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Abstract: This work analyzes on nanoscale spatial domains the mechanical features of electrospun
membranes of Polycaprolactone (PCL) loaded with Functionalized Magnetite Nanoparticles (FMNs)
produced via an electrospinning process. Thermal and structural analyses demonstrate that FMNs af-
fect the PCL crystallinity and its melting temperature. HarmoniX-Atomic Force Microscopy (H-AFM),
a modality suitable to map the elastic modulus on nanometric domains of the sample surface, ev-
idences that the FMNs affect the local mechanical properties of the membranes. The mechanical
modulus increases when the tip reveals the magnetite nanoparticles. That allows accurate mapping
of the FMNs distribution along the nanofibers mat through the analysis of a mechanical parameter.
Local mechanical modulus values are also affected by the crystallinity degree of PCL influenced by the
filler content. The crystallinity increases for a low filler percentage (<5 wt.%), while, higher magnetite
amounts tend to hinder the crystallization of the polymer, which manifests a lower crystallinity.
H-AFM analysis confirms this trend, showing that the distribution of local mechanical values is a
function of the filler amount and crystallinity of the fibers hosting the filler. The bulk mechanical
properties of the membranes, evaluated through tensile tests, are strictly related to the nanometric
features of the complex nanocomposite system.

Keywords: electrospinning; nanocomposite membrane; magnetite nanoparticles; nanometric
mechanical properties

1. Introduction

In the last two decades, nanotechnologies have been proposed in many fields. Their
potentialities are extremely promising for a wide range of applications [1–4]. For exam-
ple, carbonaceous nanofillers such as graphene-based nanoparticles, carbon nanotubes,
fullerenes, etc., are extensively studied because of their peculiar properties, e.g., electrical
conductivity and, thermal conductivity, that were previously limited to metals, attracting
great attention from the industries in which these properties are strongly required [5–7].
Similarly, metallic nanoparticles (based on Au, Ag, etc.) are now extremely interesting for
their peculiar optical properties and intrinsic bioactivity [8,9]. Moreover, most of these
nanoparticles (from magnetic nanoparticles to metallic) are reactive to external stimuli,
and, for this reason, they are suitable for the design of smart devices that require the ability
to sensitively change a property of the device during its application (e. g. increasing the
temperature, increasing the release kinetics of a drug, etc.) [10]. In light of these results, it is
clear why a big focus of material scientists is the exploration of the transfer of the properties
of the metallic nanoparticles to polymeric matrices. The production of nanocomposite
polymeric systems is one of the simplest ways to effectively vary the properties of bulk
material [11]. Moreover, thanks to their nano-dimensions, the fillers have a very high
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exposed surface area, being so effective even at very low percentages, and also are suitable
to be included in materials characterized by nanometric textures [12].

Typically, polymeric materials with this exciting peculiarity of being composed of
nanostructured fiber mats are those obtained by electrospinning processes. Electrospun
membranes are of great interest from an applicative point of view. They can be designed
for application as filtering devices [13–18], in biomedical applications and tissue regenera-
tion [19–22], as promoters of antibacterial properties [23–26] or as modifiers, in the form
of thermoplastic veils, for improving interlaminar toughness of fiber-reinforced epoxy
composites, and for dispersing in them nanofillers [27,28].

In the production of biomaterials for tissue engineering, for example, it is generally
desirable to have materials with the same texture of the primary tissue.

The electrospinning process allows the efficient and easy production of nanofibrous
membranes, which well-mimic the morphology of human tissue or specific biological
tissues. Together with the morphological feature, the possibility of tailoring and controlling
the mechanical properties at the macroscopic scale but also at the nanoscopic level in the
form of mapping of specific mechanical parameters is of great relevance.

The use of nanotechnologies in electrospun membranes is looked at as one of the
most promising pathways to tailor mechanical and functional characteristics, for ex. for
producing highly flexible, microporous nanomaterials that convincingly mimic the fea-
tures of the extracellular matrix and human tissue in general. Moreover, the possibility
to easily load different types of fillers in the electrospun matrix for all types of applica-
tions is attracting great attention because it represents a powerful method to direct the
material toward a myriad of diversified performances, including smart functions [29–33].
Moreover, by properly functionalizing the nanoparticle surface, it is possible to control its
hydrophilic/hydrophobic behavior (a crucial parameter for the dispersion in water and for
cell uptake) [34–36]. However, the coating agents are generally polymers, polysaccharides,
or active agents useful for their application in the biological environment [10,37–40].

Different research papers focused their attention on the control of the smart function-
alities in these types of systems. For example, in the case of magnetic nanoparticles, the
electrospun mat has demonstrated sensitivity to an external magnetic field, and capabil-
ity to increase the temperature locally thanks to the application of an alternate magnetic
field [10,41]. However, few research papers have deeply analyzed how the inclusion of elec-
tromagnetically responsive nanoparticles affects the morphological and local mechanical
features and the local surface properties of the electrospun membranes.

In this paper, membranes loaded with magnetite nanoparticles compatibilized with the
human environment were successfully embedded in the mat fibers following the procedure
already reported in the literature [31]. These systems have proven efficacy in treating
solid tumors, from cervix uterine to melanoma. Generally, the patients who suffer from
these diseases should undergo the surgical remotion of the cancerous zone. After this step,
chemotherapy treatment is provided to the patient to avoid any potential regrowth of the
dangerous tissue and to treat the tissue that cannot be removed during surgery. In this
scenario, topical chemotherapy treatment must be directly applied in a wet environment,
covering the damaged tissue and possibly, providing the required antitumoral treatment.
For this reason, it is necessary to analyze the structural characteristics and surface properties
along the fiber surface. Recent relevant studies have proven that the evaporation of the
solvent and the stresses provided during the electrospinning process intrinsically cause
the development of nanofiber with a higher amount of voids and amorphous in the outer
part of the nanofibers, having consequently less performing mechanical properties in the
outer shell compared to the core [42]. Gòmez-Pachòn et al. [43] have noticed that during
the electrospinning process of poly(lactic acid), it is possible to produce an amorphous
and crystalline zone with lamellar-like structures. In fact, crystallinity plays a key role
in these types of systems; recent research has proven that cell proliferation is strictly
affected by the degree of crystallinity and types of cell lines [44,45]. Recent research papers
have analyzed the nanometric mechanical properties of electrospun membranes. One of
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the most promising techniques is H-AFM, which allows a quantitative evaluation of the
local mechanical modulus to be obtained. The performed studies are mainly focused on
applying these systems in the biomedical field [46,47] and understanding how the local
mechanical modulus depends on the polymer chemistry [48,49] and the structure of the
nanofiber [42]. Based on these studies, to the authors’ knowledge, this is the first time
that the nanometric mechanical properties were evaluated via H-AFM on electrospun
nanocomposite membranes. Through this investigation, it was found that the inclusion
of magnetite in electrospun membranes affects the crystallinity of the material and the
distribution of the local mechanical properties along the mat fibers. Bulk mechanical tests
have been compared with the results obtained by H-AFM.

2. Materials and Methods
2.1. Materials

PCL, with the CAS number 24980-41-4, was supplied by Perstorp (Malmö, Sweden)
for the membrane preparation. It is a linear polyester with a high molecular weight (about
80,000) that was provided in pellet form (granules with an appr-oximate diameter of
3 mm). Aldrich Chemical Co. (Milwaukee, WI, U.S.) provided the iron (III) acetylacetonate
(Fe(acac)3) (97%), 1,2-hexadecanediol (90%), oleic acid (OA), citric acid (CA), benzyl ether
(90%), ethanol, hexane, and acetone. All of the chemicals used in the testing were of analyti-
cal grade. Fe3O4 magnetic nanoparticles (Fe3O4@OA) were made utilizing an experimental
method that has previously been documented in the literature [50,51]. Fe3O4@OA was
functionalized by altering the produced nanoparticles via ligand exchange with citric acid
(CA) at room temperature, as described by Guadagno et al. [31]. The final functionalized
nanoparticles are here labelled F-Fe3O4.

2.2. Electrospinning Procedure

The procedure followed to obtain the nanofibrous mats of PCL loaded with magnetite
nanoparticles had been recently optimized by the research group. [31] PCL was dissolved
in hot acetone (14% wt./wt.) and stirred for about two hours. To create homogeneous
and stable solutions, nanoparticles were introduced to the system, and the solutions were
then ultrasonically processed. F-Fe3O4 concentrations in PCL were calculated at 2, 5, and
10 wt.%, with respect to PCL concentrations. Climate-controlled electrospinning apparatus
was used to electrospin the functionalized Fe3O4 nanoparticle-containing solutions (EC-CLI
by IME Technologies, Spaarpot 147, 5667 KV, Geldrop, The Netherlands). Each combination
was put into a stainless-steel syringe (3 mL) with a 0.8 mm needle. The needle had a
high-voltage connection to a power source.

The counter electrode was a grounded piece of aluminium foil positioned 30 cm away
from the spinneret. On the aluminium foil, PCL fibres in the shape of continuous filaments
were gathered to form a fibrous membrane. The electrospinning process parameters were
suitably set to prevent bead development and, hence, to manufacture mats of fibrous PCL
made up of continuous individual fibrils, as homogeneous as possible in diameter along
the length.

During the membrane fabrication process, the parameters were optimized through a
process of trial and error. The voltage for electrospinning was set at 25 kV (charge applied to
the collector at −4 kV and charge applied to the needle at 21 kV), feeding rate at 4.0 mL/h,
the temperature at 25 ◦C, and relative humidity at 35%. The produced membranes were
placed in a vacuum oven for 24 h at room temperature to remove any solvent traces. The
membranes made were labelled “PCL_FillerPercentage_F-Fe3O4”.

2.3. Thermal Analysis

The thermal stability of the nanocomposite membranes was examined using ther-
mogravimetric investigations (TGA-DTGA) using a Mettler Toledo TGA/STDA851e in
flowing air at a 10 K/min heating rate.
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Setting a heating rate of 10 ◦C per minute, differential scanning calorimetry (DSC)
was carried out using a Mettler Toledo DSC 822e in an N2 environment at a flow rate of
50 mL/min.

By considering the enthalpy of fusion (∆Hm) and comparing it to the enthalpy of fusion
of 100% PCL (∆H100%m), 136.1 J/g, the crystallinity evaluation was evaluated through
Equation (1):

Xc =
∆Hm

(1− α)× ∆H100%m

(1)

where α is the mass fraction of magnetite in the nanocomposite.

2.4. Structural Investigation

Structural characterization of the electrospun membranes was carried out by em-
ploying the diffractometer Bruker D8 Advance diffractometer (Bruker Corporation, Bil-
lerica, MA, USA) operating at 35 kV and 40 mA. The analysis was conducted in the 2θ
range of 10–30 degrees. The data were analysed with the same methodology reported
by Naddeo et al. [52]. The crystallinity of the samples was obtained according to Sown-
thari et al. [53] by deconvoluting the spectra [54,55] and considering the crystalline and the
amorphous area [56] under the diffractometric curve profile, in accordance with procedure
already reported in literature [29].

2.5. Nanometric Mechanical Mapping

Generally, to study electrospun membranes with functional nanoparticles, the physic-
ochemical properties of the embedded nanoparticles in regulating nano-bio interactions
are well-recognized aspects, as well as the effects of the size, shape, and surface charge of
nanoparticles on their biological performances. All these aspects were extensively inves-
tigated in the literature. The role of nanoparticle mechanical properties in drug delivery
has only been recognized recently and remains the least explored. Recently an interesting
article review provided an overview of the impacts of nanoparticle mechanical properties
on cancer drug delivery [57]. The article also deals with the current methods for fabricating
nanoparticles with tunable mechanical properties. The different nanoparticles’ mechanical
characteristics strongly affect mechanisms that control the complicated nano-bio interac-
tions at the cellular, tissue, and organ levels. Furthermore, in many performed studies,
a dependence of the size and shape of nanoparticles on antitumoral activity has already
been observed. The size and shape of nanoparticle or nanoparticle domains are expected
to be strictly related to their mechanical properties. As described in previous papers,
the antitumor activity of the developed membranes is due to the presence of magnetic
nanoparticles [31]. It is evident that the local mechanical properties, resulting from the rigid
domains of magnetic nanoparticles are properties to be thoroughly investigated. To analyse
the morphology of the samples and correlate it to the local mechanical properties, atomic
force microscopy (AFM) with the HarmoniX tool was used. By utilizing the interactions be-
tween the tip and the sample surface, H-AFM is a technique that can generate a topographic
and mechanical map of the sample surface [58]. Accurate data on the morphology and
local elastic modulus of the sample’s surface can be obtained by measuring the cantilever’s
deflection using a laser. With a nominal tip radius of 10 nm, the HMX-10 probe was used to
conduct AFM measurements.

This probe makes mapping nanometric mechanical characteristics possible between
10 MPa and 10 GPa. The elastic modulus was measured with an accuracy of 10 MPa
and positioned on the sample surface with a precision of 10 nm. The Derjaguin-Muller-
Toporov (DMT) model was used to process the height and local mechanical data using
the procedure reported previously in the literature [59,60], which were processed along
the fibres using NanoScope Analysis 1.40 Software (Bruker Corporation, Billerica, MA,
USA) and via OriginPro 2018 64-bit software (OriginLab Corporation, Northampton, MA,
USA). The modulus values assessed were taken along the nanofiber’s spine, in line with
earlier research reports. Because of the curvature of the fibres, the AFM tip really has
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varied contact areas with the nanofiber’s surface, resulting in variations in the applied
stress [48,61].

2.6. Bulk Mechanical Properties

Mechanical characterization was carried out using Dual Column Tabletop Testing
Systems (INSTRON, series 5967-INSTRON, Norwood, MA, USA) in tensile tests. Five
samples of each membrane, each measuring 1 cm in width by 5 cm in length and 0.1 mm in
thickness, were tested at room temperature. Tensile tests were performed by elevating the
beam at 10 mm per minute while collecting information on the force and distance travelled.
The data were then detected as stress-strain curves.

3. Results and Discussion
3.1. Thermal and Structural Analysis

TGA measurements were carried out on the obtained membranes. The results, re-
ported in Figure 1, show that the PCL thermal degradation is anticipated by the inclusion
of magnetite inside the matrix. This behaviour is probably due to the fact that the func-
tionalized Fe3O4 nanoparticles are responsible for the random pyrolysis of PCL chains and
accelerate the thermal degradation of PCL; a phenomenon already found in the literature
for magnetite-based nanoparticles [62]. As reported in Table 1, the 5% weight loss is antici-
pated from 370 ◦C to around 330 ◦C by the inclusion of functionalized magnetite. However,
this anticipation is not a problem for the system’s applicability here proposed since the
study aims to explore the properties of these membranes for biomedical applications. As
expected, increasing the magnetite content increases the residual ratios at 700 ◦C. However,
as also reported in other recent papers in the literature, the residual quantity after the TGA
does not perfectly match the theoretical amount of magnetite [63,64]. However, it is worth
noting two aspects: (i) the degradation of the functionalized magnetite occurs (in particular,
the degradation of the citric acid), causing more than 10% weight loss of the magnetite [31];
(ii) the magnetite anticipates the degradation of the PCL sensitively, suggesting that the
type of degradation and, consequently, the type of residue may change between the PCL
membranes loaded with magnetite and the unloaded one [62].

Figure 1. TGA (a) and DTGA (b) of PCL membranes loaded with F-Fe3O4 nanoparticles.

DSC analyses evidence that these types of systems are thermally stable (no transitions)
around human body temperature. In fact, PCL, which is characterized by a low melting
point (around 60 ◦C), tends to increase the melting temperature by increasing the F-Fe3O4
amount. The DSC graph is reported in Figure 2.
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Table 1. 5%, 50% weight loss and residuals at 700 ◦C for PCL membranes loaded with Functionalized
Fe3O4 nanoparticles.

Tloss,5% [◦C] Tloss,50% [◦C] Residuals at 700 ◦C

PCL_0%F-Fe3O4 370 407 2.68%

PCL_5%F-Fe3O4 333 373 4.53%

PCL_10%F-Fe3O4 325 362 6.59%
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The inclusion of the filler in the polymeric matrix plays a relevant role. It causes
an increase in the melting temperature, since it causes an increase in the crystal size
in the matrix, as detectable by the narrowing of the melting endotherm profile, which
becomes progressively narrower as the amount of magnetite increases with a simultaneous
shift at a higher temperature with respect to the PCL alone. The crystallinity of the
PCL, evaluated as the difference of melting enthalpy, is compared to that of a theoretical
100% PCL (136.1 g/mol). This analysis (reported in Table 2) proved that the inclusion of
magnetite enhances the crystallinity of PCL, increasing from 39% (for 0 wt.% of F-Fe3O4)
to 64% (for 5 wt.% of F-Fe3O4). In a PCL membrane loaded with 10 wt.% of F-Fe3O4, the
large amount of magnetite hinders the crystallization process of the polymer, determining
a decrease in the crystallinity degree to 43%.

Table 2. Melting Temperature and Crystallinity of PCL-loaded membranes.

Sample Melting Temperature [◦C] Crystallinity [%]

PCL_0%F-Fe3O4 58.3 39.1

PCL_5%F-Fe3O4 62.2 64.5

PCL_10%F-Fe3O4 65.5 43.5

All these data were confirmed by XRD analysis. The procedure to evaluate the
crystallinity degree (Xc) and the crystallite coherence lengths perpendicular to reflection
planes 110 (D110), 200 (D200), and 111 (D111) for the PCL component of the membranes is
described in Section XRD Evaluations of Supplementary Materials (S.M.).

Figure 3 shows the diffractograms of the developed samples. A higher crystallinity
for the PCL_5%F-Fe3O4 was detected by evaluating the XRD spectra. Moreover, by ap-
plying the Scherrer Equation to the various typical peaks of the orthorhombic structure of
PCL [31,45] ((110) at 21.5◦, (111) at 22.0◦, (200) at 23.8◦ of 2θ), it is evident that the crystallite
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size increases when the filler content increases (see Table 3), and this phenomenon well
explains the increase in the melting temperature observed by the DSC analysis.
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Table 3. Crystallite coherence lengths perpendicular to reflection planes 110 (D110), 200 (D200), and
111 (D111) and crystallinity values of the unloaded PCL membrane and membranes loaded with 5%
and 10% F-Fe3O4 nanoparticles.

Sample D110 [Å] D111 [Å] D200 [Å] Crystallinity [%]

PCL_0%F-Fe3O4 180 176 153 43.26

PCL_5%F-Fe3O4 184 213 155 60.11

PCL_10%F-Fe3O4 206 270 193 48.82

The evaluation of F-Fe3O4 distribution along the fibers of the membranes was per-
formed using Energy Dispersive X-ray Analysis (EDX) investigation. The results shown in
Section EDX-FESEM Morphology of S.M. evidence a good dispersion.

3.2. Nanometric H-AFM Analysis and Mechanical Properties

The local mechanical characteristics of the nanocomposites were evaluated with an
innovative approach, using the H-AFM, through which it is possible to obtain an accurate
mechanical mapping of the nanofiber surfaces. The height and DMT modulus images are
shown in Figure 4. As evident, the height image shows that the magnetite nanoparticles are
included in the nanofibers. Moreover, the DMT modulus images show that the white dots
(that correspond to higher mechanical modulus) are well distributed along the nanofibers.
The formation of nanoparticle clusters slightly increases as the magnetite amount increases.
Still, the adopted functionalization effectively spreads the magnetite nanoparticles in the
PCL matrix homogeneously.

As described before, including magnetite nanoparticles in the matrix affects the crys-
tallinity. This constatation explains the behaviour of the H-AFM results.

As reported in Figure 5, the DMT moduli increase by increasing the content of mag-
netite. However, by following the DMT profile along the fibres, it is possible to observe that
passing from PCL with 0 wt.% of filler to PCL with 5 wt.% of filler, the mechanical values
increase by increasing the magnetite content (since the crystallinity is higher). A compari-
son with the thermal results evidences that for PCL with 10%F-Fe3O4, with more perfect
PCL crystals (and lower crystallinity degree), the presence of higher peaks is due to the
presence of magnetite aggregates in the matrix together with the presence of more perfect
crystals. It is also possible to see that the aggregates can reach an extension of the aggregate
domains up to 550–750 nm.
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By graphing the distribution of values obtained for the various membranes, as reported
in Figure 6, it is possible to observe that the average mechanical modulus increases by
increasing the magnetite content. However, as noticed in Figure 6 and in Table 3, the
crystallinity and the magnetite content are key parameters that affect the local mechanical
modulus distribution. For this reason, the PCL_10%F-Fe3O4 system presents overall an
average mechanical modulus higher than PCL_5%Fe3O4, and a wider distribution, because
of a more significant number of magnetite aggregates. This aspect was also considered by
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evaluating the distribution’s asymmetry. The skewness of the various distributions was
evaluated (reported in Table 4) using Equation (2).

Skewness =
N

∑
i=1

(Xi − X∗)3

(N − 1)× σ3 (2)
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Table 4. Statistical parameters of local mechanical value distribution.

Parameters PCL PCL_5%F-Fe3O4 PCL_10%F-Fe3O4

Average DMT Modulus [MPa] 120.7 303.8 352.2
Standard Deviation [MPa] 57.67 80.15 116.2

Mode [MPa] 125 325 275
Skewness 0.079 0.131 0.705

This parameter gives information about the asymmetry of the distribution of the
local mechanical values. [65] It increases by increasing the filler amount, but the higher
difference is for the 10 wt.% of F-Fe3O4. Generally, a distribution curve can be symmetrical
if the skewness is between −0.5 and 0.5. If the skewness is above 0.5, it is considered
asymmetrical. In this case, the asymmetry of the PCL_10%F-Fe3O4 curve is due to the
crystallinity degree (that causes a decrease in the mode); in contrast, there is a higher
quantity of nanoparticles and clusters, which causes an increase in the local mechanical
values. For this reason, the distribution is asymmetrical and shows a strong dependence on
the nanoparticle percentage.

In synthesis, the mode is a more accurate statistical parameter to monitor the DMT
modulus of the matrix, whereas the average is the statistical parameter that describes the
properties of the whole nanocomposite. The local mechanical properties of the material
were compared to the bulk mechanical properties in tensile mode, and the results are
reported in Figure 7. The increase in Fe3O4 loading increases the material’s elasticity, so
the local mechanical properties well explain the increase in bulk properties. The Young
modulus of the PCL (4.58 MPa) slightly increases by increasing the magnetite content
from 5 wt.% (6.40 MPa) to 10 wt.% (6.81 MPa), following the trend of the nanometric
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measurements. The elastic values measured at the nanoscale differ from the bulk values
since the H-AFM evaluates the mechanical properties by tapping the sample (similar to the
indentation), whereas the bulk tests are in tensile. It is worth noting that the strain at the
break of the various membranes is not significantly affected by the inclusion of magnetite
nanoparticles, that in fact is around 200% for all the membranes. It is probably due to the
fact that the bulk properties of electrospun membranes also depend on other parameters,
such as the fibre dimensions formed by the electrospinning process [66] or the fibre density
in the mat.
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It is worth noting that by performing a comparison between the elasticity modulus
obtained on nanometric domains of the sample surface through H-AFM mode and that
obtained from stress-strain curves of the bulk membrane, the values of the elastic modulus
detected by H-AFM seem overestimated, even if the trend is the same applying the two
different modes. Considering the quantitative difference in the modulus values obtained
using the different modes, the following question arises spontaneously: how reliable is the
calculation procedure through H-AFM if one wanted to use the data to get a quantitative
map of the elastic modulus on the surface? To answer this question, we have to consider two
aspects: one concerns the acquisition method through the H-AFM mode, the other concerns
the heterogeneity of the material under observation. Although magnetic nanoparticles are
functionalized to optimize their dispersion along the fibres, they are still responsible for the
heterogeneity in the local mechanical response, as well detectable by DMT Modulus profiles
along the fibre lengths in Figure 4. The elastic moduli of the samples detected using the
H-AFM mode according to the DMT model [67,68] take into account the force–indentation
curves following Equation (3)

FL(i) =
4
3
× E∗ ×

√
R∗ × i

3
2 + Fpull−o f f (3)

where FL is the load force, E* is the reduced Young’s modulus, E* = E/(1 − ν2), ν is the
Poisson ratio, R* is the reduced radius 1/R* = 1/Rindenter + 1/Rsurface, i is the indentation
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depth, and Fpull-off is the force at the point of pull-off of the AFM probe, or the pull-off force
for short. The pull-off force can easily be found from the force–indentation curves.

By using the DMT model, the force–indentation is strongly affected by the hetero-
geneity of the sample. In particular, the indentation force on the magnetic nanoparticles is
strongly affected by the rigidity of the magnetite domains. The average DMT modulus of
the functionalized magnetite nanoparticle was found to be around 6 GPa. This value agrees
with the value found in literature by the other authors for the magnetite hardness alone [69].
In summary, in the traditional tensile test, the elastic forces determined by the entanglement
of the polymeric chains play a decisive role in conditioning the modulus values, whereas,
for the modulus determined by DMT mode, the more relevant contribution results from
the rigid domains of magnetic nanoparticles.

Both methods of acquiring the mechanical properties are relevant because they allow
the membranes to be designed from two different points of view. The one based on the
tensile tests of the material allows considerations on the mechanical consistency of the
material from the point of view of the macroscopic application, while the one relating
to the local mechanical properties allows information on aspects related to bioreactivity
(e.g., interaction with cells, biological tissues, etc.) to be obtained, as described in Section 2.5.

4. Conclusions

In this paper, the inclusion of functionalized magnetite nanoparticles in electrospun
membranes and their effect on the nanometric properties of the material were explored. The
inclusion of nanoparticles affects the thermal and structural properties of the material. Dif-
ferential scanning calorimetry analyses reveal a strong variation of crystallinity by increas-
ing the magnetite amount from 0 wt.% to 10 wt.%. This dependence is non-monotonous
since, for a high amount of nanoparticles, the filler starts to hinder the crystallization of the
polymer. The nanometric mechanical properties were explored via an innovative approach
through H-AFM, which was used to track the local mechanical modulus along the nanofiber
lengths. The results evidence that the nanometric mechanical properties of the samples are
a function of the filler percentage and the crystallinity degree. The variation in the bulk
mechanical properties is in accordance with the nanometric analysis, reporting an Increase
of the Young modulus by increasing the filler percentage.
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www.mdpi.com/article/10.3390/nano13071252/s1, Figure S1: XRD spectra and deconvolutions of
the peaks of: (a) PCL_0%F-Fe3O4; (b). PCL_5%F-Fe3O4; (c) PCL_10%F-Fe3O4; Figure S2: (a) EDX-
FESEM on PCL_10%F-Fe3O4; (b) Fe elemental response (black dots); Table S1: Parameters of the
fitting for the deconvolutions of the XRD spectra.
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