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Abstract: The ever-increasing energy demand and global warming caused by fossil fuels push for the
exploration of sustainable and eco-friendly energy sources. Waste thermal energy has been considered
as one of the promising candidates for sustainable power generation as it is abundantly available
everywhere in our daily lives. Recently, thermo-electrochemical cells based on the temperature-
dependent redox potential have been intensely studied for efficiently harnessing low-grade waste
heat. Despite considerable progress in improving thermocell performance, no attempt was made to
develop electrode materials from renewable precursors. In this work, we report the synthesis of a
porous carbon electrode from mandarin peel waste through carbonization and activation processes.
The influence of carbonization temperature and activating agent/carbon precursor ratio on the
performance of thermocell was studied to optimize the microstructure and elemental composition of
electrode materials. Due to its well-developed pore structure and nitrogen doping, the mandarin
peel-derived electrodes carbonized at 800 ◦C delivered the maximum power density. The areal power
density (P) of 193.4 mW m−2 and P/(∆T)2 of 0.236 mW m−2 K−2 were achieved at ∆T of 28.6 K.
However, KOH-activated electrodes showed no performance enhancement regardless of activating
agent/carbon precursor ratio. The electrode material developed here worked well under different
temperature differences, proving its feasibility in harvesting electrical energy from various types of
waste heat sources.

Keywords: thermocell; thermogalvanic cell; thermo-electrochemical cell; low-grade heat; biomass

1. Introduction

Our society needs substantial quantities of energy for manufacturing, transportation,
and living. However, unfortunately, most energy has been based on fossil fuels that are
not replenished. Furthermore, the release of greenhouse gases from burning fossil fuels is
responsible for rising global warming and climate change [1]. To address the environmental
issue of fossil fuels and meet growing energy demand, renewable energies, such as solar
radiation, wind energy, and geothermal energy, have attracted lots of interest for sustainable
power production [2]. Among renewable energies, waste heat energy has gained significant
attention by virtue of its abundance and low dependence on weather conditions, assuring
continuous and predictable power generation.

Recently, thermocells (also called thermo-electrochemical cells), featuring low-cost,
simple components, and direct heat-to-electricity conversion, have been considered as
one of the promising technologies for waste heat harvesting [3–7]. A typical thermocell,
which consists of two identical electrodes and an electrolyte, generates a voltage when the
electrodes are at different temperatures, as shown in Figure 1a,b. A redox couple, such
as Fe(CN)6

3−/Fe(CN)6
4− [8], Fe2+/Fe3+ [9], or I−/I3

− [10], is involved in the reactions on
both electrodes, implying that the standard redox potentials for them are the same. The
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open-circuit voltage (Voc) of a thermocell relies on the temperature coefficient of redox
potential (α), also known as ionic Seebeck coefficient, which can be written as [11]:

α =
∂E
∂T

=
∆Srxn

nF
(1)

VOC = α∆T (2)

where E is the redox potential of a given redox couple, ∆Srxn is the entropy change in the
reaction, n is the number of electrons transferred, F is Faraday’s constant, T is the temper-
ature at which the reaction occurs, and ∆T denotes the temperature difference between
the two electrodes. In particular, thermocells have outstanding α values (−1.4 mV K−1

and 1.76 mV K−1 for Fe(CN)6
3−/Fe(CN)6

4− [12,13] and Fe2+/Fe3+ [14], respectively) much
higher than the Seebeck coefficient of conventional thermoelectrics (≈100 µV K−1) [15],
which makes them attractive for harnessing low-grade heat (<150 ◦C) that amounts to over
60% of waste heat [16].

Nanomaterials 2023, 13, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. (a) Schematic illustration of thermocell operation mechanism, (b) optical images of ther-

mocell components, and (c) schematic illustration of the synthesis of CMP and AMP from mandarin 

peel waste. 

2. Materials and Methods 

2.1. Preparation of CMP and AMP from Mandarin Peel Waste 

This work used Satsuma mandarin peel waste as a carbon precursor to prepare elec-

trode materials through carbonization and activation processes. First, the mandarin peels 

were washed several times with deionized (DI) water to remove impurities, followed by 

drying in a forced air oven at 80 °C for 12 h. Afterward, the dried peels were ground and 

sieved to obtain mandarin peel powder with a particle size between 75 μm and 120 μm, 

named DMP. Next, the DMP was carbonized at 600, 700, 800, 900 and 1000 °C at low pres-

sure with a nitrogen (N2) flow of 100 sccm for 2 h in a quartz tube furnace at a heating rate 

of 5 °C min−1. Subsequently, the carbonized DMPs were immersed in 0.1 M hydrochloric 

acid (HCl) solution (Daejung, Siheung, Republic of Korea), stirred for 30 min, and washed 

with DI water several times to neutralize them and remove any impurities. Finally, the 

products were dried in a vacuum oven at 80 °C for 12 h. Based on their carbonization 

temperature, the obtained products were denoted as CMP-600, CMP-700, CMP-800, CMP-

900 and CMP-1000. 

The mixtures with different weight ratios of KOH and CMP-800 (1:1, 2:1 and 3:1) were 

prepared by mixing and grinding CMP and KOH flakes (Daejung) using an agate mortar 

and pestle to ensure homogeneity. The obtained mixtures were heated at 800 °C at low 

pressure with a N2 flow of 100 sccm for 2 h in the tube furnace to activate CMPs. After-

ward, the products were washed and dried in the same way as CMP. The activated CMPs 

with the ratios of 1:1, 2:1, and 3:1 (KOH:CMP-800, w/w) were denoted as AMP-800-1, 

AMP-800-2, and AMP-800-3, respectively. 

2.2. Material Characterization 

The surface morphology and microstructure of CMP and AMP samples were ob-

served using field emission scanning microscopes (FESEM, JSM-7001F and 7800F, JEOL, 

Tokyo, Japan). The surface elemental composition of the samples was determined by en-

ergy dispersive X-ray spectroscopy (EDS) with an analyzer (Xmax-50, Oxford 

Figure 1. (a) Schematic illustration of thermocell operation mechanism, (b) optical images of thermo-
cell components, and (c) schematic illustration of the synthesis of CMP and AMP from mandarin
peel waste.

Given the wide distribution and small temperature difference with the environment
of low-grade heat, it is essential to make a large-scale device that requires inexpensive
electrodes from abundant and cheap sources. Efforts have been dedicated to preparing
inexpensive and high-performance electrode materials such as graphene [17,18], carbon
nanotube [12,17–21], and carbon cloth [22]. More recently, Kim et al. reported thermocell
operation with K3Fe(CN)6/K4Fe(CN)6 electrolyte under alkaline conditions, which enables
the use of non-noble metals such as copper and nickel that have not been used due to the
corrosion with the electrolyte of thermocells [23,24]. Considering that metal production
for renewable energy can be a new threat to the environment [25], it is urgent to explore
sustainable sources for electrode materials. Given that a thermocell electrode requires corro-
sion resistance, good charge transfer characteristics, and a hierarchical porous structure, 3D
porous carbonaceous material would be a promising candidate for thermocell electrodes.
Biomass-derived carbon materials, readily available and abundant, are expected to allow
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the fabrication of large-scale thermocell for practical applications. In recent years, porous
carbon materials derived from biomass waste have gained considerable attention as capaci-
tors [26–33], batteries [34–37], and adsorbents [38,39] owing to low cost, eco-friendliness,
and sustainability. Agricultural biomasses such as peanut shell [32], walnut shell [31],
orange peel [27,33], jujube [28], tea waste [29], coffee waste [40], bagasse [30,34], leaf [38],
and cone [26] have been proposed as sustainable sources for synthesizing hierarchical
porous carbons. To our knowledge, however, biomass-derived electrodes for thermocells
have not yet been reported.

The research presented in this paper aims to develop a biomass-derived electrode for
cost-effective and high-performance thermocells. We proposed a facile and environmentally
friendly approach for synthesizing a porous carbon electrode prepared by carbonization
and activation treatments of mandarin peel waste. A large number of mandarin peel waste
generated from juice production are discarded, and their high biological oxygen demand
and chemical oxygen demand lead to soil degradation and environmental pollution [41].
Therefore, using mandarin peel as a carbon precursor would contribute to environmental
protection and provide suitable feedstock for electrode materials. The effect of carbonization
temperature on the performance of biomass-derived carbon electrodes was investigated and
discussed based on their structure and heteroatom doping. Furthermore, we studied the
influence of the activating agent/carbon precursor ratio on the electrochemical properties
of the electrodes.

2. Materials and Methods
2.1. Preparation of CMP and AMP from Mandarin Peel Waste

This work used Satsuma mandarin peel waste as a carbon precursor to prepare
electrode materials through carbonization and activation processes. First, the mandarin
peels were washed several times with deionized (DI) water to remove impurities, followed
by drying in a forced air oven at 80 ◦C for 12 h. Afterward, the dried peels were ground
and sieved to obtain mandarin peel powder with a particle size between 75 µm and
120 µm, named DMP. Next, the DMP was carbonized at 600, 700, 800, 900 and 1000 ◦C
at low pressure with a nitrogen (N2) flow of 100 sccm for 2 h in a quartz tube furnace
at a heating rate of 5 ◦C min−1. Subsequently, the carbonized DMPs were immersed in
0.1 M hydrochloric acid (HCl) solution (Daejung, Siheung, Republic of Korea), stirred
for 30 min, and washed with DI water several times to neutralize them and remove any
impurities. Finally, the products were dried in a vacuum oven at 80 ◦C for 12 h. Based
on their carbonization temperature, the obtained products were denoted as CMP-600,
CMP-700, CMP-800, CMP-900 and CMP-1000.

The mixtures with different weight ratios of KOH and CMP-800 (1:1, 2:1 and 3:1) were
prepared by mixing and grinding CMP and KOH flakes (Daejung) using an agate mortar
and pestle to ensure homogeneity. The obtained mixtures were heated at 800 ◦C at low
pressure with a N2 flow of 100 sccm for 2 h in the tube furnace to activate CMPs. Afterward,
the products were washed and dried in the same way as CMP. The activated CMPs with the
ratios of 1:1, 2:1, and 3:1 (KOH:CMP-800, w/w) were denoted as AMP-800-1, AMP-800-2,
and AMP-800-3, respectively.

2.2. Material Characterization

The surface morphology and microstructure of CMP and AMP samples were observed
using field emission scanning microscopes (FESEM, JSM-7001F and 7800F, JEOL, Tokyo,
Japan). The surface elemental composition of the samples was determined by energy disper-
sive X-ray spectroscopy (EDS) with an analyzer (Xmax-50, Oxford Instruments, Abingdon,
UK) attached to the FESEM. X-ray photoelectron spectroscopy (XPS) was performed to
investigate the surface functional groups and the chemical composition of CMP and AMP
using a PHI 5000 Versa Probe II (Ulvac, Chigasaki, Japan). X-ray diffraction (XRD) spectra
were measured in the 2θ range of 10–80◦ with an X-ray diffractometer (SmartLab, Rigaku,
Tokyo, Japan) using Cu Kβ radiation (λ = 1.3922 Å) to identify the crystalline structures of
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CMP and AMP. Raman spectroscopy was performed at an excitation wavelength of 532 nm
using a micro-Raman spectrometer (alpha300, Witec, Abingdon, UK). The specific surface
areas (SSA) of CMP and AMP samples were measured using the methylene blue adsorption
method [42]. Approximately 10 mg of a sample was dispersed in 15 mL of 0.2 mM of
methylene blue (Sigma-Aldrich, St. Louis, MO, USA) solution, followed by stirring for
12 h. The obtained solution was centrifuged, and the methylene blue concentration of
the supernatant was measured using a UV-Vis spectrometer (Lambda 750, Perkin Elmer,
Waltham, MA, USA) to estimate the amount of unadsorbed methylene blue molecules. The
SSA of the sample was determined considering the amount of adsorbed methylene blue
molecules and the mass of the sample.

2.3. Fabrication of Thermocells

CMP (or AMP), Super P, and polyvinylidene fluoride (Sigma-Aldrich) were mixed
in N-Methyl-2-pyrrolidone (Daejung) with a weight ratio of 80:15:5 using a ball miller
(Pulverisette 23, Fritsch, Idar-Oberstein, Germany) to prepare a homogeneous slurry. It was
then coated onto a stainless steel sheet (0.1 mm thickness, Nilaco corporation, Tokyo, Japan)
using an adjustable film applicator, followed by a drying process under vacuum at 40 ◦C for
12 h. The obtained sample was cut into several pieces with a 1 cm× 1 cm dimension for use
as electrodes. The potassium hexacyanoferrate (Fujifilm Wako Pure Chemical Corporation,
Osaka, Japan) and potassium hexacyanoferrate(II) trihydrate (Daejung) were dissolved in
DI water to prepare a K3Fe(CN)6/K4Fe(CN)6 electrolyte for thermocell performance tests.
A thermocell was assembled with two identical electrodes, stainless steel current collectors,
and a 5 mm thick spacer containing an electrolyte (Figure 1b).

2.4. Electrochemical Measurements

The α of the redox potential of Fe(CN)6
3−/Fe(CN)6

4− was determined using a U-
shaped cell comprising two half-cells to prevent heat conduction between them (Figure S1).
The temperatures of the half cells were controlled by circulating hot and cold water through
the jackets surrounding the cells. The voltage and the temperature difference between the
half-cells were monitored with a digital multimeter (2000, Keithley, Cleveland, OH, USA)
and a data logger (GL220, Graphtec Corporation, Tokyo, Japan).

The thermocell was placed between hot and cold blocks to make a temperature dif-
ference between the electrodes. These blocks were connected to refrigerated/heated bath
circulators (RW3-1025P, Jeiotech, Daejeon, Republic of Korea), and their temperatures were
controlled with an accuracy of ±0.05 ◦C. The output electrical power of the thermocell
was measured by the digital multimeter with different load resistances. The load resis-
tances were controlled using a scanner card (2000-SCAN, Keithley, Cleveland, OH, USA)
mounted in the multimeter considering the internal resistance of the thermocell. The cyclic
voltammetry and electrochemical impedance spectroscopy (EIS) were conducted using
a potentiostat/galvanostat (Autolab PGSTAT302N, Metrohm, Herisau, Switzerland) to
examine the electrochemical properties of the electrodes. The cyclic voltammetry was
performed with a three-electrode setup consisting of a CMP (or AMP) working electrode,
a platinum counter electrode, and an Ag/AgCl reference electrode with 3.5 M KCl. The
electrolyte was 5 mM of K3Fe(CN)6 and 0.1 M of KCl solution.

The ionic conductivity of the electrolyte was measured at different temperatures
(Figure S2) using a conductivity meter (S230, Mettler Toledo, Greifensee, Switzerland). It
increased linearly from 180 to 243 mS cm−1 as the temperature increased from 20 to 40 ◦C.
The thermal conductivity of the electrolyte was ~0.55 W m−1 K−1 [43].

3. Results

Figure 1c shows the schematic diagram for synthesizing CMP and AMP from man-
darin peel waste. Firstly, the peels were dried and pulverized to obtain DMP. After that, it
was carbonized in an inert atmosphere, converting typical components of the peel, pectin,
cellulose, hemicellulose, and lignin into carbon materials (CMP). AMP was made from
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CMP-800 by chemical activation with KOH, which provided a hierarchical 3D porous
carbon structure. The pore formation mechanism of KOH activation is generally considered
as the chemical reaction between KOH and carbon (6KOH + 2C→ 2K + 3H2 + 2K2CO3).
K2CO3 decomposes into K2O and CO2 at a temperature above 700 ◦C. K2CO3/K2O/CO2
further reacts with carbon atoms, introducing pores into carbon materials [32,33].

The morphology and microstructure of DMP, CMP, and AMP were examined by SEM
analysis, as presented in Figure 2. It is found in Figure 2a that DMP possessed a smooth
surface without noticeable pores and cracks. As the carbonization temperature increased
from 600 ◦C to 1000 ◦C, a pore structure was developed as shown in Figure 2b–f, which is
ascribed to the elimination of heteroatoms as volatile gases [44] and the removal of salts
such as K2O, MgO, and CaO in the washing process. Salt particles of various sizes were
observed in as-synthesized CMP that was not washed after the carbonization (Figure S3,
the composition of the particles and concentrations will be discussed later). These salts
were mostly removed after washing with HCl and DI water, leaving a hierarchical porous
structure. CMP-800, 900, and 1000 had a 3D hierarchical structure with rough and porous
surfaces, which can facilitate ion transfer and enlarge the accessible surface area, thereby
enhancing the electrochemical performance of electrode materials [30,33,34]. The effect
of KOH chemical activation on the structure of CMP can be observed by comparing the
images of CMP-800 and AMP-800 samples. AMP-800-3 showed a similar porous structure
as CMP-800, but there were tens of nanometer-sized pores on its surface, which was not
observed in CMP-800, as shown in Figure 2h,i. It can be confirmed from the SEM analysis
that a 3D porous structure was made by carbonization, and the chemical activation process
introduced tiny pores.
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The crystal structures of the prepared samples were analyzed by XRD, and the results
are shown in Figure 3a,b. All the XRD patterns showed broad diffraction peaks at around
22.8◦ and 43.5◦ belonging to the (002) and (100) planes of graphitic carbon [31]. Accord-
ing to the Bragg equation, the interlayer distance of CMP samples was calculated to be
0.352 nm, which is higher than that of graphite (0.335 nm), indicating their low graphitiza-
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tion and high defect density. No apparent shift of the (002) peak position was observed
depending on the carbonization temperatures, revealing that the interplanar spacing was
not affected by the carbonization temperature in the range of 600–1000 ◦C. CMP-1000
exhibited a relatively low full-width half maximum (FWHM), ascribed to its relatively
high crystallinity due to the higher processing temperature. AMP-800 samples had (002)
peak slightly shifted to 22.5◦, suggesting their slightly larger interlayer spacing (0.357 nm)
compared to CMP samples (Figure 3b). The expansion of the interplanar spacing between
carbon layers by KOH activation is consistent with the previous literature [38,45]. The
microstructure of CMP and AMP was further analyzed by Raman spectroscopy. Figure 3c
shows the Raman spectra of CMP samples. All spectra exhibited two typical distinct peaks
at ~1350 cm−1 and ~1590 cm−1, known as D and G peaks. The D peak is associated with the
defects-induced breathing mode of sp2 rings, while the G peak corresponds to the in-plane
vibrational mode of sp2 carbon atoms [46]. The intensity ratio of the D to G peak (ID/IG)
demonstrates the degree of defect and disorder of carbon materials. The ratio ID/IG of CMP
increased from 0.88 to 1.09 as the carbonization temperature changed from 600 to 1000 ◦C.
During the carbonization process, heteroatoms such as oxygen and nitrogen abundant
in biomass feedstocks are eliminated, and the residual carbon atoms form a turbostratic
structure consisting of nanometer-sized polyaromatic layers [47,48]. The boundaries of
the polyaromatic layers contribute to the increase in the D peak intensity. This tendency
agrees with the XPS results discussed below, which prove that the oxygen and nitrogen
content decreased with the increase in carbonization temperature. The ID/IG of Raman
spectra of AMP, as presented in Figure 3d, increased as the ratio of KOH:CMP increased,
implying that the chemical activation induced the defects and disorders of structures in the
samples [31,49,50].
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CMP and AMP were analyzed by EDS in order to determine their elemental compo-
sition and distribution. The SEM and EDS mapping images shown in Figure 4a–d reveal
the uniform distribution of C, O, and N elements on the surface of CMP, confirming O
and N-doping on carbon. AMP also exhibited a homogeneous distribution of the elements
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throughout its surface (Figure S4). It has been well recognized that nitrogen doping is an
efficient way to enhance the electrical conductivity and the wettability of carbon materi-
als [29,51], which play an essential role in improving the performance of electrochemical
cells. The surface composition and chemical bonds of CMP samples were characterized
by XPS, and the results are displayed in Figure 4e,g,h. The survey spectra confirmed the
presence of C, O, and N elements in all the samples, as shown in Figure 4e. The relative
atomic concentrations of the elements are summarized in Table 1. In increasing the car-
bonization temperature, the content of carbon increased, but the oxygen and nitrogen
content decreased. The high-resolution C 1s spectrum of CMP-800 could be fitted to four
peaks assigned to C-C (284.8 eV), C-N (285.8 eV), C-O (286.8 eV), and C=O (288.9 eV)
bonds [26,30] (Figure 4g). As shown in Figure 4h, the high-resolution N 1s spectrum
also were deconvoluted into four peaks at 398.4, 399.8, 401.2, and 403.4 eV, which are
attributed to pyridinic N, pyrrolic N, graphitic N (or quaternary N), and oxidized N, re-
spectively [26,30,52]. The results revealed that the nitrogen atoms were successfully doped
into the porous carbon matrix. The graphitic N (40.6%) and pyrrolic N (32.7%) accounted
for most N bonding configurations. The graphitic N plays a vital role in enhancing the
electrical conductivity and charge transfer of carbonaceous materials [51,53]. Pyrrolic N,
the nitrogen atom substituting a carbon atom in the five-membered ring, provides high
charge mobility [54–56]. As displayed in their XPS spectra (Figure 4f), AMP samples also
contained C, O, and N elements.
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Table 1. Surface atomic concentrations of CMP measured by XPS.

Samples C (at. %) O (at. %) N (at. %)

CMP-600 85.32 13.01 1.67

CMP-700 86.35 11.68 1.96

CMP-800 86.33 12.14 1.53

CMP-900 87.83 11.4 0.77

CMP-1000 89.85 9.4 0.75

XPS was also examined to probe the elemental composition of the as-synthesized
CMP-800 sample, as shown in Figure S5. Since the sample was not washed with HCl and
DI water, it possessed a large amount of potassium, magnesium, and calcium, which are
abundant elements in mandarin peel [57,58]. The surface atomic concentrations of C, O,
K, Mg and Ca in the as-synthesized CMP-800 were determined to be 27.6, 50.5, 6.4, 11.4
and 4.1%, respectively, confirming that the heteroatoms covered most of the surface of
the CMP. Considering the XPS analysis results, the particles observed on the surface of
the as-synthesized CMP might be composed of K, Mg, Ca and O elements (Figure S3).
After washing, the concentration of C increased to 86.3%, and that of O decreased to 12.1%
(Figure S5), and most of K, Mg, and Ca disappeared, which agrees well with the SEM result
in Figure 2d.

Figure 5a shows the SSA of CMP and AMP, measured by the methylene blue adsorp-
tion method. The SSA of CMP was increased from 51.2 to 90.0 m2 g−1 as the carbonization
temperature raised to 700 ◦C and decreased to 60.0 m2 g−1 with the further temperature
increase due to the pore generation and widening. Cyclic voltammograms (Figure 5b)
show that the carbonization temperature affected the peak current. According to the
Randles–Sevcik equation, the electroactive surface area (ESA) is expressed by [59]:

Ip = 268600AD1/2n3/2v1/2C (3)

where Ip is the faradaic peak current, A is the ESA, D is the diffusion coefficient of
Fe(CN)6

3−, n is the number of electrons transferred in the redox reaction, v is the po-
tential scan rate, and C is the concentration of the reaction species (Fe(CN)6

3−) in the
electrolyte. Therefore, the ESA is proportional to the peak current. The ESA of CMP nor-
malized by that of CMP-600 is plotted in Figure 5d, where CMP-800 showed the maximum
value. Although CMP-700 had the highest SSA, the large pores generated in CMP-800
(Figure 2d) may play a role in enhancing the ESA by facilitating ion transport.

The cyclic voltammogram of AMP-800-3 showed a smaller peak current than CMP-
800 despite its higher SSA (Figure 5c). Therefore, its ESA was also estimated to be
smaller than that of CMP-800, as shown in Figure 5d. It can be ascribed to an irreversible
charge transfer at the AMP-800-3 electrode, related to its high peak-to-peak separation in
the voltammogram.

The α of Fe(CN)6
3−/Fe(CN)6

4− redox couple was measured using a U-shaped thermocell
comprising CMP-800 electrodes and 0.4 M K3Fe(CN)6/K4Fe(CN)6 electrolyte (Figure S1).
For comparison, the α was also determined using a thermocell composed of platinum
electrodes. Figure 6a shows the Voc of the thermocells with respect to the ∆T between
the hot and cold electrodes, exhibiting a linear relationship between them over a range of
temperature differences from 0 ◦C to 28.6 ◦C. The slope of the fitted line gives the estimate
of α = −1.40 mV K−1 for both the CMP and Pt electrodes, which is consistent with the
value reported in the literature for Fe(CN)6

3−/Fe(CN)6
4− redox couple [12,13]. The minus

sign of α indicates that the cold electrode has a higher potential than the hot electrode, and
∆Srxn of the redox couple is negative.
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The power generation performance of CMP and AMP electrodes was investigated
by measuring the voltage between the hot and cold electrodes under different external
resistances. The temperatures of the hot and cold blocks were controlled at 45 ◦C and 15 ◦C.
As plotted in Figure 6b, the Voc of CMP electrodes was 24.4 ± 0.18 mV, indicating that the
∆T between the electrodes was about 17.4 ◦C which was calculated from the Voc and α
measured above. A temperature drop can arise from the thermal interface resistances at hot
(cold) block/collecting electrode/CMP electrode interfaces and their thermal resistances,
which reduces the ∆T between the electrodes.

CMP-800 showed the lowest internal resistance of 27.0 Ω obtained from the voltage–
current curve slope. The corresponding areal power density–current curve plotted in
Figure 6c confirmed that CMP-800 showed the maximum power density owing to its
lowest internal resistance. CMP-700 and 900 had slightly lower performance, and CMP-600
and 1000 exhibited poor performance along with higher internal resistance. The reason
lies in the synergistic effect of pore structure and heteroatoms doping of CMP, where the
former facilitates ion transport and enlarges active surface area, and the latter improves the
electrical conductivity and charge transfer characteristic of carbonaceous materials. The
porosity of CMP increased with the carbonization temperature increasing from 600 ◦C to
800 ◦C, while no visible difference was observed among CMP-800, 900, and 1000 samples
(Figure 2b–f). It has been reported that the amount of pores and the surface area of biomass
increase until the carbonization temperature reaches 900 ◦C and decreases above 900 ◦C
due to pore widening and the coalescence of neighboring pores [39]. The nitrogen/carbon
ratio of CMP remained at a constant value of ~2% until 800 ◦C and dramatically decreased
to below 1% above 900 ◦C (Table 1). CMP-600 and 700 possessed relatively poor pore
structure, whereas CMP-900 and 1000 had lower nitrogen content than CMP-800. Thus,
CMP-800 owed its higher performance to the synergistic effect of well-developed pore
structure and nitrogen doping.

The cell was repeatedly assembled and disassembled to prove the robustness of CMP
electrodes. No delamination and crack were observed after ten assemblies and performance
tests, as shown in Figure S6a,b. The power density and internal resistance of thermocell
with CMP electrodes maintained their values without a noticeable change, confirming the
robustness of CMP electrodes.

The internal resistance of thermocell consists of three resistances: ohmic resistance (Rs),
charge transfer resistance (Rct), and mass transport resistance (Rmt) [60]. EIS was employed
to investigate these three resistances of CMP electrodes further. The Rs and Rct were
calculated from EIS results using an equivalent circuit model (Figure S7). Nyquist plots
depicted in Figure 6d confirmed that all the CMP samples had a similar Rs of 2.7 ± 0.1 Ω.
However, the carbonization temperature significantly influenced the Rct, corresponding
to the diameter of the semicircle. Three internal resistances are summarized in Figure 6e,
where the Rmt was obtained by subtracting Rs and Rct from the total internal resistance of
the thermocell. It can be seen that CMP-800 possessed the lowest Rct and Rmt owing to
its high porosity and nitrogen content. CMP-1000 had slightly higher Rmt than CMP-700,
800, and 900 but much higher Rct, which implies that the low performance originated
from poor charge transfer property due to its low nitrogen content. The areal power
densities of AMP-800-1, 2, and 3 were similar to or lower than that of CMP-800 (Figure 6f).
Although the KOH activation enhanced the SSA of AMP, it deteriorated the charge transfer
characteristics of AMP by destroying the graphitic structure and decreasing the conductivity
of AMP [61,62], as confirmed in its cyclic voltammogram (Figure 5c). Given the results
in Figures 5a,c and 6c,f, the improvement of SSA and the degradation of charge transfer
characteristics produced a thermocell performance similar to that of CMP.

Figure 7a,b provide the voltage–current curves and corresponding power–current
curves of CMP-800 under different temperature differences. The temperature of the cold
block was fixed at 15 ◦C, and that of the hot block was elevated to change ∆T. The open-
circuit voltage increased with increasing ∆T, and the slope of the voltage–current line
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declined, revealing that the internal resistance decreased as ∆T increased. The maximum
power of thermocell can be expressed as

Pmax =
VOC

2

4Rint
=

(α∆T)2

4Rint
(4)

where Rint denotes the internal resistance of thermocell. It can be found from Figure 7c that
the maximum power density of CMP deviates from the calculated curve that is proportional
to (∆T)2, which is attributed to the decrease in Rint. The three primary internal resistances
are displayed in Figure 7d to further explore the change of Rint. The resistances were
estimated from the voltage–current curves in Figure 7a and the EIS results shown in
Figure S8. The decrease in the internal resistance was mainly due to the decrease in Rmt
that can be reduced by the temperature gradient-induced convection flow of electrolyte.
Figure 7 proves that CMP electrodes can efficiently harvest electrical energy from various
types of low-grade heat sources with different temperatures.
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Figure 7. (a) Voltage–current curves, (b) corresponding areal power density–current curves,
(c) maximum power density–∆T curves, and (d) internal resistances of CMP-800 electrodes as a
function of ∆T.

The areal power density (P) was 193.4 mW m−2 and P/(∆T)2 was 0.236 mW m−2 K−2

for ∆T of 28.6 K (Figure 7b), which are comparable to those of MXene/SWCNTs/PANI com-
posite (0.0822 mW m−2 K−2 at ∆T of 40 K) [63], CNT (0.353 mW m−2 K−2 at ∆T of 50 K) [64],
CNT/graphene electrode (0.460 mW m−2 K−2 at ∆T of 50 K) [64], N-doped CNT/Pd com-
posite (0.432 mW m−2 K−2 at ∆T of 50 K) [65], and carbon fiber (0.0101 mW m−2 K−2 at
∆T of 50 K) [66].

4. Conclusions

The mandarin peel waste was successfully converted into carbonaceous materials
for thermocell electrodes. The influence of carbonization temperature on the structural,
chemical properties, and thermocell performance of CMP was explored, and CMP-800
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carbonized at 800 ◦C generated the maximum electrical power due to the combined contri-
butions from highly porous structure and nitrogen doping. However, no enhancement of
performance by KOH activation was observed. Harvesting electrical energy from various
low-grade heat sources using sustainable electrode materials would provide a promising
way to address global warming and energy crisis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano13091488/s1. Figure S1. Experimental setup for measuring the temperature coefficient
of redox potential of Fe(CN)6

3−/Fe(CN)6
4−. Thermocouples were passivated with epoxy resin,

preventing them from direct exposure to electrolyte. Figure S2. Dependence of ionic conductivity of
0.4 M Fe(CN)6

3−/Fe(CN)6
4− electrolyte on temperature. Figure S3. FESEM images of as-synthesized

CMP-800 before washing with HCl and DI water. Figure S4. (a) FESEM and (b–d) EDS mapping
images of AMP-800-1. Figure S5. XPS survey spectra of as-synthesized CMP-800 and washed
CMP-800. Figure S6. Optical images of a CMP-800 electrode (a) before and (b) after ten assembly
and disassembly tests, (c) power density, and (d) internal resistance of thermocell with CMP-800
electrodes according to the number of tests. Figure S7. Equivalent circuit model of a thermocell for the
analysis of EIS. Rs denotes the ohmic resistance, Rct is the charge transfer resistance, Zw accounts for
the Warburg impedance, and CPE is the capacitance. Figure S8. Nyquist plots of CMP-800 according
to ∆T.
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