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Abstract: Drugs and pharmaceuticals are an emergent class of aquatic contaminants. The existence
of these pollutants in aquatic bodies is currently raising escalating concerns because of their neg-
ative impact on the ecosystem. This study investigated the efficacy of two sorbents derived from
orange peels (OP) biochar (OPBC) for the removal of the antineoplastic drug daunorubicin (DNB)
from pharmaceutical wastewater. The adsorbents included pristine (OPBC) and magnetite (Fe3O4)-
impregnated (MAG-OPBC) biochars. Waste-derived materials offer a sustainable and cost-effective
solution to wastewater bioremediation. The results showed that impregnation with Fe3O4 altered
the crystallization degree and increased the surface area from 6.99 m2/g in OPBC to 60.76 m2/g in
the case of MAG-OPBC. Placket–Burman Design (PBD) was employed to conduct batch adsorption
experiments. The removal efficiency of MAG-OPBC (98.51%) was higher compared to OPBC (86.46%).
DNB adsorption onto OPBC followed the D–R isotherm, compared to the Langmuir isotherm in the
case of MAG-OPBC. The maximum adsorption capacity (qmax) was 172.43 mg/g for MAG-OPBC
and 83.75 mg/g for OPBC. The adsorption kinetics for both sorbents fitted well with the pseudo-
second-order (PSO) model. The results indicate that MAG-OPBC is a promising adsorbent for treating
pharmaceutical wastewater.

Keywords: orange peels biochar; magnetic biochar; daunorubicin; Plackett–Burman design;
desirability function

1. Introduction

The past few decades have seen a growing use of antineoplastics for chemotherapy.
Many of the cytostatic drugs, though being used for abatement of cancer, have been
classified as CMR chemicals, i.e., carcinogenic, mutagenic, and reprotoxic. The escalating
consumption and the associated risks are prompting inevitable concerns related to their
occupational exposure and the consequent ecotoxicological threats [1,2]. By and large,
the rates of consumption of cytostatic drugs are relatively low compared to the other
pharmaceutically active compounds. Their existence in the water cycle, hence, seems
questionable. Parallel to that, the environmental risk assessment process is usually executed
for newly permitted pharmaceuticals, therefore, the majority of cytostatic drugs might not
be exposed to such an assessment. With these considerations, the investigations targeting
the presence and the removal of cytostatic drugs are limited [2,3].

Daunorubicin (DNB), also known as daunomycin, Scheme 1, is a cytostatic antibiotic
that belongs to the family of anthracyclines. DNB is commonly used in the treatment
of different types of acute leukemia and as a combination therapy in the treatment of
lymphoma, breast, and bladder cancers [4]. Being widely used, DNB is on the World
Health Organization’s List of Essential Medicines [5]. As per the International Agency on
the Research of Cancer (IARC), DNB is classified as category 2B carcinogenic (possibly
carcinogenic) [6]. Compared to the other family members, higher percentage, around
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13–15% of DNB, is excreted unmetabolized in urine within 24 h. DNB was detected in the
range of 260–1350 ng/L in oncological wards wastewaters [1]. The detection of DNB in
such high concentrations raises concerns about the efficiency of the wastewater treatment
approaches currently pursued.
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Scheme 1. Chemical structure of daunorubicin (DNB), molar mass (DNB hydrochloride) = 527.52 g/mol,
pKa1 = 7.48, pKa2 = 9.68 [7].

Literature surveying shows that not much attention has been paid to the removal
of antineoplastics from contaminated waters, especially DNB. Therefore, the ecological
impact of DNB and its fate remain poorly comprehended. Table 1 shows a glance at
literature efforts made to remove antineoplastics from different water matrices. Removal
strategies included adsorption, nanofiltration, photocatalysis, membrane bioreactors, and
Fenton/ozone oxidation processes [7–14].

Adsorption of pharmaceuticals onto biochars, especially those generated via the
pyrolysis of agro-waste biomasses, has been the subject of several investigations [15–21].
However, much fewer attempts have been made to remove the cytostatic drugs via sorption
onto biochars. Within the continuous rivalries for developing green solutions for water
remediation and under the umbrella of circular economy, recycling agro-waste materials
into value-added products is a widely used approach. On the one hand, agro-waste
materials are available at almost no cost and could represent a burden on the environment
if not properly recycled [22–24]. On the other hand, biochars obtained via pyrolysis of
the lignocellulosic materials are greatly privileged with their high surface area, pore size
and volume, existence of various functionalities, and liability for functionalization and
regeneration, making them excellent candidates for scavenging of contaminants [25–30].

Within these premises, orange peels (Citrus sinensis) are ubiquitously and copiously
available as a byproduct of the juice processing industry. The world production of oranges
amounted to almost half of the global production of citrus fruits, 124 × 106 tons, in 2016, as
per the UN Food and Agriculture Organization report [31]. According to this report, the
total imports of Qatar from citrus totaled 46.4 × 103 tons in 2016, with oranges representing
almost half. Recycling waste peels is, therefore, a sustainable solution, especially in the
major producing countries.

Parallel with the sustainability offered by the valorization of agro-wastes, functional-
ization of the biochar with magnetite (Fe3O4) nanoparticles is a plus. Magnetic nanosor-
bents possess high surface area and could be used on a large scale to treat large volumes
of water thanks to the feasibility of their separation using a low-strength external mag-
netic field [32–36]. In the current investigation, biochar of orange peels (OPBC) and the
magnetite-loaded biochar (MAG-OPBC) will be synthesized and exploited for the removal
of DNB from synthetic wastewater.
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Table 1. Removal of antineoplastics from contaminated waters using different strategies.

Antineoplastic Drug Strategy Source of Drug Process Optimization Removal Efficiency Ref.

Daunorubicin

Adsorption using two sorbents:
Orange peels’ biochar (OPBC)
and the magnetic counterpart

(MAG-OPBC)

Synthetic wastewater Plackett–Burman Design, PBD OPBC: 86.46%
MAG-OPBC: 98.51% This Study

Daunorubicin, doxorubicin Adsorption on synthesized
hydrophilic silica aerogels

Synthetic pharmaceutical
wastewater Univariate analysis

Under the given working conditions of 60
ppm [drug], a contact time of 60 min, 0.15 g of

adsorbent, a wastewater volume of 25 mL,
and at ambient temperature, the %R of

doxorubicin was 97.11%, which was only
slightly higher compared to daunorubicin at

96.89%.

[7]

Bleomycin and vincristine Biosorption on fungal biomass Aqueous solution Central composite design (CCD)

Dead biomass showed a maximum removal
of 38% ± 5% in the case of bleomycin,

compared to 20% ± 6% using the active
biomass in the case of vincristine

[8]

Cyclophosphamide, azathioprine,
methotrexate, doxorubicin,

epirubicin, flutamide, mitotane,
and tamoxifen

Anaerobic osmotic membrane
bioreactor Synthetic domestic wastewater Univariate analysis

Adsorption removed doxorubicin, epirubicin,
and tamoxifen, while biodegradation and

forward osmosis rejection removed
methotrexate and cyclophosphamide,

respectively. Mitotane, azathioprine, and
flutamide were eradicated through a
combination of biodegradation and

adsorption.

[9]

Flutamide Biosorption using living and
dead biomass of Chlorella vulgaris Synthetic wastewater RSM

The living microalga exhibited a higher
maximum sorption capacity of

26.8 mg g−1 compared to the dead biomass at
12.5 mg g−1. By utilizing the living biomass, a

%R of 98.5%
was attained.

[10]

Flutamide CoFe2O4 nanoparticles in
Fenton/ozone oxidation process Synthetic wastewater RSM The drug removal efficiency reached 67.7%

under optimal conditions. [11]

Cyclophosphamide (CP) and its
metabolite:

4-ketocyclophosphamide

A pair of membrane bioreactors
were operated in parallel, where
one was fed with the drug and its
primary metabolites, while the

other received no drug.

Municipal wastewater Univariate analysis
The operational conditions studied resulted in
an 80% removal of both CP and its metabolite,

4-ketocyclophosphamide.
[12]
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Table 1. Cont.

Antineoplastic Drug Strategy Source of Drug Process Optimization Removal Efficiency Ref.

Flutamide
A treatment process that

combines photocatalysis and
algae in a single stage.

Synthetic wastewater Response surface
methodology (RSM)

The drug %R of the individual algae
treatment and individual photocatalysis

were 67.2% and 66.6%, respectively,
under the optimum conditions.
However, the combined process

achieved a significantly higher removal
efficiency of 85.1%.

[13]

Paclitaxel, etoposide,
cyclophosphamide,

ifosfamide

Nanofiltration using Desal
5DK and NF270 membranes

laboratory degree water,
synthetic urine, actual

secondary effluent

No investigation of variables
was made

Compared to the NF270 membrane, the
Desal 5DK membrane demonstrated
greater effectiveness. The Desal 5DK

membrane exhibited an average rejection
rate of more than 89% for the four drugs
that were introduced into both synthetic

urine and real secondary effluent.

[14]
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Application of both sorbents in treating contaminated samples will be controlled by
implementing a multivariate-based stratagem. In this itinerary, and in alignment with the
greenness preservation, Plackett–Burman design (PBD) will be executed as the screening
design, followed by an optimization phase using the desirability function [18,37–39]. The
target is to get the utmost response with the lowest possible usage of resources and hence
generation of waste. Four variables that are expected to impact the removal efficiency (%R)
of the two sorbents will be assessed. The objective will be set to have the maximum %R
as a function of the independent variables: pH, biochar dose (AD), [DNB] and contact
time (CT). The novelty of this approach, therefore, stems from being, to the best of authors’
knowledge, the first sustainable and green approach that deals with using the biochar
of orange peels as pristine and loaded with magnetite in removing DNB executing a
multivariate-based scheme.

2. Materials and Methods
2.1. Chemicals

In this study, deionized water was taken from a Millipore-Q water system (Burlington,
MA, USA), while all reagents used were of analytical grade and used as purchased with no
additional purification. Daunorubicin (DNB) was purchased from Biosynth® Carbosynth
Ltd. (Compton, Berkshire, UK). Hydrochloric acid, sodium hydroxide, ammonium iron (III)
sulfate dodecahydrate (NH4Fe(SO4)2·12H2O), and ferrous ammonium sulfate hexahydrate
(Fe(NH4)2(SO4)2·6H2O) were procured from Sigma–Aldrich (St. Louis, MO, USA). Navel
orange peels were obtained from a juice store in Doha, Qatar.

2.2. Preparation of OPBC

The orange peels underwent a thorough cleaning process, which involved washing
five times with distilled water and another five times with deionized water. The peels were
then sliced into smaller cuts, roughly 2 × 2 cm, and were allowed to dry out in open air
(in the shade) for three days. In the next stage, the peels were further dried in an oven
at 80 ◦C for three successive days until they became brittle. Once entirely dry, the peels
were crushed into a fine powder. A clean and dry crucible was used to hold 10 g of the
powdered peels, which were then covered up with a cap and disposed of in a furnace. The
crucible was sealed and heated at 500 ◦C for 1 h. Afterwards, the crucible was let to cool to
room temperature, and the peels were divided into two portions, labeled as OPBC, and
kept in the desiccator for future use.

2.3. Preparation of MAG-OPBC

The magnetic biochar known as MAG-OPBC was produced utilizing a co-precipitation
technique [40,41]. The process involved mixing a 200 mL aqueous solution of 0.50 M Fe(II)
with a 400 mL equimolar solution of Fe(III) and agitating the resulting mixture at 600 rpm
and 60 ◦C for 1 h. Subsequently, 10 g of OPBC was added to the mixture and stirred at 60 ◦C
for 3 h. A 4 M aqueous solution of sodium hydroxide was then introduced to the suspension
slowly until the pH was ~12. After 30 min. of gentle stirring at room temperature, the
suspension underwent 10 washes with distilled water followed by 5 additional washes
with methanol. The MAG-OPBC that was obtained was filtered under vacuum and dried
up overnight at 70 ◦C before being stored in uncontaminated vials for future applications.

2.4. Measurment of the Point-of-Zero-Charge (pHPZC)

To determine the pHPZC of OPBC and MAG-OPBC, 1.0000 ± 0.0005 g of each ad-
sorbent was placed into seven separate beakers with 50 mL of aqueous sodium chloride
solution (0.01 M). The pH of the solution was then adjusted within the studied range of
2.5–10.0 ± 0.2, using diluted solutions of either hydrochloric acid or sodium hydroxide.
The samples were mixed for 24 h at 200 rpm using a mechanical shaker before detecting
the final pH. pHPZC for both OPBC and MAG-OPBC was then calculated by intersecting
the pHfinal and pHinitial curves [42].
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2.5. Characterization of OPBC and MAG-OPBC

Thermal gravimetric analysis (TGA, PerkinElmer-TGA400, Waltham, MA, USA) was
carried out at a temperature range of 30–900 ◦C at a rate of 10.00 ◦C/min and in the presence
of air. TGA was used to investigate the thermal stability of the prepared adsorbents. Fourier
transform infrared spectroscopy (FT-IR, Bruker Alpha, MA, USA) was employed to verify
the presence of functional groups on the adsorbent surface. Raman spectroscopy (Thermo
Scientific, Waltham, MA, USA) was used to confirm the conversion of peels into carbona-
ceous material and the formation of magnetite nanoparticles on the surface of the adsorbent.
The sample was first ground with potassium bromide to form a thin and homogeneous
mixture. The mixture was then compressed into a pellet using a hydraulic press to produce
a thin, transparent film, which was used for FT-IR and Raman analyses. To examine the
morphology and textural properties of both adsorbents, a scanning electron microscope
(SEM, FEI, Quanta 200, Thermo Scientific, Waltham, MA, USA) was utilized. Moreover, the
elemental composition of both samples was determined using an energy-dispersive X-ray
spectrometer (EDX). A transmission electron microscope (TEM, FEI, TECNAI G2 TEM,
TF20) was used to characterize the microstructure of both sorbents. The preparation of the
TEM sample for both magnetic and non-magnetic sorbents was done by dispersing the
sample in warm distilled water followed by ultrasonic mixing for 30 min. The samples were
subsequently mounted on a carbon-coated grid. Porosity and surface area were measured
using a Micromeritics ASAPTM 2020 accelerated surface area and porosimetry system.
Before N2 adsorption-desorption, the samples were degassed, and isotherms collected
at 77 K were used to calculate the surface area using the Brunauer–Emmett–Teller (BET)
equation. The t-plots and the Barrett–Joyner–Halenda (BJH) equations were utilized to find
the pore volume.

2.6. Batch Adsorption Experiments

For the batch experimental runs, a stock solution of DNB in water with a concentration
of 100 ppm was used. The pH of the water used to suspend OPBC and MAG-OPBC
was adjusted to the desired levels by adding 0.1 M solutions of hydrochloric acid or
sodium hydroxide, as specified in Table 2. A pH meter from Jenway (Cole-Parmer, Stone,
Staffordshire, UK) was utilized to measure the pH, while a UV-Vis spectrophotometer
from Agilent (Santa Clara, CA, USA) with matched quartz cells of 10 mm was used to
determine the concentrations of DNB before and after it was adsorbed onto the sorbent.
The supernatant solution was filtered using a non-sterile nylon Millex syringe filter with a
pore size of 0.45 µm.

2.7. Plackett–Burman Design Execution

To spot the statistically significant variables for better removal of DNB, a saturated
orthogonal statistical screening design, PBD was executed [43,44]. Herein, the design
involved 26 experimental runs (encompassing 6 central points, Ct Pt) for 4 independent
variables coded as A, B, C, and D, as shown in Table 2. All variables were of the numerical
type. All 26 experimental runs were performed in triplicate, and an average value was
recorded as the dependent response, %R. Obtained results were further validated versus the
predicted values provided by Minitab®. Precise optimization of the statistically significant
variables was performed in a subsequent phase using the desirability function tool (d).
The coefficient of determination (R2), adjusted-R2 (R2-adj), and predicted R2 (R2-pred), as
well as the analysis of variance (ANOVA) and the impact of the standardized effects of all
variables on DNB removal, were determined using Minitab® 19 software.

2.8. Equilibrium and Kinetics Investigation

Deionized water was used to prepare a range of dilutions for DNB, with concentrations
varying from 5–300 ppm. The pH of the solutions was attuned to 9.0 ± 0.2. A mass of
0.1000 ± 0.0005 g of both OPBC and MAG-OPBC was added to each drug solution, and the
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mixture was shaken for 48 h at 200 rpm using an automatic shaker. The resulting solutions
were filtered, and the absorbance was measured at 496 nm.

Table 2. Studied variables, matrix, as well as the observed (Obs.) and the predicted (Pred.) for the
PBD executed to investigate the statistical significance of each variable. Values of Obs. and Pred.
responses are contrasted using the value of the relative error (RE).

Variable Low (−) Central (0) High (+)

pH (A, pH unit) 3.0 6.0 9.0

Contact Time (CT, B, min) 10.0 50.0 90.0

Initial DNB Concentration ([DNB], C, ppm) 10.0 55.0 100.0

Sorbent Dosage (AD, D, mg/13 mL) 20.0 70.0 120.0

Trial
Number

Variable–Coded Levels * %ROPBC * %RMAG-OPBC

A B C D Obs. Pred. RE Obs. Pred. RE

01 − + + − 56.87 60.19 0.06 57.44 57.43 0.00

02 + + + − 62.80 65.99 0.05 62.88 60.22 0.04

03 − − + + 76.02 78.86 0.04 96.30 85.51 0.13

04 + − + − 70.62 73.53 0.04 76.15 75.26 0.01

05 + + + + 75.46 77.59 0.03 78.84 71.62 0.10

06 0 0 0 0 83.37 83.73 0.00 86.61 84.82 0.02

07 0 0 0 0 82.62 83.73 0.01 85.58 84.82 0.09

08 + − + + 84.04 86.46 0.03 86.25 89.51 0.04

09 − − − + 71.22 74.22 0.04 63.51 65.26 0.03

10 + + − + 69.68 73.04 0.05 57.95 54.66 0.06

11 + − − + 75.02 81.38 0.08 65.45 68.32 0.04

12 − + + + 67.74 70.77 0.04 68.80 68.42 0.01

13 0 0 0 0 83.39 83.73 0.00 87.49 84.82 0.03

14 − + − + 70.04 66.62 0.05 54.31 52.21 0.04

15 + + − − 64.91 62.11 0.05 43.06 45.96 0.06

16 − − − − 65.45 63.12 0.04 55.03 54.86 0.00

17 − − + − 70.05 67.06 0.04 70.06 71.89 0.03

18 + − + + 91.76 86.46 0.06 85.57 89.51 0.04

19 + + − − 65.03 62.11 0.05 45.03 45.96 0.02

20 0 0 0 0 86.04 83.73 0.03 82.41 84.82 0.03

21 − + + − 62.27 60.19 0.03 53.21 57.52 0.07

22 0 0 0 0 81.02 83.73 0.03 81.18 84.82 0.04

23 − + − + 70.08 66.61 0.05 48.30 52.21 0.07

24 0 0 0 0 86.05 83.73 0.03 85.80 84.82 0.01

25 − − − − 65.47 63.12 0.04 54.83 54.83 0.00

26 + − − − 72.93 69.21 0.05 60.08 57.47 0.05

* The response, %R, was computed using the equation: (%R) = C0−Ce
C0

× 100%, where C0 and Ce denote the
initial and equilibrium concentrations of DNB.

To evaluate the adsorption kinetics of DNB onto OPBC and MAG-OPC, 200 mL
of DNB solution (at a concentration of 100 ppm and a pH of 9.0 ± 0.2) was added to
0.5000 ± 0.0005 g of the adsorbent and stirred continuously at 500 rpm. Aliquots of 10 mL
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were taken from the reaction mixture at various time intervals over 150 min and filtered.
The absorbance of the resulting filtrate was then recorded at 496 nm.

3. Results
3.1. Characterization and Surface Chemistry
3.1.1. Thermogravimetric Analysis (TGA)

Figure 1 displays the TGA/dTA analysis findings. The results obtained indicate that
the OPBC and MAG-OPBC samples exhibited a weight loss of 8.29 and 7.39%, respectively,
in the temperature range of 50–200 ◦C corresponding to the evaporation of free water.
Additionally, in the range of 350–600 ◦C, there was a weight loss for both OPBC and MAG-
OPBC samples, 73.04% and 64.29%, respectively. This weight loss could be ascribed to
the loss of the organic matter and the carbonization of the polymeric components in both
samples. The total weight loss for OPBC was 82.68%, compared to 77.61% in the case of
MAG-OPBC. The difference in the weight loss between the two samples could be attributed
to the presence of magnetic nanoparticles on the surface of MAG-OPBC, which increased
the thermal stability of the nanosorbent.
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Figure 1. TGA/dTA analysis of OPBC and MAG-OPBC.

3.1.2. FT-IR Analysis and Point-of-Zero-Charge (pHPZC)

FT-IR analysis was carried out to identify the functional groups present on the sur-
face of OPBC and MAG-OPBC adsorbents and hence explore the adsorption mechanism
(Figure 2a). The results showed similarities in the spectra of both adsorbents, with some
peak shifts observed following the impregnation with Fe3O4. An absorption band at
1558 cm−1 appeared in both samples, corresponding to carboxylic C=O or aromatic C=C
stretching vibrations. The peak at 1372 cm−1 and 1347 cm−1 observed in OPBC, and
MAG-OPBC, respectively, was assigned to C-O stretching, and the shift indicates bond
formation between Fe3O4 and the surface of the biochar [45]. The presence of an absorption
band at 558 cm−1 could be attributed to the Fe-O bond, and it confirms the existence of
magnetite on the surface [46–50]. Figure 2b illustrates the point-of-zero-charge for OPBC
and MAG-OPBC, which was found to be 9.28 and 7.35, respectively. This implies that if the
pH of the solution is higher than pHPZC, the surface of OPBC or MAG-OPBC would be
negatively charged. This property, together with the pKa value of DNB, is fundamental in
deciding upon the adsorption mechanism and hence the efficiency of the studied adsorbent
towards the target pollutant.
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Figure 2. FT−IR spectra of (a) OPBC and MAG-OPBC and (b) pHPZC of both adsorbents.

3.1.3. CHN Analysis

The data of the CHN analysis for both OPBC and MAG-OPBC indicate that the N%
increased from 1.83% in the case of OPBC to 2.21% in the case of MAG-OPBC. Besides,
the C% decreased from 64.33% in OPBC to 64.21% in MAG-OPBC due to the existence of
magnetic nanoparticles on the surface. Similarly, the H% decreased from 2.34% in OPBC to
2.29% in MAG-OPBC due to the loss of hydrogen during the formation of Fe3O4 on the
surface of the nanosorbent.

3.1.4. Raman Analysis

Figure 3 portrays the Raman spectra of the pristine adsorbent, OPBC and their as-
prepared sample after impregnation by magnetic nanoparticles (MAG-OPBC). The data
obtained in the case of OPBC show two distinct bands linked with carbonous materials
and could be observed at 1362 cm−1 (D-band) and 1584 cm−1 (G-band), which are typically
related to carbonaceous materials derived from thermally treated peels. The D-band
indicates the carbon lattice attributes, including defects and sizes, while the G-band detects
C-C stretching for the sp2 structure. Additionally, the ID:IG intensity ratio for OPBC is 0.72,
whereas it is 0.66 for MAG-OPBC. This suggests that the number of defects on the surface
of OPBC decreased after impregnation with Fe3O4. The presence of Fe3O4 nanoparticles
onto OPBC was confirmed by the occurrence of two weak broad peaks in the spectrum of
MAG-OPBC located at 294 and 685 cm−1, which could be credited to the existence of Fe–O
bonds of the magnetic nanoparticles [51–53].

3.1.5. BET Analysis

The BET equation was employed to calculate the surface area of OPBC and MAG-
OPBC, Table S1. Figure 4 presents the N2 adsorption-desorption isotherms for both samples.
The obtained data revealed that the Langmuir surface area has increased from 6.99 m2/g in
OPBC to 60.76 m2/g for MAG-OPBC, possibly due to the existence of Fe3O4 nanoparticles
on the surface of OPBC, which enhances the surface area and improves the efficacy of
DNB removal. Mesopores (2–50 nm) and macropores (>50 nm) were also observed in both
samples. The adsorption isotherm for both sorbents was of type IV, indicating monolayer-
multilayer adsorption with subsequent capillary condensation. The H3-type hysteresis
loop was also observed, which is typical for materials with a broad range of pore diameters
and indicates the formation of slit-like pores from loose masses of plate-like particles [54].
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Figure 3. Raman spectra of the as-prepared samples OPBC and MAG-OPBC.
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Figure 4. (a) Surface area and (b) the pore diameter for both adsorbents OPBC, and MAG-OPBC.

3.1.6. Morphological and Microstructural Features of OPBC and MAG-OPBC

SEM and TEM analyses were executed to examine the surface morphology of Fe3O4
nanoparticles loaded biochar. Figure 5 displays the topographical study and the EDX charts
of OPBC and MAG-OPBC. The SEM micrographs in Figure 5a,b depict the presence of
many cavities and pores on the surface of the OPBC because of the thermal treatment
of the peels. In contrast, the SEM micrograph for MAG-OPBC in Figure 5c,d shows the
coverage of the surface of the OPBC with the magnetic nanoparticles, which have been
proved by FT-IR, CHN, and Raman analyses. The EDX analysis of the OPBC sample in
Figure 5e exposed a high concentration of carbon (59.84%) and oxygen (30.04%) in the
presence of potassium (3.45%) and calcium (2.34%). On the other hand, the EDX analysis of
MAG-OPBC, Figure 5f shows a lower concentration of carbon compared to OPBC (39.78%)
due to the presence of magnetic nanoparticles on the surface of OPBC, an issue that was
proven by the presence of a high concentration of iron (24.76%) and oxygen (30.15%).



Nanomaterials 2023, 13, 1444 11 of 23

Nanomaterials 2023, 13, x FOR PEER REVIEW 11 of 24 
 

 

3.1.6. Morphological and Microstructural Features of OPBC and MAG-OPBC 

SEM and TEM analyses were executed to examine the surface morphology of Fe3O4 

nanoparticles loaded biochar. Figure 5 displays the topographical study and the EDX 

charts of OPBC and MAG-OPBC. The SEM micrographs in Figure 5a,b depict the presence 

of many cavities and pores on the surface of the OPBC because of the thermal treatment 

of the peels. In contrast, the SEM micrograph for MAG-OPBC in Figure 5c,d shows the 

coverage of the surface of the OPBC with the magnetic nanoparticles, which have been 

proved by FT-IR, CHN, and Raman analyses. The EDX analysis of the OPBC sample in 

Figure 5e exposed a high concentration of carbon (59.84%) and oxygen (30.04%) in the 

presence of potassium (3.45%) and calcium (2.34%). On the other hand, the EDX analysis 

of MAG-OPBC, Figure 5f shows a lower concentration of carbon compared to OPBC 

(39.78%) due to the presence of magnetic nanoparticles on the surface of OPBC, an issue 

that was proven by the presence of a high concentration of iron (24.76%) and oxygen 

(30.15%).  

 

 
(a) (b) 

 

 

(c) (d) 

Layers 

Layers 

Pores 

Fe
3
O

4 
nanoparticles

 
 

Nanomaterials 2023, 13, x FOR PEER REVIEW 12 of 24 
 

 

  
(e) (f) 

Figure 5. SEM micrographs of (a,b) OPBC, (c,d) MAG-OBPC at 5000× and 10,000× magnifications, 

(e,f) EDX analyses of OPBC and MAG-OPBC, respectively. 

The microstructural characterization of the magnetic nanoparticles loaded onto the 

OPBC surface using TEM analysis is presented in Figure 6. The findings of the TEM anal-

ysis align well with the SEM micrographs. In Figure 6a,b, the OPBC surface appears 

smooth without any particles. On the other hand, the surface of the MAG-OPBC is rough, 

and Fe3O4 nanoparticles are easily visible, as shown in Figure 6c–e. Synthesized Fe3O4 na-

noparticles had an average size of 8.06 ± 1.62 nm (Figure 6f) and small particle size distri-

bution of 1.62 nm, proving the creation of uniformly sized Fe3O4 nanoparticles. 

  

(a) (b) 

0 200 400 600 800 1000

0.0

5.0x102

1.0x103

1.5x103

2.0x103

2.5x103

3.0x103

3.5x103

4.0x103

Ca
K

O

C

In
te

n
s
it

y
 (

a
.u

.)

Energy (keV)

Element Wt(%) 

C 59.84 

O 30.04 

K 3.45 

Ca 2.34 

Total 100 
 

0 200 400

0.0

5.0x102

1.0x103

1.5x103

2.0x103

2.5x103

3.0x103

3.5x103

4.0x103

Na
Fe

Ca

OC

In
te

n
s
it

y
 (

a
.u

.)

Energy (keV)

Element Wt(%) 

C 39.78 

O 30.15 

Na 2.75 

Ca 2.56 

Fe 24.76 

Total 100 
 

Layers 

Figure 5. SEM micrographs of (a,b) OPBC, (c,d) MAG-OBPC at 5000× and 10,000×magnifications,
(e,f) EDX analyses of OPBC and MAG-OPBC, respectively.

The microstructural characterization of the magnetic nanoparticles loaded onto the
OPBC surface using TEM analysis is presented in Figure 6. The findings of the TEM
analysis align well with the SEM micrographs. In Figure 6a,b, the OPBC surface appears



Nanomaterials 2023, 13, 1444 12 of 23

smooth without any particles. On the other hand, the surface of the MAG-OPBC is rough,
and Fe3O4 nanoparticles are easily visible, as shown in Figure 6c–e. Synthesized Fe3O4
nanoparticles had an average size of 8.06 ± 1.62 nm (Figure 6f) and small particle size
distribution of 1.62 nm, proving the creation of uniformly sized Fe3O4 nanoparticles.
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3.2. Adsorption Study
3.2.1. Plackett–Burman Design (PBD)

The main objective of the present investigation is to set out an economical and green
adsorbent by the reutilization of an abundantly available waste material, orange peels.
Our target was also to enhance the adsorption capacity of the biochar-derived adsorbent,
OPBC. This objective could be achieved by impregnation of the pristine candidate with
magnetite nanoparticles (MAG-OPBC). Controlling and boosting the performance of either
adsorbent could be achieved by controlling the process variables. Thus, an experimental
design was instigated to initially screen the statistical significance of four variables affecting
the removal of DNB. PBD was selected for this purpose. As a screening design, PBD is a
simple design in which the number of experimental runs is the smallest multiple of four
(>the number of variables) and is used when only the main effects are concerned. Therefore,
PBD is commonly used as a prelude to an optimization phase (coupled to the desirability
function tool in this investigation) to ensure that all chosen variables do certainly and
significantly contribute to the measured response, and hence further saving on the runs
to be performed [55]. Moreover, PBD permits the determination of the main effects of
all variables with the minimum variance with no concerns from the variable-variable
interactions or the non-linear effects. Therefore, PBD is always of choice for robustness,
ruggedness tests performed for the sake of method validation [43,44,55,56]. Compared to
the most popular screening design, full factorial design, where a relatively large number
of runs is needed to cover the main effects and all the possible combinations, PBD offers
an economical solution where only the main effects are considered [55,56]. The design
matrix, the obs. and pred. responses, together with the RE values, are shown in Table 2. As
could be realized from the obtained data, the values of RE were apparently small enough
to express the model’s accuracy.

3.2.2. Quality Charts and Analysis of Variance (ANOVA)

The statistical impact of each variable (main effects) was assessed using Pareto chart.
As shown in Figure 7a,b, variables surpassing the reference line are denoted as significant.
Figure 7a shows that AD (D) was the variable that mainly affects the removal of DNB
using OPBC, compared to [DNB] (C) in case of MAG-OPBC (Figure 7b). As also could
be concluded from the Pareto chart, pH (A) was statistically insignificant in case of MAG-
OPBC. In the same itinerary, similar conclusions could be derived from ANOVA testing
operated at 95.0 confidence interval. Obtained results are displayed in Table S2. Variables
with p-value > 0.05 are statistically insignificant. For both adsorbents, the lack-of-fit was
insignificant, suggesting the linearity of data.

Figure 7c–f shows the contour and surface plots portraying design data in the 2D and
3D formats, correspondingly. For contour plots, the maroon and dark green regions denote
areas with the lowest and highest %R of DNB, respectively. In the 3D plots, however,
elevated ridges are the regions with the highest %R.

3.2.3. Regression Equations

Regression models (main effects) are given by Equations (1) and (2) for OPBC and
MAG-OPBC, respectively. As reflected by the regression models, the coefficient next to
each variable signifies the magnitude of this variable, while the sign denotes the direction
of the impact of this variable.

ln(%ROPBC) = 4.0734 + 0.01535 pH − 0.001352 CT + 0.000673 [DNB] + 0.001620 AD + 0.1793 Ct Pt,
R2 = 96.75%, R2-adj = 95.72%, R2-pred = 94.08%

(1)

ln(%RMAG-OPBC) = 3.9451 + 0.00763 pH − 0.002788 CT + 0.003003 [DNB] + 0.001735 AD + 0.3023 Ct Pt,
R2 = 96.45%, R2-adj = 95.32%, R2-pred = 93.28%

(2)

As per model summaries given following each regression model, both R2 and R2–adj
were high enough, indicating model linearity. The R2-pred was used to assess the capacity
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of the proposed model to expect the response in case of any new observations, where
the greater the value of R2–pred, the better the model’s predictive capability. Running
the individual desirability function (d)—a statistical tool used to attest the capability of a
certain factorial combination to maximize the response-delivered the data in Table 3. The
closer the value of d to 1.0000, the more suitable the proposed factorial recipe. As shown in
Table 3, maximum removal of DNB was attained using MAG-OPBC where %R = 98.51%.
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Table 3. Optimum conditions and desirability function d-values.

Adsorbent Optimum Conditions Desirability Function (d)

OPBC pH = 9.0, CT = 10 min, [DNB] = 100 ppm, AD = 120 mg/13 mL d = 0.8481, %R = 86.46%
MAG-OPBC pH = 9.0, CT = 10 min, [DNB] = 100 ppm, AD = 120 mg/13 mL d = 0.8275, %R = 98.51%

3.3. Equilibrium and Kinetic Studies for DNB Adsorption onto OPBC and MAG-OPBC
3.3.1. Adsorption Isotherms

The adsorption of DNB onto OPBC and MAG-OPBC was studied using four models:
Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D–R) [57–61].

According to the Langmuir model applied in this system, the following can be sug-
gested: (I) All the adsorption sites on the adsorbent surface are equivalent with the same
adsorption energy, (II) the adsorbed species occupy one location on the adsorbent surface
without any interaction between them, and (III) the adsorption mostly takes place on
the surface of the adsorbent. The Langmuir isotherm is represented by Equation (3) and
Figure 8a,b, which illustrate the removal of DNB using OPBC and MAG-OPBC, respectively.

qe =
qm KL Ce

1 + KL Ce
(3)
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Figure 8. Adsorption equilibrium isotherms for the adsorption of DNB onto (a) OSBC and
(b) MAG-OSBC sorbents.

The equation features two parameters, qm and KL, which respectively stand for
the maximum adsorption capacity and Langmuir equilibrium coefficient. Equation (4)
also presents an alternative way of expressing this relationship in a dimensionless form
as follows:

RL =
1

1 + KL C0
(4)

The desirability of adsorption can be evaluated by using the RL value, which is the
DNB separation factor divided by the initial concentration (C0) measured in mg/L. The
RL value is indicative of the type of adsorption. For both OPBC and MAG-OPBC, the RL
value was less than 1, indicating that the process was favorable. As the concentration of
DNB increased, the adsorption process became irreversible, and the maximum adsorption
capacity (qm) for DNB was 38.75 mg/g and 172.43 mg/g for OPBC and MAG-OPBC,
respectively. These results confirm the outcomes of the PBD. The data collected for the
adsorption of DNB onto both OPBC and MAG-OPBC (Figure 8a,b) demonstrate that DNB
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adsorption onto MAG-OPBC matches well with the Langmuir isotherm, with R2 value
of 0.9704.

On the other hand, Equation (5) illustrates the Freundlich model:

qe = KFC
1
n
e (5)

The equation includes the Freundlich coefficients, which are denoted as KF (mole·g−1)
(L·mole−1) and 1/n. These coefficients indicate the adsorbent capacity, the difference in
adsorption intensity, and the deviation from linearity. Table 4 presents the calculated values
of these parameters for the Freundlich isotherm. OPBC has a 1/n value of 0.42 and an n
value of 2.38, while MAG-OPBC has a 1/n value of 0.86 and an n value of 1.16. Therefore,
MAG-OPBC has a greater adsorption potential towards DNB drug than OPBC.

Table 4. Calculated parameters for the adsorption equilibrium models used for the adsorption of
both DNB onto OPBC and MAG-OPBC.

Langmuir qm (mg/g) KL (L·mole−1) R2

OPBC 38.75 0.059 0.8267
MAG-OPBC 172.43 0.006 0.9704

Freundlich 1/n KF (mole/g) (L/mole)1/n R2

OPBC 0.42 4.721 0.7547
MAG-OPBC 0.86 1.416 0.9639

Temkin bT (J/mole) AT (L/mole) R2

OPBC 280.09 0.484 0.8434
MAG-OPBC 164.25 0.247 0.9150

D–R β E (kJ/mole) qm (mg/g) R2

OPBC 1.46 × 10−8 5.85 31.34 0.9281
MAG-OPBC 1.29 × 10−7 1.97 48.94 0.8609

Equation (6) represents the Temkin isotherm, which explains the interaction between
the sorbate and the sorbent.

qe =
RT
bT

ln(AT Ce) (6)

The AT constant in this paradigm corresponds to the Temkin isotherm, while R refers
to the universal gas constant (8.314 J/mol·K), bT denotes the Temkin isotherm constant, and
T represents the temperature in Kelvin. Based on Figure 8a–d and Table 4, OPBC displays
an adsorption energy of 280.09 J/mol, while MAG-OPBC exhibits an adsorption energy of
164.25 J/mol. These findings indicate that DNB is effectively adsorbed onto the surface of
both OPBC and MAG-OPBC, which aligns with the results obtained from the Langmuir
and Freundlich models.

Equation (7) represents the Dubinin–Radushkevich (D–R) model, which was investi-
gated to estimate the adsorption mechanisms of DNB onto OPBC and MAG-OPBC.

qe = qs·exp
(

β· ε2
)

(7)

Equation (8) uses β, the activity coefficient, to calculate the DNB sorption energy, E
(kJ/mol), where qs denotes the saturation capacity of both OPBC and MAG-OPBC. The
Polanyi potential is determined by ε, which can be calculated using Equation (8). Similarly,
the value of E can be obtained using Equation (9).

ε = RT
(

1 +
1

Ce

)
(8)
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E =
1√
2β

(9)

The results obtained for both adsorbents suggest that the DNB adsorption energy
onto OPBC is 5.85 kJ/mol, whereas the MAG-OPBC adsorption energy is 1.97 kJ/mol.
These values indicate that the adsorption of DNB onto both OPBC and MAG-OPBC is
physisorption, with an adsorption energy of less than 7 kJ/mol additionally, the surface
area of the nanosorbent appears to have a significant impact on the adsorption process. The
adsorption of DNB onto OPBC is well-fitted with the D–R isotherm, as evidenced by an R2

value of 0.9281.

3.3.2. Kinetic Models

To investigate the adsorption of DNB onto OPBC and MAG-OPBC, four kinetic models
were employed: Pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich, and Weber–
Morris (WM) [62–65] (Figure 9a,b). Table 5 provides the estimated parameters for each
model. The results indicate that the PSO model provides a good fit for the adsorption of
DNB onto both OPBC and MAG-OPBC, with R2 values of 0.9353 and 0.8782, respectively.
These findings suggest that the rate of the adsorption interaction between DNB and the
two nanosorbent is controlled by the drug and adsorbent concentrations, as demonstrated
by Equation (10):

OPBC & MAG−OPBC + DNB
(

k→
)
{DNB–OPBC} or {DNB–MAG−OPBC} (10)
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Figure 9. Kinetic studies for the sorption of DNB onto (a) OPBC and (b) MAG-OPBC adsorbents.

Using the Elovich model, the initial adsorption rate for DNB was determined to be
237.04 mg·g−1·min−1 for OPBC, which is lower than the initial adsorption rate of MAG-
OPBC (513.72 mg·g−1·min−1). However, the R2 value of the Weber–Morris (WM) model
was too low for both adsorbents, and thus, it was unable to provide an adequate explanation
of the adsorption of DNB onto the OPBC and MAG-OPBC nanosorbent in comparison to
the other models.

3.4. Proposed Adsorption Mechanism

Electrostatic interactions, hydrogen bonding, intra-particle interactions, and surface
diffusions might all be used to explain how DNB adheres to both OPBC and MAG-OPBC,
Figure 10a–d.
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Table 5. Calculated data for four kinetic models used for the adsorption of DNB onto OPBC and
MAG-OPBC.

Models Parameter
Value

OPBC MAG-OPBC

Pseudo-first order (PFO)
dqt
dt = k1(qe − qt)

K1 (min−1) 0.397 0.541
qe (mg/g) 30.29 49.74

R2 0.78114 0.7074

Pseudo-second order (PSO)
dqt
dt = k2(qe − qt)2

K2 (g·mg−1·min−1) 0.017 0.012
qe (mg/g) 33.09 55.11

R2 0.9353 0.8782

Elovich model
qt= 1

β × ln(1 + αβt)

α 237.04 513.72
β 0.248 0.152

R2 0.9130 0.8506

Weber−Morris model (WM)
qt = KI t0.5 + C

KI 1.50 2.518
C 19.46 33.36
R2 0.6926 0.7268
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Figure 10. (a) Proposed mechanism for adsorption of DNB onto OPBC, (b) FT-IR spectrum of OPBC
before and after adsorption of DNB, (c) proposed mechanism for adsorption of DNB onto MAG-OPBC,
(b,d) FT-IR spectrum of MAG-OPBC before and after adsorption of DNB.
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1. Electrostatic interactions occur when the DNB-charged functional groups interact
with the charged surface of either OPBC or MAG-OPBC. The pH may impact these
interactions since it can modify the surface charge of both the DNB and the as-
prepared adsorbent [66,67]. As shown in Figure 10a,c, the optimum pH greatly affects
the surface of both the adsorbate and the adsorbent. For MAG-OPBC, the optimum
pH was found to be 9.0, which is less than the pKa2 of DNB but higher than the
pHpzc for MAG-OPBC. This results in a positive charge on the surface of the drug
molecules and a negative charge on the surface of MAG-OPBC, leading to a strong
electrostatic interaction between DNB and MAG-OPBC and increasing the removal
efficiency. On the other hand, the data obtained for OPBC show that the optimum pH
is also 9.0, and the pHpzc of OPBC is also 9.28. This results in a neutral surface charge,
which negatively affects the electrostatic interaction and thus, the removal efficiency
of OPBC.

2. Chemical bonding can occur between DNB and both OPBC and MAG-OPBC surfaces
through covalent or ionic bonds. This mechanism is significant for DNB, which
has functional groups that can participate in chemical reactions with the surface
of the nanosorbent. Different functional groups with the adsorbate’s benzene or
other aromatic ring structures could have electron-rich or electron-deficient groups
that facilitate the interaction (Figure 10b,d). Additionally, there may be hydrogen-
bonding interactions between the oxygen atoms (H-acceptors) in the nanosorbent
and the hydrogen of the hydroxyl groups (H-donors) on the DNB drug. This type of
interaction is commonly referred to as hydrogen bonding between dipoles.

3. Intra-particle and surface diffusions mechanism: Intra-particle diffusion refers to the
movement of adsorbate molecules within the pores of the adsorbent particle [68,69].
In the case of OPBC and MAG-OPBC, many pores existed on the surface, as confirmed
by the SEM and BET analyses, and the adsorbate (DNB) diffuses into the pores of
the adsorbent and interacts with the surface of the nanosorbent. Surface diffusion,
conversely, refers to the movement of adsorbate molecules on the surface of the OPBC
and MAG-OPBC adsorbent. In the case of OPBC, the DNB molecules diffuse along
the surface of the biochar and interact with either the surface functional groups or the
magnetic nanoparticles of the MAG-OPBC. Both mechanisms are important for the
description of adsorption of DNB onto OPBC and MAG-OPBC because they explain
the increased interaction between DNB and the adsorbent surface, which enhances
the adsorption process.

4. Conclusions

This study aimed to remove DNB from synthetic wastewater using two adsorbents
produced from orange peels, a copiously abundant agro-waste. The performances of the
as-prepared biochars (OPBC) and magnetite-impregnated candidate (MAG-OPBC) were
compared, and MAG-OPBC was found to be more effective. Different characterization
techniques were used to understand the adsorbent behavior, including TGA/dTA, FT-IR,
point-of-zero-charge, BET, SEM, and TEM analyses. To ensure sustainability and method
greenness, eco-structuring of the prepared adsorbent was approached by controlling the
variables impacting the adsorption process using the PBD. The Pareto chart confirmed
that the most significant variables were the adsorbent dose. In the case of pristine biochar
and the [DNB] in the case of MAG-OPBC. The desirability function was used to determine
the variables that maximize the removal of DNB. The highest removal efficiency of DNB
was 86.46% and 98.51% for OPBC and MAG-OPBC, respectively. The optimum adsorp-
tion conditions were proposed by the desirability function to be pH = 9.0, CT = 10 min,
[DNB] = 100 ppm, and AD = 120 mg/13 mL. Nonlinear equilibrium studies revealed that
DNB adsorption onto MAG-OPBC fits well with the Langmuir isotherm, compared to the
D–R isotherm model in the case of OPBC. The maximum adsorption capacity was found
to be 38.75 and 172.43 mg/g for OPBC and MAG-OPBC, respectively. The D–R isotherm
showed that the adsorption of DNB onto both adsorbents follows a physisorption mecha-
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nism with an adsorption energy of <7 kJ/mol. The Elovich model showed that the initial
adsorption rate for DNB using OPBC was lower than that of MAG-OPBC. The PSO model
was able to explain the adsorption kinetics of DNB onto both adsorbents. The adsorption
of DNB onto the two adsorbents can be described using several adsorption mechanisms,
including electrostatic interactions, intra-particle interactions, and surface diffusions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13091444/s1, Table S1: BET analysis of the two sorbents;
OPBC and MAG-OPBC; Table S2: ANOVA findings using OPBC and MAG-OPBC.
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