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Abstract: Buckled graphene has potential applications in energy harvest, storage, conversion, and
hydrogen storage. The investigation and quantification analysis of the random porosity in buckled
graphene not only contributes to the performance reliability evaluation, but it also provides impor-
tant references for artificial functionalization. This paper proposes a stochastic finite element model
to quantify the randomly distributed porosities in pristine graphene. The Monte Carlo stochastic
sampling process is combined with finite element computation to simulate the mechanical property
of buckled graphene. Different boundary conditions are considered, and the corresponding results
are compared. The impacts of random porosities on the buckling patterns are recorded and analyzed.
Based on the large sampling space provided by the stochastic finite element model, the discrepancies
caused by the number of random porosities are discussed. The possibility of strengthening effects in
critical buckling stress is tracked in the large sampling space. The distinguishable interval ranges
of probability density distribution for the relative variation of the critical buckling stress prove the
promising potential of artificial control by the atomic vacancy amounts. In addition, the approxi-
mated Gaussian density distribution of critical buckling stress demonstrates the stochastic sampling
efficiency by the Monte Carlo method and the artificial controllability of porous graphene. The results
of this work provide new ideas for understanding the random porosities in buckled graphene and
provide a basis for artificial functionalization through porosity controlling.

Keywords: buckled graphene; random porosities; stochastic finite element model

1. Introduction

Buckling is one of the most common phenomena in low-dimensional nanomaterials.
Generally, buckling induces delamination [1], instability [2], and wrinkles [3] in graphene
sheets and graphene-based composites. However, besides the negative effects, buckled
graphene sheets have positive applications in energy harvest [4], hydrogen storage [5], and
artificial functionalization design [6,7]. The wasted mechanical energy can be collected
and stored in the form of internal potential and converted into concentrated kinetic or
thermal energy through buckled graphene. In addition, the buckled graphene sheets are
predicted to perform fast hydrogen storage and release by the corrugation formation and
controlled inversion of curvature. Furthermore, the buckling deformation of graphene is
also a potential and feasible way for artificial nanomaterial manufacturing and function-
alization [8,9]. Therefore, the investigation of buckling in graphene is not only important
for the instability, wrinkle, and corrugation mechanism, but it is also directly related to the
potential applications in energy harvest, hydrogen storage, and artificial functionalization.

The causes of bucking in graphene vary [10]. Bending-induced local buckling is
observed experimentally [11] and characterized by theoretical modeling and molecular
dynamics simulation [12–14]. In addition, buckling of dislocation in graphene is also
reported [15]. The shapes of the deformations of the buckled graphene are sensitive to
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external boundary conditions, grain boundaries [16], compressive tension, porosity, defects
in the microstructure [17], etc. From the perspective of numerical simulation, the molecular
mechanic method is performed based on the Morse potential functions with the parameter
approximation for buckling analysis [18]. The analytical approach is also developed to
analyze the stability of defective annular graphene sheets. The nonlocal thin plate theory
is combined with the translational addition theorem, while the defects are modeled as
eccentric holes [19]. In addition, the van der Waals forces of the bonded interaction between
atoms are simplified as the truss or beam elements to study the impacts on buckling
strength [20]. Therefore, buckling analysis is a challenging issue related to the instability,
boundary conditions, and local microstructures (defects, porosity, dislocations, etc.), thereby
deserving more concern.

For the porosities or the local atomic vacancy defects in graphene, the conventional
and analytical deterministic models have a shortcoming in the random distribution quan-
tification and computational cost [21]. As mentioned above, vacancy defects are supposed
to be eccentric holes in analytical methods [16]. However, the shapes and sizes of eccentric
holes are not appropriate to describe the micro geometrical characteristics of porosities
and vacancy defects. A large number of possible lattice isomers of nanopore topological
shape also make difficulties in the interpretation of experimental and simulated data [22].
On the other hand, neglecting the random distribution of porosity and simplifying the
random locations into specific locations causes the corresponding results to be limited in
the deterministic situation and unable to represent general situations. Furthermore, the
interactions between the randomly distributed atomic vacancy defects and their compre-
hensive effects on the buckling stress of graphene are challenging issues, requiring feasible
solutions [23]. For example, the defective graphene sheets exhibit a negative Poisson’s
ratio with auxetic behavior [24]. Therefore, developing efficient methods to quantify and
propagate the random porosities in the current common models is necessary.

Compared with molecular dynamics, the finite element model of graphene has com-
petitive merits in computational costs of buckling analysis, especially for the tremendous
stochastic sampling procedures [25]. Moreover, the finite element model is more con-
venient for random factor quantification and propagation than the analytical models.
Different types of porosity distributions and graphene platelet dispersion patterns are
feasible to be introduced and implemented in the numerical simulation by the finite ele-
ment method [26–28]. The nonlinear, irregular, and random geometrical complexity are
settled for further computation based on the finite element model. Based on the continuum
theory [29], the Monte Carlo stochastic sampling process is performed to propagate the
random atomic vacancy defects in the finite element model of pristine graphene.

In this paper, a stochastic finite element model is proposed for the efficient quantifica-
tion and propagation of the random porosities in buckled graphene. The main contents
include the graphene geometrical characterization, method description, and result dis-
cussion. The buckling patterns of porous graphene are provided and compared under
different boundary conditions. Based on the huge sampling space provided by the stochas-
tic finite element model, the discrepancies caused by the numbers of random porosities
are discussed. The work provides an important reference for the exploration of buckled
graphene in energy harvest, hydrogen storage, and artificial functionalization.

2. Graphene Geometrical Configuration

The carbon atoms in graphene are combined with the solid covalent bonds to form
the periodic honeycomb lattice, which results in extraordinary material and mechanical
properties. In order to describe the special periodic microstructure, the beam element is
used to simplify the carbon covalent bonds in the finite element model. The corresponding
material and geometrical parameters are settled according to the specific values reported in
the literature [30,31].

In addition, the percentage of random porosities (P), P = Nv
Na

, is gradually increased to
observe the impact discrepancies. The number of carbon atoms in pristine graphene (Na)
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is a deterministic value. The number of the vacancy defect atoms Nv is calculated by the
multiplication of the P and Na.

Each carbon atom in the graphene lattice is numbered by the series. The random
numbers are generated by the Monte Carlo stochastic sampling procedure according to
the value of Nv. Then, the random numbers are mapped to the graphene lattice, and the
corresponding carbon atoms are marked and selected as atomic vacancy defects. Three
related covalent carbon bonds are interrupted because of the disappearance of the carbon
atoms as vacancy defects. Since the random numbers are stochastically selected by the
Monte Carlo sampling method, the atomic vacancy defects are distributed randomly in the
graphene lattice. Furthermore, the more complicated porosities can be generated based on
the Monte Carlo sampling. When the atomic vacancy defects are adjacent, the porosities in
graphene are formed in different sizes and shapes. The numerous repetitions of random
propagation of atomic vacancy defects in the pristine graphene based on the Monte Carlo
simulation are performed to make sure the specific possibilities are included in the sample
space. As shown in Figure 1, the characteristic periodic honeycomb lattice of pristine
graphene, as well as porous graphene with different amounts of random atomic vacancies,
are presented.
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3. Boundary Conditions

In order to compare and analyze the behaviors of porous graphene under diverse
operating environments, four different boundary conditions are taken into consideration. In
the first case, the boundary condition (B1) is settled as in Figure 2a, all the nodes in the lower
edge of the porous graphene are clamped, and the six degrees of freedom, including the
displacement and rotation in the x, y, z directions, are constraints. On the upper edge of the
porous graphene, the uniformly distributed external forces F are loaded. The direction of
external forces F is presented in Figure 2, as compressive uniform load, while the modulus
of external forces F is supposed to be unit one. On the contrary, the boundary condition
(B2) in the second case is settled on the left and right edges with clamped constraints
and external forces, respectively. Since the deformation shapes of the buckled graphene
nanoribbons depends on the boundary conditions [16], the in-plane compressive forces F
are performed in the porous graphene, as shown in Figure 2.
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Figure 2. The schematic of porous graphene with different boundary conditions ((a–d) represent B1,
B2, B3, and B4, respectively).

In addition, the boundary condition (B3) in the third case is more complicated than
that in B1 and B2. As presented in Figure 2c, all the nodes in the lower and upper edges
of porous graphene are clamped, where the displacements and rotations are constraints.
The external forces F are loaded in both the left and right edges. In the fourth case, the
boundary condition (B4) is similar to that in B3. However, the constraints are settled in the
left and edges, and the external forces F are loaded in the upper and lower edges of porous
graphene. From the perspective of boundary conditions, the operating environments of
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porous graphene in B1 and B2 are supposed to be one group, while B3 and B4 are concluded
as another comparable group.

Furthermore, the implementation program and numerical computation are performed
by the integration of Matlab (Version 2020a) and ANSYS (Version 14.5) commercial software.
The corresponding parameter definition, parameter value assignment, and Monte Carlo
stochastic sampling are completed under the Matlab programming environment. ANSYS
parameter design language (APDL) is used to create the finite element model for porous
graphene and perform mechanical computation for elastic buckling. The flowchart of the
stochastic finite element model by the combination of Monte Carlo stochastic sampling
with the finite element computation is shown in Figure 3. BEAM188 element is selected
to mesh the carbon-carbon bonds in graphene with six degrees of freedom. There is a
total of 6226 beam elements with 16,664 nodes in the model of pristine graphene. As the
porosity amount increases in graphene, the number of beam elements and nodes decreases
with discrepancy.
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Figure 3. The flowchart of the stochastic finite element model for buckling analysis of porous graphene.

In Figure 3, the programming procedures in the green box are performed in the
Matlab environment, while the progress in the yellow box is implemented by the ANSYS
parameter design language. The interactive integration between Matlab and ANSYS is
required both in the result validation and sample database confirmation. The critical
buckling stress computation in the finite element model of graphene is based on the
Lanczos algorithm [31,32]. The effective buckling length Le measures the node-to-node
distance of the buckling mode and refers to the denominator in the Euler buckling formula
Pcr =

π2EI
(KL)2 , Le = KL, where K is the symmetric positive semidefinite stiffness matrix, L

is the length of the beam, E is the elastic modulus, and I is the moment of inertia. Based
on the finite element computation, the critical buckling stress, the displacements, and the
rotation contours of porous graphene are provided.
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The critical buckling stress is the key factor in controlling the elastic recycling process
efficiently [33]. The eigenvalue buckling is elastic and recyclable, which is an important
mechanism for energy and hydrogen storage and conversion recycling. In order to com-
pare the impacts of the boundary condition and the atomic vacancies, the relative value
and relative variation for critical buckling stress are introduced as the non-dimensional
parameters, R = Sd

Sp
, δ =

Sd−Sp
Sp

, which are computed by the ratio between the results of
porous graphene Sd and that of pristine graphene Sp under the same boundary condition.

4. Results and Discussion
4.1. Buckling Patterns

In order to compare the impacts of boundary conditions, the buckling patterns of both the
porous graphene and the pristine graphene under different boundary conditions are presented
in Figures 4–6. As in Figure 4a, the displacement contour for the pristine graphene under the
first order elastic buckling is presented, and the rotation contour is as shown in Figure 4b.
The displacement and rotation contours for the pristine graphene under the fourth order
elastic buckling are presented in Figure 4c,d, respectively. The parallel results for the porous
graphene with 5% atomic vacancy defects are shown in Figure 4e–h. The bucking patterns
of the porous graphene are similar to that of pristine graphene under the first boundary
condition. In Figure 5, the differences between porous graphene and pristine graphene are not
evident. The effects of the random porosities in graphene are not obvious when the boundary
conditions are settled in the first and second situations.
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Figure 4. Comparison for buckling patterns under the first boundary condition ((a–d) repre-
sent the pristine graphene, while (e–h) represent the porous graphene with 5% atomic vacancy
defects, respectively).

Under the third and fourth boundary conditions, the effects of random porosities
in the buckling patterns are more apparent than those under the above-mentioned two
boundary conditions. In Figure 6a–d, the displacement and rotation contour for the first
and fourth order elastic buckling modes present geometrical symmetry and regularity for
the pristine graphene. However, the randomly distributed atomic vacancy defects, which
formed the porous graphene, play evident roles in the displacement and rotation results, as
shown in Figure 6e–h. The buckling patterns are influenced by the randomly distributed
atomic vacancy defects in graphene under different boundary conditions. Therefore, the
comparison of buckling pattern results of pristine graphene and defective graphene is an
evident index to analyze the effects of random porosities. The differences between the
results in Figure 7a–h also prove the influences of random porosities in the buckling patterns.
The random porosities in graphene under the third and fourth boundary conditions cause
complexity and irregularity in deformation. However, the differences between porous
graphene and pristine graphene are not evident in the first and second boundary conditions.
On the one hand, the impacts of random porosities in the buckling patterns are sensitive to
boundary conditions. The boundary condition is an efficient way to control and change
the buckling patterns. On the other hand, the geometrical characteristics of graphene, such
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as the periodicity, symmetry, and regularity, present the capacity to defend against the
influences of random porosity under the first and second boundary conditions.

The buckling patterns provide the deformation shape of porous graphene under
compressive loads. For the hydrogen storage and energy harvest by the porous graphene,
besides the buckling patterns, the critical buckling stress is the key factor to operate
and control the process. The critical buckling stress is the compressive load at which
the structure suddenly buckles or loses stability. Therefore, the critical buckling stress
calculation for porous graphene needs further exploration. On the other hand, the randomly
distributed porosities inevitably exist in the graphene sheets and nanoribbons with the
current research and manufacturing technologies. The discrepancies caused by the numbers
of random porosities are also essential to be analyzed and discussed.

4.2. Statistic Results

In order to further analyze the effects of random porosities in buckled graphene,
the randomly distributed porosities in graphene are propagated by the repeated Monte
Carlo stochastic sampling procedure. Different percentages of random porosities and
boundary conditions are performed in the stochastic finite element model. The percentages
of random porosities propagated in graphene are 0.2, 0.5, 1, 3 and 5%, respectively, and
they are represented by P1, P2, P3, P4, and P5.
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Figure 5. Comparison for buckling patterns under the second boundary condition ((a–d) repre-
sent the pristine graphene, while (e–h) represent the porous graphene with 5% atomic vacancy
defects, respectively).

In general, the atomic vacancies lead to the reduction of critical buckling stress com-
pared with that for the pristine graphene under all four boundary conditions, since the
mean of the relative value is less than one as in Figure 8. Based on the database computed
by the stochastic finite element model of the graphene with randomly distributed atomic
vacancy defects, the maximum, minimum, as well as the mean values, are tracked and
recorded in the large sampling space. In addition, a dimensionless unit is introduced as
the relative value, which computes the ratio between the results of porous graphene and
pristine graphene. As the increase in the number of atomic vacancies in porous graphene,
the mean of critical buckling stress in the stochastic sample space is 81.57, 81.61, 90.71 and
87.81% of those of pristine graphene for B1, B2, B3, and B4, respectively. The variances in
Figure 8c,d are more evident than that in Figure 8a,b, especially when the percentage of
atomic vacancies reaches 5%. Therefore, the increase in atomic vacancies causes the reduc-
tion of the mean but the amplification of variance for the relative value in the stochastic
sample space.

Furthermore, the fluctuation levels of the critical buckling stress caused by the location
randomness of atomic vacancy defects are also computed by comparison with the pristine
graphene. In Figure 9, both the x and y axes are dimensionless units. The x-axis is relevant to
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the percent of atomic vacancy defects; the y axis corresponds to the relative value between
the results of porous graphene and pristine graphene. In Figure 9a, the maximum in the
sample space of critical buckling stress varies more evident with the increase in the random
porosities. Under the second boundary condition, the maximum in the sample space of
the critical buckling stress presents a larger reduction than that under the first, third, and
fourth boundary conditions. In addition, the third and fourth boundary condition is the
more stable operating environment, as shown in both Figure 9a,c. Compared with the
pristine graphene, both the fluctuation level of the maximum and the mean of the critical
buckling stress in the sample space are lower than that under the first and the second
boundary conditions.

According to the computational results of the stochastic finite element model, the
specific situations caused by the location distribution of atomic vacancies are also tracked.
As presented in Figure 9a, the maximum of the critical buckling stress for porous graphene
presents a possibility to be larger than that of pristine graphene. Except for B2, the other
three boundary conditions present strengthening effects of atomic vacancy defects in
critical buckling stress. For the first boundary condition, there are 0.98% and 1.69% relative
increases for porous graphene with 0.5% and 1% atomic vacancies, respectively. For the
third boundary condition, 0.67, 0.66 and 0.17% increments of critical buckling stress are
presented when compared with that of pristine graphene with 0.2, 0.5 and 1% atomic
vacancies, respectively. The strengthening effects are also present at the fourth boundary
condition. The critical buckling stress for porous graphene with 0.2% atomic vacancies
increases by 0.46%.
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4.3. Probability Density Distribution

In order to more precisely analyze the random porosities in the buckled graphene,
the probability density distribution of the bucking critical stress under different boundary
conditions is computed and presented in Figure 10. It is obvious that, when the percentage
of random porosities is smaller than 1%, such as that in P1 and P2, the peak of the probability
density distribution clusters nearby. However, when the percentages of random porosities
are as large as that in P3, P4, and P5, the locations of the probability density distribution of
critical buckling stress are settled in the identified intervals. The overlapping parts of the
probability density distribution are very few in Figure 10. In other words, the amount of
random porosities in graphene is the key factor to determine the interval ranges of critical
buckling stress variation. In addition, the distinguishable interval ranges also prove the
promising potential of critical buckling stress control through the artificial manipulation of
the atomic vacancy amounts. For detailed information, please find in Appendix A.

The differences in the probability density distribution of the relative variation for
critical buckling stress are also presented in Figure 10. Overall, the probability density dis-
tributions for porous graphene in Figure 10a are more approximated to those in Figure 10b,
while the results in Figure 10c are more similar to those in Figure 10d. As mentioned above,
the first and second boundary conditions are grouped into one set, while the third and
fourth boundary conditions are grouped into another set. The relative variations for critical
buckling stress in the third and fourth boundary conditions are smaller than that in the first
and second boundary conditions. The discrepancies in Figure 10a,b present the chirality
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effects in the porous graphene. The differences in Figure 10c,d are also due to the impacts
of chirality in the lattice.

In addition, the shapes of the probability density distribution in Figure 10 are ap-
proximated to the Gaussian density distribution, which well confirms the periodic and
symmetrical microstructure of graphene. In addition, the results also prove the efficiency
and feasibility of the stochastic sampling process of the Monte Carlo method. The sym-
metrical probability density distributions illustrate that the random vacancy defects are
unbiasedly distributed in the entire graphene. The Monte Carlo stochastic sampling pro-
cedure provides unbiased and uniform random samples to make sure all the possible
situations are taken into consideration. Furthermore, the approximated Gaussian density
distribution of critical buckling stress also demonstrates that the critical buckling stress
is focused on a certain peak when the percentage of the atomic vacancy defects is de-
terministic. Therefore, though the random porosities cause the variation in the critical
buckling stress, both the interval range and peak of the probability density distribution
show artificial controllability.
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5. Conclusions

This paper proposes an efficient numerical model for the random porosity quantifi-
cation and propagation in pristine graphene. Based on the huge sampling space of the
stochastic finite element model, the following points can be concluded:

• The buckling patterns and critical stress of porous graphene are sensitive to boundary
conditions.

• The randomly distributed atomic vacancy defects in porous graphene destroy the
regularity and symmetry of buckling patterns.

• The possibility of strengthening effects in critical buckling stress is tracked under the
first, third, and fourth boundary conditions.

• The distinguishable interval ranges of probability density distribution for the relative
variation of the critical buckling stress prove the promising potential of artificial control
by the atomic vacancy amounts.

• It is a potentially feasible method to improve the hydrogen storage and release perfor-
mance by the adaptation and change in the boundary condition of the porous graphene.

• The approximated Gaussian density distribution of critical buckling stress demon-
strates the stochastic sampling efficiency by the Monte Carlo method and the artificial
controllability of porous graphene.

• The results of this work provide new ideas for understanding the random porosities
in buckled graphene and provide a basis for energy harvest, hydrogen storage, and
artificial functionalization.
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Appendix A

In Tables A1–A4, the additional statistical results of critical buckling stress, including
the averages, maximums, minimums, and variances, are listed. The percentages of random
porosities (P1, P2, P3, P4 and P5) propagated in graphene are 0.2, 0.5, 1, 3 and 5%, respec-
tively. The results in Tables A1–A4 are dimensionless quantities and computed as a relative
value compared with the corresponding results of pristine graphene.

Table A1. Statistic results for porous graphene under the first boundary condition.

Mean Maxi Min Variance

P1 0.9916 0.9986 0.9835 0.0704
P2 0.9804 1.0098 0.9678 0.1732
P3 0.9618 1.0169 0.9444 0.3832
P4 0.8886 0.9500 0.8540 0.3459
P5 0.8157 0.8900 0.7714 0.7096

Table A2. Statistic results for porous graphene under the second boundary condition.

Mean Maxi Min Variance

P1 0.9918 0.9982 0.9816 0.0175
P2 0.9807 0.9913 0.9676 0.0409
P3 0.9623 0.9760 0.9426 0.0824
P4 0.8893 0.9139 0.8594 0.2703
P5 0.8161 0.8513 0.7714 0.4892
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Table A3. Statistic results for porous graphene under the third boundary condition.

Mean Maxi Min Variance

P1 0.9976 1.0067 0.9757 0.2198
P2 0.9942 1.0066 0.9680 0.5589
P3 0.9878 1.0017 0.9623 1.1663
P4 0.9542 0.9863 0.8694 5.5915
P5 0.9071 0.9574 0.7902 14.0503

Table A4. Statistic results for porous graphene under the fourth boundary condition.

Mean Maxi Min Variance

P1 0.9955 1.0046 0.9735 0.3041
P2 0.9893 0.9985 0.9559 0.7886
P3 0.9788 0.9965 0.9352 1.6734
P4 0.9324 0.9699 0.8673 7.4369
P5 0.8781 0.9600 0.7669 19.4867
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