the resolution
of the structure, a structural arrangement can be assumed based on the models built,
taking into account the interlayer distances observed. As for gamma-modified zirconium
phosphate, a plausible arrangement is proposed in Figure 2a. Because the interatomic
distance between the two phosphorus atoms within the ALN moiety is shorter than that of
the two adjacent phosphate groups in the gamma layers, in this model, we assume that the
ALN molecules are linked only by one phosphonate to the layer and are arranged so that
the free phosphonate groups of the ALN point toward the interlayer region. The interlayer
distance determined based on this arrangement nearly matches with that found in the
X-ray diffraction analysis.
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The extent of the topotactic exchange, in terms of the ratio between the phosphate and
the phosphonate groups present in the solids, was determined by evaluating the ratio of the
areas of the observed peaks in the 31P liquid-state NMR spectra. Two main resonances can
be observed at approximately δ = 18–19 ppm and one at −0.5 ppm, which are characteristic
of phosphonate and phosphate groups, respectively [25,26]. The P:Zr molar ratio was
determined by ICP measurements and was combined with NMR data in order to obtain
the ALN/Zr molar ratios in the solids (Rs) reported in Table 1.

As for gamma-type materials, Rs reaches 0.34 regardless of the amount of ALN in the
starting mixture. While in the alpha-type materials, increasing the amount of ALN in the
reaction mixture, Rs increases from 0.48 to 0.86 to 1 for R = 0.5, 1, and 2, respectively.

The ZP-ALN samples were examined by FT-IR, and the spectra were compared
with those of pristine ZP (Figure 3). Regarding the γ-compounds, all samples showed
spectra dominated by strong absorption at 950–1100 cm−1 characteristic of the P-C and P-O
stretching modes [27]. In addition, in the γZP-ALN spectra, there are two weak bands at
1500 cm−1 related to the asymmetric bending of the NH3

+ group and at 3000–3100 cm−1

due to the stretching of the N-H bond [28,29]. These bands prove the presence of the -NH3
+

groups arising from the protonation of the terminal NH2 groups of ALN by the phosphate
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or phosphonate groups. Finally, at about 2930 cm−1, a fairly wide band characteristic of the
C-H stretching of the ALN alkyl chain can be observed.

Table 1. ALN/Zr molar ratios in the solids (Rs) of γZP-ALN and αZP-ALN samples.

Sample P/Zr
Molar Ratio (a)

Aphosphate/
Aphosphonate

(b) Rs

γZP05 2.20 1/0.39 0.31
γZP1 2.24 1/0.43 0.34
αZP05 2.22 1/0.77 0.48
αZP1 2.46 1/2.37 0.86
αZP2 2.52 1/3.76 1

(a) determined by ICP; (b) determined by 31P liquid-state NMR. Aphosphate is the area ascribed to the phosphate
groups, and Aphosphonate is the area ascribed to the phosphonate groups.
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The FT-IR spectra of the exchanged ZPs, together with the parent αZP, are shown in
Figure 3. As can be seen, again, strong absorptions at 950–1100 cm−1, characteristic of the
P-C and P-O stretching modes, are present in all samples [30]. The substantial red shift of
the P-O frequency is credible because the binding of ALN to the ZP layer could significantly
decrease the frequency of the P-O stretching mode [31]. Moreover, in the spectra of the
composites, the presence of -NH3

+ groups, due to the protonation of the terminal NH2
groups of the ALN by the phosphate or phosphonate groups, are provided by two weak
bands at 1500 cm−1 and 3000–3100 cm−1. In particular, we found that the first band is
related to the asymmetric bending and the second to the stretching of the N-H bond, which
is in agreement with the data in the literature, as reported above. The deprotonation of the
monohydrogen phosphate groups can also be confirmed by the shift in the absorption at
1050 cm−1 of the ZP (Figure 3B) (characteristic of HPO4

2−) to 980 cm−1 (characteristic of
PO4

3−), whose intensity increases by increasing the amount of NH2 groups [32]. Finally, at
about 2930 cm−1, a fairly broad band characteristic of the C-H stretching of the alkyl chain
of ALN can be seen.

Scanning electron micrographs (SEMs) reveal that the composites based on γZP
formed thin micron-sized platelets similar to pristine γZP [33]. The morphology was
rectangular with a thickness of some tens of nm (Figure 4). No evident changes in the
morphology or size of the platelets could be observed after the topotactic exchange, even if
they were a little more irregular in shape.
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Figure 4. From the left: SEM images of pristine γZP, γZP05, and γZP1.

As for the composites based on αZP, the particles are similar in size and morphology to
the pristine ZP. Again, the morphology was retained after ion exchange with ALN groups
to yield hybrid αZP. The images showed small, irregularly shaped platelets with a size
lower than 1 µm (Figure 5).
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In both series, the EDX analysis shows a homogeneous distribution of nitrogen, carbon,
phosphorus, and zirconium elements, thus, attesting that the topotactic exchange occurred
successfully in both cases. The signal of the sodium element was also detected by EDX,
confirming that it is included in the structure to some extent (Figures S3 and S4).

31P NMR spectroscopy is an excellent tool for investigating the local coordination states
of zirconium phosphate phosphonates [34]. The gamma-type samples were characterized
by 31P MAS NMR spectroscopy, and the obtained results are shown in Figure 6.

The 31P MAS NMR spectrum of γZP (Figure 6a) showed two intense resonances at
δP = −27.5 ppm and −9.8 ppm due to the P(ZrO)4 and P(ZrO)2(OH)2 groups, respectively,
typical of this compound, as reported by Clayden [35]. Moreover, weak resonances were
also detected at δP = −16.3 ppm, −15.0 ppm, and −13.3 ppm due to defect [36]. The
relative proportion of the population distribution of phosphate to dihydrogen phosphate
species estimated from the quantitative 31P MAS NMR data agrees with the theoretical
value. Therefore, the defect sites are associated with dihydrogen phosphate species. The
31P MAS NMR spectrum (Figure 6b) of ALN-Na exhibited two resonances at δP = 17.6 ppm
and 22.2 ppm, which are characteristic of the two crystallographically distinct phosphonate
groups present in the sample.
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The 31P MAS NMR spectra of γZP05 and γZP1 (Figure 6c,d) show two sets of reso-
nances in the range of −30 to −10 ppm and −5 to 25 ppm, respectively, due to phosphate
and phosphonate units. The chemical shifts associated with P(ZrO)4 and P(ZrO)2(OH)2
groups in these samples are slightly different from that of the parent γZP sample. These
differences are related to the changes in the next nearest neighbor environments of 31P.
On the other hand, resonances due to phosphonate motifs originating from ALN that are
formed due to the topotactic replacement of the P(OZr)2(OH)2 units are broader due to the
chemical shift distribution associated with diverse 31P species. Various phosphonate motifs
are assigned in Figure 6 according to their 31P chemical shifts. However, the extraction
of quantitative distribution is rendered difficult. Furthermore, the relative proportion of
the population distribution of phosphorus species was extracted from the quantitative 31P
MAS NMR data, and the estimated phosphate-to-phosphonate ratios are 1/(0.30 ± 0.1) and
1/(0.50 ± 0.1) for γZP05 and γZP1, respectively. A greater extent of the topotactic exchange
is noted in γZP1 at the expense of the P(OZr)2(OH)2 groups. The phosphate/phosphonate
ratios are in good agreement with those found by 31P liquid-state NMR (see Table 1).

Subsequently, the stability of the ALN during the topotactic exchange reactions was
monitored using 13C CPMAS NMR spectroscopy (Figure 7).

Compared to ALN 13C resonances, the peaks in γZP05 and γZP1 are broadened due
to the chemical shift distribution arising from the structural heterogeneities. However, the
integrity and stability of organophosphonate units belonging to ALN are retained after
the topotactic exchange reactions, as confirmed by the NMR measurements. In addition,
the 23Na MAS NMR data reveal that a significant amount of 23Na is retained in both
the samples, γZP05 and γZP1, and is expected to influence the degree of protonation of
phosphates and phosphonates.
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31P MAS NMR spectrum for αZP consists of a main isotropic resonance centered at
−19.1 ppm, with a weak shoulder at −17.3 ppm [37].

Although αZP has two crystallographically inequivalent monohydrogen phosphate
anions, only the sharp peak at −19.1 ppm can be assigned to O3POH groups [38]. Therefore,
the origin of the weak shoulder could be due to the different hydration states around
O3POH [39].

The 31P NMR spectra for αZP05 (Figure 8b) indicate the existence of two sets of
resonances due to phosphate and phosphonate units. Among them, the sharp peak at
−19.1 ppm is due to the parent αZP. The peak at −21.8 ppm can be assigned to the phos-
phate units present in the new phosphate-ALN zirconium phase formed. [40] Moreover,
the 31P MAS NMR spectrum shows two broad resonances at around δP = 5.8 ppm and
11.5 ppm assigned to phosphonates due to PC(ZrO)2OH and PC(ZrO)(OH)2 units, re-
spectively. When the R value increased to 1 (Figure 8c) and 2 (Figure 8d), the resonances
associated with these phosphonate motifs increased in intensity significantly. In addition,
the weak shoulder at approximately 2 ppm indicated these samples also contained a sig-
nificant amount of PC(ZrO)3 groups. The estimated phosphate-to-phosphonate ratios are
1/(0.65 ± 0.1), 1/(2.0 ± 0.1), and 1/(3.5 ± 0.1) for αZP05, αZP1, and αZP2, respectively,
implying a very high level of topotactic exchange in αZP2. These values are, also in this
case, in agreement with those obtained by 31P liquid-state NMR (see Table 1).

Successively, the stability of the ALN during the topotactic exchange reactions was
confirmed by employing 13C CPMAS NMR spectroscopy (Figure 9). It was noted that
the decomposition of 13C resonance due to C3 carbon in topotactic exchanged samples,
especially in αZP2, displayed at least two components. Such distinguished chemical shifts
provide unambiguous information on the local order as well as symmetry, and the C3
carbon might be located in two different crystallographic sites. Furthermore, the 23Na
MAS NMR data reveal that only traces of 23Na are retained in αZP05, αZP1, and αZP2,
confirming the successful topotactic exchange reactions.
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To obtain local structural conformation information and molecular packing motifs, a
2D 31P-1H FSLG heteronuclear correlation (HETCOR) NMR experiment was performed on
αZP2. This experiment correlates 1H–31P spin pairs in close spatial proximity [41,42]. The
2D 31P-1H HETCOR spectrum of αZP2 obtained with a relatively short cross-polarization
contact time of 1 ms allowed the proton chemical shifts in all the phosphonate hydrogens
(from ALN-Na) to be determined (Figure 10A). In addition, protons belonging to the
O3POH units of the residual αZP are visible at around 8.2 ppm (red box). More importantly,
a strong correlation peak for phosphate units (from the new phosphate-ALN zirconium
phase) with protons at 7.1 ppm can be observed. This correlation peak is also visible on the
HETCOR spectrum recorded with a very short contact time of 0.05 ms (data not shown).
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These phosphate units (at −21.5 ppm) also show HETCOR signals with entire ALN-
Na protons as well as with water and hydroxyl protons (Figure 10A). The slices extracted
from the 2D spectrum (Figure 10B) reveal the direct proton correlations associated with
phosphate and phosphonate species. This observation is clear proof of the close prox-
imity between phosphate and phosphonate groups and, thus, the hybrid nature of the
phosphate-ALN zirconium phase. Moreover, the distinct 1H resonance intensity profiles
associated with these two 31P sites reveal their proton neighborhoods. The 31P of phos-
phonate units shows a strong correlation with C2 and C3 methylene protons as well as
with hydroxy/water protons, while the 31P of phosphates makes a strong correlation with
NH2/NH3 protons as well as C4 methylene protons. Because such cross-peaks were also
observed with the short 0.05 ms contact time HETCOR experiment, this reflects closely
bound 31P–1H spin pairs located at the inter-layer proximity. Furthermore, the detection of
two 1H peaks associated with NH2 and NH3 groups suggests the partial protonation of
the ALN chains, which, therefore, provides additional evidence for their close proximity
to acidic protons, probably from the phosphate units. Thus, the 2D HETCOR NMR data
provide strong experimental evidence that ALN chains adopt an interlayer gallery projected
structure with a partial donor-to-acceptor interlayer stacking arrangement, which locks
them in space closer to phosphate groups on the other side of the inorganic ZP layer.

The effect of ZP on cell proliferation was assessed by resazurin reduction assay on
MG63 cells. As shown in Figure 11, after two days of incubation, the cells in the presence
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of both αZP and γZP show a viability of more than 75%. After 7 days of incubation,
none of the samples showed a decrease in cell proliferation, but in the three samples, αZP,
αZP0.5, and γZP1 showed higher viability than the control. It seems that αZP and γZP
themselves have no cytotoxic effect on these cells and can be used for bone regeneration.
It is interesting to note that after 7 days in αZP, the presence of ALN leads to a slight
decrease in cell viability; however, in γZP samples with increasing concentrations of ALN,
we note a slight increase in osteoblast proliferation. Further studies on different cellular
lines, apoptosis by live/death assay, and mitochondrial activity by MTT assay [14] will be
essential to confirm these observations. Moreover, to understand possible cell structure
changes, the cell morphology will be investigated by means of confocal microscopy and
atomic force microscopy measurements [43].
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Figure 11. Cytotoxicity of αZP and γZP to human bone osteosarcoma (MG63) cells after 2 days and
7 days of incubation.

4. Conclusions

The modification of αZP and γZP were successfully performed with alendronate
by a topotactic reaction starting from their colloidal dispersion. This was the first time
that the preparation of such types of organo-modified zirconium phosphonates and their
characterization were reported. In the case of αZP, the portion of exchanged phosphonate
groups could be controlled by the ratio of starting reagents in the reaction mixture, while
in the case of gamma-type zirconium phosphate, the amount of alendronate remained
nearly the same regardless of the ALN:Zr molar ratio of the starting mixture. The basal
spacing of the gamma-based products was roughly the same in all cases, also showing
a fraction of the sodium form of γZP, while for alpha compounds, a low amount of
alendronate allowed for reaching only a partial exchange, leading to obtaining a mixture
of exchanged and unchanged semicrystalline zirconium phosphate. The solid-state NMR
analysis indicates that no residual signals from crystalline ALN were visible in all ALN-
derivatives. In these samples, new broad resonances with different chemical shifts appeared
due to phosphonates differently bonded to the gamma layers. In particular, phosphonate
coordination to Zr layers was dominated by mono-coordination and, to some extent, bis-
coordination. As for the αZP-ALN derivatives, the pristine ZP was still present when a
low amount of ALN was used, while the disappearance of the unexchanged αZP phase in
αZP1 and αZP2 was noted. Moreover, a high phosphonate exchange degree was proven,
demonstrating that the α-based samples have a high capacity to bond with the organic
moiety. The aggregation of the alpha and gamma ZP nanoparticles, due to their different
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sizes, gave rise to different surface roughness. However, the cell proliferation data on both
ZPs were not sufficient to assess that the minimal differences observed in the cell viability
were due to the differences in the surface roughness of the supports. The contribution of
the specific surface and hydrophilicity will be considered.

These merits combined with the very low toxicity make ZP-ALN composites highly
promising for therapeutic applications, such as ALN delivery vehicles, and, therefore, could
be easily exploited in future studies to enhance their performances in innovative scaffolds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13040742/s1. The Supplementary Materials include further
XRD data and EDX data. Figure S1: XRPD patterns of γZP05 (a) and γZP1 (b) washed with HCl and
conditioned over P2O5, Figure S2: XRPD patterns of samples washed with HCl and conditioned over
P2O5: αZP05 (a), αZP1 (b) and αZP2 (c), Figure S3: EDX analysis of γZP1, Figure S4: EDX analysis of
αZP1.
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