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Abstract: Layered transition metal dichalcogenides (TMDs) provide a favorable research platform for
the advancement of spintronics and valleytronics because of their unique spin-valley coupling effect,
which is attributed to the absence of inversion symmetry coupled with the presence of time-reversal
symmetry. To maneuver the valley pseudospin efficiently is of great importance for the fabrication
of conceptual devices in microelectronics. Here, we propose a straightforward way to modulate
valley pseudospin with interface engineering. An underlying negative correlation between the
quantum yield of photoluminescence and the degree of valley polarization was discovered. Enhanced
luminous intensities were observed in the MoS2/hBN heterostructure but with a low value of valley
polarization, which was in stark contrast to those observed in the MoS2/SiO2 heterostructure. Based
on the steady-state and time-resolved optical measurements, we reveal the correlation between
exciton lifetime, luminous efficiency, and valley polarization. Our results emphasize the significance
of interface engineering for tailoring valley pseudospin in two-dimensional systems and probably
advance the progression of the conceptual devices based on TMDs in spintronics and valleytronics.

Keywords: molybdenum disulfide; hexagonal boron nitride; valley polarization; photoluminescence
quantum yield; relaxation time

1. Introduction

Two-dimensional (2D) polarized materials, including ferromagnets [1], ferroelectrics [2],
and ferrovalley materials [3,4], demonstrate peculiar behaviors at the quantum realm. Val-
ley pseudospin, which represents the energy band extremes in momentum space, normally
exists in periodic solid materials [5,6]. The addressability of valley pseudospin enables the
utilization of the momentum states of carriers as a brand-new paradigm in data coding
and information handling. Using the research strategies of spintronics [7,8] for reference,
a similar concept, valleytronics, arose naturally and vigorously [9]. The novel scientific
connotation associated with the manipulation of the valley degree of freedom may result in
a transformative impact. Referring to theoretical predictions about the intrinsic properties
closely related to the valley pseudospin, rapid experimental advances [10–14] have been
performed to observe and manipulate the valley polarization in a way similar to real spin.

Recently, the successful isolation and further experimental characterizations of 2D
materials, including but not limited to graphene, hexagonal boron nitride (hBN), and TMDs,
enriched our cognition of valley physics [15]. The spatial symmetry breaking along with
the time-reversal symmetry enable two sets of the individually addressable valleys, K and
K’ points in the first Brillouin zone, for TMDs [16]. Especially when the layered TMDs,
such as MoS2, WS2, and MoSe2, are mechanically exfoliated from bulk-phase crystals and
thinned down to monolayers, a marvelous transition in their electronic structure occurs,
viz the evolution from an indirect bandgap to a direct one. The direct bandgaps of mono-
layer TMDs normally lie in the near-infrared and visible spectral ranges of approximately
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1~2 eV, suitable for the investigation of valley pseudospin-related optoelectronic applica-
tions. Van der Waals (vdW) heterostructures composed of 2D materials offer a fascinating
research platform for tailoring artificial composite constructions with unique properties,
novel phenomena [17,18], and widespread potential applications [19–21]. The concept of
engineering material properties via fabricating mixed-dimensional vdW heterostructures
can also be employed to manipulate valley polarization with great convenience and low
cost for spintronics and valleytronics [22,23].

Here, we performed circularly polarization-dependent photoluminescence (PL) mea-
surements upon MoS2 monolayers transferred atop hBN nanoflakes and SiO2/Si wafers
at room temperature, prepared with the chemical vapor deposition (CVD) method. Sub-
stantial variations were observed in these two vertically stacked systems, MoS2/hBN and
MoS2/SiO2, especially in their luminous performance. An underlying opposite relation-
ship between the intensity of luminescence and the degree of valley polarization was
observed. Specifically, a stronger exciton luminescence was observed in the MoS2/hBN het-
erostructure but with a lower degree of valley-polarized emission, while a weaker luminous
performance and a higher degree of valley polarization were obtained in the MoS2/SiO2
heterostructure. We infer that there exists a connection to be examined between the lu-
minous efficiency and the valley polarization. According to the time-resolved circularly
polarization-dependent PL measurements, a lower degree of valley polarization is observed
in samples that exhibit longer exciton lifetimes. Our work reveals an inverse relationship
between luminescence efficiency and the valley polarization value, and emphasizes the
significance of interface engineering for modulating the intrinsic new degrees of freedom
in ultrathin 2D polarized materials. It may potentially deepen our understanding of 2D
quantum systems and advance the realization of the emerging practical applications for
next-generation information storage and processing.

2. Materials and Methods

Large-area, continuous MoS2 monolayers with a lateral size of several millimeters were
routinely prepared with a standardized CVD process in a commercial dual-temperature-
zone furnace [24,25] using high-purity S and MoO3 powders as the solid-state powder
sources. Mechanically exfoliated hBN flakes were transferred atop SiO2/Si wafers with a
285 nm oxidation layer before CVD growth. Highly purified argon was employed as the
transport gas. The growth temperature and the required time parameters we used for the
CVD process are shown in the inset of Figure 1a. The programming temperatures for the
two respective zones, in which the S and MoO3 powders were placed, were elevated from
room temperature to 160 and 650 ◦C in 40 min and remained unchanged for 5 min. Once
the reaction and deposition processes finished, it was cooled naturally. Generally speaking,
the typical growth of MoS2 crystals atop SiO2/Si normally results in equilateral triangle
shapes under thermodynamically stable conditions. As shown in the optical microscopy
image, the MoS2 samples were successfully deposited onto the 285 nm SiO2/Si wafer with
some mechanically exfoliated hBN flakes randomly distributed atop its surface (Figure 1a).
It can be observed that numerous discrete MoS2 monolayers connected to each other and
merged into a continuous single-layer film. The continuous single-layer film typically
exhibits a lateral dimension up to several hundreds of micrometers, beneficial for probing
many discrete locations within a sample via an optical means. Yu et al. previously reported
that, unlike the growth of MoS2 on SiO2 substrates, the growth of MoS2 on hBN normally
follows a lattice alignment epitaxial growth mode [26], where two structurally equivalent
0◦ and 60◦ stacked MoS2/hBN are presented.
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Figure 1. (a) Optical image of continuous MoS2 monolayer films prepared with the CVD method. 
There is a typical hBN flake obtained with mechanical exfoliation on the commonly used SiO2 (285 
nm)/Si wafer before CVD growth. Inset: Temperature and time parameters for the CVD growth of 
the MoS2 monolayers. (b) Typical Raman spectra obtained from the MoS2 monolayer prepared atop 
hBN (H1, H2, and H3) and SiO2 (S1, S2, and S3). (c) The schematic diagram of the experimental setup 
for collecting the circularly polarized photoluminescence signals from the MoS2 sample. 

Figure 1b presents the Raman scattering spectra acquired from six distinct locations, 
corresponding to the MoS2 samples prepared atop the hBN and SiO2 substrates, respec-
tively. The characteristic feature located at approximately 520.7 cm−1 is attributed to the 
underneath Si substrate used for wavenumber calibration. Due to the reliability and re-
peatability of our synthetic strategy, we can observe two characteristic peaks of MoS2, E12g 
and A1g, as well as the signal from hBN (≈1366.4 cm−1), as shown in the Raman spectra 
labeled as H1-H3, confirming that MoS2 is successfully grown on the hBN flake. The peak 
interval between the two characteristic features of MoS2, E12g and A1g, can help us deter-
mine the number of layers of the MoS2 samples quantitatively and rapidly (Appendix A). 
One accessible mode for hBN is the in-plane E2g mode located at approximately 1366.4 
cm−1 (Appendix B). 

The vdW heterostructures comprised of 2D materials serve as an inspiring platform 
for tailoring physicochemical properties, exploring novel quantum effects, and ultimately 
fabricating conceptually new devices [17,18]. A classical paradigm is the demonstration 
of the fascinating Hofstadter butterfly observed in artificial vertically stacked moiré su-
perlattices comprised of graphene and hBN [27,28]. The strategy to tailor material proper-
ties with interface engineering is also available for the vertically stacked structure com-
prised of TMDs and hBN, which enables the exploration of valley polarization. The circu-
lar polarization-sensitive PL measurement was performed in a home-made micro-zone 
setup as displayed in Figure 1c. The linearly polarized excitation light is converted to the 
circularly polarized one by a broadband quarter-wave plate. A 50× objective (N.A. 0.55) is 
used to collect the emission signals from the MoS2 monolayers. The left-handed and right-
handed circularly polarized light signals (σ+ and σ−) are converted to horizontal and ver-

Figure 1. (a) Optical image of continuous MoS2 monolayer films prepared with the CVD method.
There is a typical hBN flake obtained with mechanical exfoliation on the commonly used SiO2

(285 nm)/Si wafer before CVD growth. Inset: Temperature and time parameters for the CVD growth
of the MoS2 monolayers. (b) Typical Raman spectra obtained from the MoS2 monolayer prepared
atop hBN (H1, H2, and H3) and SiO2 (S1, S2, and S3). (c) The schematic diagram of the experimental
setup for collecting the circularly polarized photoluminescence signals from the MoS2 sample.

Figure 1b presents the Raman scattering spectra acquired from six distinct locations,
corresponding to the MoS2 samples prepared atop the hBN and SiO2 substrates, respectively.
The characteristic feature located at approximately 520.7 cm−1 is attributed to the under-
neath Si substrate used for wavenumber calibration. Due to the reliability and repeatability
of our synthetic strategy, we can observe two characteristic peaks of MoS2, E1

2g and A1g,
as well as the signal from hBN (≈1366.4 cm−1), as shown in the Raman spectra labeled as
H1–H3, confirming that MoS2 is successfully grown on the hBN flake. The peak interval
between the two characteristic features of MoS2, E1

2g and A1g, can help us determine
the number of layers of the MoS2 samples quantitatively and rapidly (Appendix A). One
accessible mode for hBN is the in-plane E2g mode located at approximately 1366.4 cm−1

(Appendix B).
The vdW heterostructures comprised of 2D materials serve as an inspiring platform

for tailoring physicochemical properties, exploring novel quantum effects, and ultimately
fabricating conceptually new devices [17,18]. A classical paradigm is the demonstration of
the fascinating Hofstadter butterfly observed in artificial vertically stacked moiré super-
lattices comprised of graphene and hBN [27,28]. The strategy to tailor material properties
with interface engineering is also available for the vertically stacked structure comprised
of TMDs and hBN, which enables the exploration of valley polarization. The circular
polarization-sensitive PL measurement was performed in a home-made micro-zone setup
as displayed in Figure 1c. The linearly polarized excitation light is converted to the cir-
cularly polarized one by a broadband quarter-wave plate. A 50× objective (N.A. 0.55)
is used to collect the emission signals from the MoS2 monolayers. The left-handed and
right-handed circularly polarized light signals (σ+ and σ−) are converted to horizontal and
vertical linearly polarized light signals (Iσ+→σ+ and Iσ+→σ−), respectively, via a broadband
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quarter-wave (1/4λ) plate. The two linearly polarized light beams can be separated in
real space with a Wollaston prism and then focused to two spots positioned at the en-
trance slit of the spectrometer equipped with the charged coupled device (CCD) cooled at
−75 ◦C. The intensities of these two orthogonally linearly polarized beams, corresponding
to the σ+ and σ− components of the PL signal, are recorded simultaneously with the
CCD. By doing so, we greatly reduce the error caused by laser power fluctuation. The
steady-state circularly polarized PL spectra were captured under resonant excitation with a
continuous-wave 633 nm laser. For the time-resolved PL measurements, a pulsed linearly
polarized Ti:sapphire laser with the wavelength of 405 nm was employed.

3. Results and Discussion
3.1. Crystal Structure of MoS2 and the Coupled Valley-Spin Excitonic Transition Rules

Transmission electron microscopy (TEM) provides a powerful tool for examining the
morphology and lattice structure of low-dimensional materials. As shown in Figure 2a, a
MoS2 monolayer triangle was transferred atop a carbon-film-coated TEM copper microgrid
in the presence of a relatively complete geometric morphology. The recorded selected area
electron diffraction (SAED) spots (inset, Figure 2a) exhibit a typical hexagonal pattern,
consistent with that of MoS2. The lattice spacings of approximately 0.27 nm and 0.16 nm are
clearly visible along the {100} and {110} planes of MoS2, respectively (Figure 2b). The atomic-
level resolution TEM image along with the corresponding SAED patterns demonstrate that
the CVD-synthesized MoS2 monolayer possesses excellent crystal quality with a hexagonal
lattice structure.
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From the top view of the crystal structure in MoS2, a hexagonal honeycomb lattice 
structure can be observed that generates two sets of degenerate-but-not-equivalent val-
leys, K and K’, at the edges of the first Brillouin zone (left panel, Figure 3a). These valleys 
that are degenerate in energy exhibit a huge splitting in the valence band (Δv=~148 meV) 
induced by spin-orbit coupling and a much smaller one in the conduction band (Δc=~3 
meV), which is also depicted for completeness (right panel, Figure 3a), for the MoS2 mon-
olayer [29–32]. The K and K’ valleys are differentiated by the opposite spin orientations 
corresponding to the valence band maximum (VBM) and conduction band minimum 

Figure 2. (a) TEM image of a MoS2 monolayer triangle transferred atop a carbon-film-coated copper
microgrid. Inset: SAED patterns recorded along the zone [001] axis of MoS2. (b) Atomic-level
resolution TEM image of MoS2. A periodic triangular packing arrangement of transition metal
molybdenum atoms is clearly observed.

From the top view of the crystal structure in MoS2, a hexagonal honeycomb lattice
structure can be observed that generates two sets of degenerate-but-not-equivalent valleys,
K and K’, at the edges of the first Brillouin zone (left panel, Figure 3a). These valleys that are
degenerate in energy exhibit a huge splitting in the valence band (∆v = ~148 meV) induced
by spin-orbit coupling and a much smaller one in the conduction band (∆c = ~3 meV),
which is also depicted for completeness (right panel, Figure 3a), for the MoS2 mono-
layer [29–32]. The K and K’ valleys are differentiated by the opposite spin orientations
corresponding to the valence band maximum (VBM) and conduction band minimum
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(CBM). As schematically displayed in the right panel of Figure 3a, combined with the
time reversal symmetry, the spin orientations of the K and K’ valleys are anti-symmetric,
enabling a locking of the spin and the valley degree of freedom. The remarkable difference
guarantees the valley-dependent optical selection rules that the direct excitonic transitions
should obey, including A and B, in the MoS2 monolayer. To be specific, the circularly polar-
ized lights with left-handed helicity (σ+) excite the excitonic transitions in the K valleys
exclusively, whereas those lights with right-handed helicity (σ−) only couple to the K’
valleys. In our previous report [24], we reported that the A excitonic emission from the
MoS2 monolayer on the hBN flake exhibited a ubiquitous enhancement compared with
that on SiO2/Si. As plotted in Figure 3b,c, the intensities of the PL signals from MoS2 on
hBN are much stronger than those obtained from MoS2 on SiO2, both under 633 nm and
488 nm excitation.
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Figure 3. (a) Schematic illustration of the coupled valley-spin excitonic transition rules at the K and
K’ valleys in momentum space, where ∆c(∆v) denotes the amplitude of the energy splitting induced
by spin-orbit coupling in the CBM and VBM in the MoS2 monolayer. (b,c) PL spectra obtained from
the representative MoS2 samples on hBN and on SiO2. The excitation wavelengths are 633 nm (b)
and 488 nm (c).

3.2. Steady-State Circularly Polarized PL Spectra

The valley polarization-resolved luminous property appears a typical representative
among the abundant unique physical properties for the MoS2 monolayer. The vertical
stacking of MoS2 and hBN enables us to explore the valley polarization utilizing our
home-made circular polarization PL measurement system. We further performed the PL
measurements upon the MoS2 monolayer on hBN and SiO2 under resonant excitation
with a 633 nm laser, widely employed in valley pseudospin-related luminous property
investigation. The value for the degree of valley polarization obtained from the MoS2
monolayers with different substrates underneath was calculated based on the measured
polarization-resolved PL spectra involving σ− and σ+ components. As shown in Figure 4a
and b, we obtained the PL spectra by using the 1.96 eV (633 nm) laser radiation as excitation,
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that is with the left-handed helicity (σ+) on resonance with the A excitonic transition. We
determined the degree of valley polarization quantitatively [10,11] as

P =
Iσ+→σ+ − Iσ+→σ−
Iσ+→σ+ + Iσ+→σ−

(1)

where Iσ+→σ+ and Iσ+→σ− denote the intensities of the left-handed and right-handed
circularly polarized PL signals, respectively, which are excited with a left-handed circular
excitation laser. As plotted in Figure 4c, the average valley polarization values, ranging
from 656 nm to 676 nm, were calculated to be 0.207 for MoS2 on SiO2 and 0.080 for MoS2
on hBN. It can be observed, among the wavelength range of the direct A excitonic emission
for the MoS2 monolayer, the valley polarization for MoS2 on hBN is always lower than that
observed from the MoS2 monolayers on SiO2.
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Based on the numerical analyses of 25 MoS2 monolayer samples on hBN, the statisti-
cal average for the degree of valley polarization is P = 0.130 ± 0.046 (Figure 4d), which 
demonstrates a relatively low degree of valley polarization in the MoS2/hBN heterostruc-
ture at room temperature (300 K). In stark contrast to that, the degree of valley polarization 
for the MoS2 monolayer deposited atop the SiO2 wafer under the identical measurement 
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Figure 4. (a,b) Room-temperature circularly polarized PL spectra obtained from the MoS2 monolayers
on SiO2 and hBN under a resonant continuous-wave excitation. (c) Degree of valley polarization
determined with P = (Iσ+→σ+−Iσ+→σ−)/(Iσ+→σ++Iσ+→σ−), where Iσ+→σ+ and Iσ+→σ− represent the
intensities of the left-handed and right-handed circularly polarized PL components, respectively.
(d) Statistical histogram of the calculated valley polarization value for the MoS2 monolayers on SiO2

(orange) and on hBN (blue) summarized from 50 samples. The summarized valley polarization
values are 0.198 for MoS2 on SiO2 and 0.130 for MoS2 on hBN.

Based on the numerical analyses of 25 MoS2 monolayer samples on hBN, the statistical
average for the degree of valley polarization is P = 0.130 ± 0.046 (Figure 4d), which demon-
strates a relatively low degree of valley polarization in the MoS2/hBN heterostructure at
room temperature (300 K). In stark contrast to that, the degree of valley polarization for the
MoS2 monolayer deposited atop the SiO2 wafer under the identical measurement condi-
tions is relatively high. The statistical average value equals approximately 0.198 ± 0.020
from which an important message can be delivered that the interaction widely existent in
2D materials/supporting substrates may play a critical role in the modulation of valley
pseudospin in 2D polarized materials. Combined with the measurement results men-
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tioned above, an enhanced PL intensity and a reduced valley polarization are observed in
the MoS2/hBN heterostructure. Why does there exist a noticeably opposite relationship
between luminous intensity and valley polarization? To answer this question and fur-
ther clarify the underlying mechanism, we further performed the time-resolved circularly
polarization-dependent PL measurements at room temperature.

For the steady-state conditions excited with a continuous wave (CW) laser, the degree
of valley polarization, P, can be determined with

P =
P0

1 + 2τe
τv

(2)

under a rate model, where P0 denotes the initial polarization, and τe and τv represent
the exciton and valley relaxation times, respectively. The derivative process is provided
in Appendix C. The value of P increases with either an increase in valley lifetime τv or a
decrease in exciton lifetime τe, as clearly observed from Equation (2). Previous reports did
not identify the influence of substrates on the valley relaxation time τv for MoS2, among
which the measured values are close numerically and even the supporting substrates are
different. All the as-synthesized MoS2 monolayers shown in Figure 4 were excited with
exactly the same excitation wavelength, pumping power, and exposure time, and exposed
to nearly the identical environment. Thus, it is assumed that the valley relaxation time
τv and the initial polarization P0 are the same. It can be inferred that the degree of valley
polarization P will decrease if the exciton relaxation time increases.

3.3. Time-Resolved Circularly Polarized PL Spectra

According to the theory in semiconductor physics, the exciton relaxation time τe
is closely related to both radiative and non-radiative recombination times through the
following relational expression:

1
τe

=
1
τr

+
1

τnr
(3)

The time parameters, τr and τnr, represent the radiative and non-radiative lifetimes,
respectively. For transition metal dichalcogenides, the non-radiative lifetimes can be orders
of magnitude shorter than the radiative recombination times. In other words, the magnitude
relationship τnr << τr exists in MoS2 monolayers. Hence, there exists an approximation
relation τe ≈ τnr. For a certain material, the radiative recombination time τr can be regarded
as a constant. Since the luminous intensity is in direct proportion to quantum yield (QY),

QY =
1

1 + τr
τnr

≈ 1
1 + τr

τe

(4)

If the radiative recombination time remains unchanged, a longer exciton relaxation
time will lead to a higher QY and, thus, an enhanced PL intensity.

We further performed time-resolved photoluminescence (TRPL) measurements to
examine the exciton dynamics and capture the corresponding fluorescence lifetime with
which our hypothesis mentioned above may be verified. The measured TRPL spectra are
plotted in Figure 5. Two systems, including the MoS2 monolayers deposited atop hBN and
SiO2, were measured, which behave remarkably different from each other in the intensity of
luminescence and the degree of valley polarization. A pulsed, linearly polarized Ti:sapphire
laser with the wavelength of 405 nm was employed to pump the direct excitons into the two
degenerate-but-not-equivalent valleys, K and K’, in the MoS2 monolayer simultaneously
via an optical means. The pulsed optical pumps were realized with an optical parametric
amplification. The subsequent luminescent signals created from the K and K’ valleys could
then be collected and directed to a time-resolved CCD detector. The dynamic experimental
results were quite similar to those observed in the steady-state PL measurement results.
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exciton lifetimes could be obtained.

As mentioned above, the MoS2 monolayers on hBN and SiO2 display noticeably
different PL intensity as well as distinguishing valley polarization behaviors. The time-
resolved emission spectra measured from these samples, as presented here, also exhibit
significantly different exciton attenuation kinetics. MoS2 on hBN possesses a longer exciton
lifetime than MoS2 on SiO2. Compared with SiO2, hBN is chemically inert and has no
defect states or hanging bonds on its surface. This may result in less disorder to the MoS2
monolayer [33], which is mainly stemmed from extrinsic effects, for example, defects and
trap states. The difference in the exciton relaxation time explains the enhanced PL intensity
and lower valley polarization of MoS2 on hBN.

4. Conclusions

In conclusion, we successfully synthesized a MoS2 monolayer on hBN nanoflakes via
the CVD method and performed room-temperature circularly polarized PL measurements
upon the MoS2 samples with different substrates underneath. We observed that there exists
an apparent inverse correlation between the intensity of PL signals and the value of valley
polarization, which originates from the variations in exciton relaxation time. Compared
to MoS2 monolayers atop SiO2, the MoS2 monolayers atop hBN exhibit a relatively low
degree of valley polarization. An enhanced PL intensity and a longer exciton lifetime
were also experimentally consolidated in the MoS2/hBN system. Our discovery suggests
a pathway to tailor carrier dynamics via crystal modification, which can be realized by
introducing an appropriate amount of defects or non-radiative recombination sites. By
doing so, the room-temperature valley polarization can be effectively modulated, and the
coupling between degenerate valleys can be attenuated, which provides new strategies for
the realization of state-of-the-art devices in spintronics and valleytronics.
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Appendix A

Li et al. proposed a general thickness identification technique for atomic-scale, few-
layer MoS2 on dielectric substrates [34], such as SiO2. The peak interval between the two
characteristic features of MoS2, E1

2g and A1g, can determine the number of layers of the
MoS2 samples quantitatively and rapidly.

The zoom-in Raman spectrum of the MoS2 monolayer on SiO2 is provided in Figure A1a.
We can clearly observe the characteristic modes E1

2g and A1g of MoS2, the peak interval
(~19.8 cm−1) between which is consistent with the criterion for CVD-synthesized MoS2
monolayers on SiO2. Figure A1b plots the Raman spectra obtained from 1L, 2L, and 3L
MoS2 on SiO2, the thickness of which was determined with the atomic force microscope
technique. The three characteristic peaks located among 360~540 cm−1 correspond to two
characteristic peaks of MoS2, E1

2g and A1g, as well as the signal from the underneath Si
substrate (520.7 cm−1). In the series of Raman spectra, corresponding to 1L, 2L, and 3L
MoS2, there exists a monotonous variation trend in the peak interval between E1

2g and A1g.
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Figure A1. (a) Zoom-in Raman spectrum of 1L MoS2. (b) Typical Raman spectra obtained from
1L, 2L, and 3L MoS2 prepared atop SiO2. The Raman peak located at approximately 520.7 cm−1

corresponding to Si is used for wavenumber calibration and intensity normalization.

The detailed values of peak positions, as shown in Figure A1b, are summarized in
Table A1. With the increasing number of layers, there exists a decrease in the peak position
of E1

2g mode, an increase in the peak position of A1g mode, and an increase in the peak
interval ∆, consistent with the experimental results previously reported by Li et al. [34]. As
mentioned above, it is a feasible calibration method to determine the number of layers of
the few-layer MoS2 samples based on the amplitude of the peak interval ∆.
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Table A1. The Raman spectral peak positions of few-layer MoS2.

Number of Layer E1
2g (cm−1) A1g (cm−1) ∆ (cm−1)

1 383.4 403.2 19.8

2 382.3 403.2 20.9

3 382.1 403.5 21.4

Appendix B

Raman scattering spectroscopy provides a non-destructive technique for studying
hBN. One accessible mode is the in-plane E2g mode at approximately 1366.4 cm−1 [35]. As
displayed in Figure A2, a narrow feature is a representative of highly ordered, defect-free
hBN. As we can observe from Figure 1b, the two characteristic peaks of MoS2, E1

2g and A1g,
as well as the signal from hBN (≈1366.4 cm−1) obtained from the samples labeled as H1 to
H3 in the main text, indicate that MoS2 is successfully synthesized atop the mechanically
exfoliated hBN flakes.
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Appendix C

Under a rate model [10], the rate equation for the neutral exciton populations at
the two degenerate-but-not-equivalent K and K’ valleys can be mathematically described
as follows:

dnK
dt

= gK −
nK
τnr
− nK

τexciton→trion
− nK − nK′

τv
(A1)

dnK′

dt
= gK′ −

nK′

τnr
− nK′

τexciton→trion
+

nK − nK′

τv
(A2)

where gK and gK’ represent the excitation rate optically pumped by left-handed helicity (σ+)
coupled to the excitonic transitions in the K valleys and right-handed helicity (σ−) coupled
to the K’ valleys, respectively. Besides, τnr, τexciton→trion, and τv denote the non-radiative
relaxation time, the scattering relaxation time from neutral exciton to charged tightly bound
trion [36,37], and the intervalley relaxation time between K and K’ valleys, respectively. In
fact, under a relatively high measuring temperature [36] or a relatively low carrier injection
concentration [37], as in our experiments, the scattering process from exciton to trion can
be ignored, which means τexciton→trion can be viewed as an infinite.
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Under the steady-state excitation for the neutral exciton (A) generated in the K valley,
as employed in our experiment, the right-handed helicity excitation is zero, viz gK’ = 0, and
the material system is in a state of dynamic equilibrium, which indicates that

dnK
dt

=
dnK′

dt
= 0 (A3)

We determine the degree of valley polarization quantitatively as

P =
Iσ+→σ+ − Iσ+→σ−
Iσ+→σ+ + Iσ+→σ−

(A4)

based on the polarization-dependent PL intensities. The valley polarization can also be
written as

P =
nK − nK′

nK + nK′
(A5)

based on the polarization-dependent PL intensities. Thus, for the steady-state conditions
excited with a CW laser, the degree of valley polarization, P, can be determined with

P =
1

1 + 2τnr
τv

(A6)

According to the theory in semiconductor physics, the exciton relaxation time τe
is closely related to both radiative and non-radiative recombination times through the
following relational expression, τe

−1 = τr
−1 + τnr

−1, in which the time parameters, τr
and τnr, represent the radiative and non-radiative lifetimes, respectively. For transition
metal dichalcogenides, the non-radiative lifetimes can be orders of magnitude shorter than
radiative recombination times, viz τnr << τr. Hence, there exists an approximation relation
τe ≈ τnr. Considering the derivation in initial polarization that is closely related to some
parameters, including but not limited to excitation laser wavelength, exposure time, and
possible intervalley generation, we multiply the numerator with a coefficient P0 additively:

P =
P0

1 + 2τe
τv

(A7)

Consequently, the less-than-perfect (much lower than the ideal 100%) degree of val-
ley polarization observed in the circularly optical measurement results is attributed to
inevitable intervalley processes and the competition between the valley lifetime τv and the
recombination relaxation time τe.
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