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Abstract: The advancement of the Internet of Things (IoT) has increased the demand for large-scale
intelligent sensing systems. The periodic replacement of power sources for ubiquitous sensing
systems leads to significant resource waste and environmental pollution. Human staffing costs
associated with replacement also increase the economic burden. The triboelectric nanogenerators
(TENGs) provide both an energy harvesting scheme and the possibility of self-powered sensing.
Based on contact electrification from different materials, TENGs provide a rich material selection to
collect complex and diverse data. As the data collected by TENGs become increasingly numerous
and complex, different approaches to machine learning (ML) and deep learning (DL) algorithms
have been proposed to efficiently process output signals. In this paper, the latest advances in ML
algorithms assisting solid–solid TENG and liquid–solid TENG sensors are reviewed based on the
sample size and complexity of the data. The pros and cons of various algorithms are analyzed and
application scenarios of various TENG sensing systems are presented. The prospects of synergizing
hardware (TENG sensors) with software (ML algorithms) in a complex environment and their main
challenges for future developments are discussed.

Keywords: triboelectric nanogenerator; self-powered sensor; machine learning; deep learning; algorithm

1. Introduction

With the rapid development of the Internet of Things (IoT), large-scale sensing systems
are receiving increasing attention [1]. More than ten billion sensors will be connected to
IoT in the future. However, the ubiquitous sensing systems require a sustainable power
supply [2]. For example, 10 billion near-field communication sensors consume up to
40 million watts of power, which means that 5 tons of coal will be burned per hour. It could
cause nearly 288,000 tons of carbon dioxide emissions. The periodic replacement of power
sources for ubiquitous sensing systems leads to significant resource waste. The treatment
and recycling of waste batteries increase the difficulty of environmental management [3].
Human staffing costs associated with replacement also increase the economic burden. The
costs associated with system construction and maintenance limit the large-scale applications
of sensors [4]. Self-powered sensors based on triboelectricity overcome these limitations
due to their simple structure, low cost, self-supply capability, and high performance. The
synergy of TENG and artificial intelligence (AI) optimizes the performance of intelligent
self-powered sensing systems.

In 2012, Wang’s team developed the triboelectric nanogenerator (TENG), which con-
verts mechanical energy into electrical energy by electrostatic and triboelectrification ef-
fects [5]. Traditional TENG has been widely applied for energy harvesting [6,7], collecting
energy from various sources, including wind, waves, human motion, etc. TENG also offers
the possibility for self-powered sensors, especially suitable for applications requiring long-
term, self-sustained energy supply [8]. The self-powered sensors based on triboelectricity
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convert the collected energy into electrical signals. The dynamic disturbance process is de-
tected by analyzing the high-sensitivity electrical signal. In the process of data acquisition,
TENGs can realize self-supply capability. This could not only effectively reduce power
consumption but also be seamlessly embedded into wearable devices [9–11]. Depending
on the state of the triboelectric interface, TENG could be divided into solid–solid TENG
(S-S TENG), liquid–solid TENG (L-S TENG), gas–solid TENG (G-S TENG), gas–liquid
TENG (G-L TENG), liquid–liquid TENG (L-L TENG), etc. At present, the triboelectric
sensors that are widely used are mainly focused on S-S TENG sensors [12–17] and L-S
TENG sensors [18–23]. The S-S TENG originated from contact electrification (CE) between
two solid materials. Because of the triboelectric effect, charges are generated at the contact
interface due to the difference in electronegativity between the two materials. When the
two materials are separated, owing to the electrostatic induction effect, opposite charges
are induced on the corresponding electrodes to form a current. The self-powered sensors
based on solid–solid CE can realize pressure sensing [24,25], tactile sensing [26,27], object
recognition [28,29], motion prediction [30–33], etc., injecting impetus into the development
and progress of human–computer interaction (HMI). Compared with S-S TENG, the L-S
TENG has a more stable and durable output. The collection and utilization of environmen-
tal energy were realized by using the contact between water droplets and solid surfaces to
generate electric energy [34]. Sensors based on liquid–solid CE have unique advantages in
chemical sensing [35,36], as well as environmental sensing [37–40], and offer an excellent
strategy for electronic skin [41].

TENG is based on CE from different materials, which provide a wide selection of
possibilities. TENG with rich material selection can collect complex and diverse electrical
signals, which are not only voluminous but also contain various characteristics related
to amplitude, frequency, waveform, etc. In practical applications, multi-channel TENG
sensors are used for data acquisition to improve robustness. This increases the number
and complexity of data. It is worth noting that TENG sensors are usually vulnerable to
some external influences, such as background noises, intensity changes, unwanted CE, etc.,
which increases the difficulty of data analysis. Therefore, it is difficult to manually process
data containing weak and diverse features. AI technology can be used as a means of data
analysis [42]. Machine learning (ML) [43] is an AI technology applied to data processing,
which has powerful data handling capabilities and provides accurate prediction models.
As an emerging technology for extracting nuances and processing multi-channel signals,
ML provides a unique advantage for efficient analysis and processing of triboelectric sig-
nals [44,45]. Currently, widely used ML algorithm models in TENGs include support
vector machine (SVM) [46], random forest (RF) [47], K-nearest neighbor (KNN) [48], con-
volutional neural network (CNN) [49], recurrent neural network (RNN) [50], artificial
neural network (ANN) [51], etc. ML algorithms help TENG sensing systems reduce the
influence of environmental factors and improve the sensing performance. For example,
a low-pass filter was used to remove high-frequency noise [52]. It helped filter out the
effects of external vibration or electromagnetic interference, making the TENG signal more
stable. The key frequency components in the TENG signal were extracted by using the
Fourier transform [53], which selected the most representative spectral features to reduce
the sensitivity to external noise. Environmental parameters (such as temperature and
humidity) were integrated into the ML models to correct the TENG output [54]. The key
differences in ML algorithms applied to S-S TENGs and L-S TENGs are mainly reflected
in the differences in data characteristics and sensing tasks. The data generated by the S-S
TENG sensor include force, voltage, current, etc. It is suitable for detecting mechanical
motion. The data characteristics of L-S TENG involve liquid motion, charge transfer, and
changes in liquid properties. It is suitable for various liquid monitoring tasks. No algorithm
can be specific to a certain type of TENG. When selecting the ML algorithms, it is essential
to optimize and adjust according to the specific perceptual tasks and data features. For
example, the characteristics of L-S TENG sensors are sometimes very subtle and hidden in
the output signal. It is necessary to select a ML method that can extract features in depth. In
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addition, special attention should be paid to the influence of humidity on the signals. The
suitable ML algorithm could be selected to classify and process the data for different TENG
intelligent sensing systems, such as tactile sensing [55], gesture sensing [56], electronic
tongue [57], etc. It is of great significance for the development of HMI [58–61], human
health monitoring [62–64], intelligent sports [65,66], and many other fields.

The self-powered sensing system consists of energy collection/storage, sensing, mon-
itoring, interaction, and other components. The combination of TENG sensors and ML
has injected vitality into the intelligent self-powered sensing system. Selecting appropri-
ate ML methods for data processing and target recognition according to different signal
characteristics collected by TENG is a challenge. It is undeniable that the application of
ML is very dataset specific. When selecting ML algorithms for S-S TENG and L-S TENG,
it is essential to consider the specific characteristics of the interaction medium, the types
of signals generated, and the intended sensing tasks. Adaptation and optimization of
ML models based on these considerations can lead to more effective and accurate sensor
systems. It is unrealistic to uniquely correspond an algorithm to an application domain.
In this paper, we summarize the latest advances in ML algorithms assisting solid–solid
TENG and liquid–solid TENG sensors, finding that the sample size and data characteristics
play an important role. Therefore, as the complexity of the dataset increases, the intelligent
self-powered sensing systems assisted by different ML models are presented. They may
not be the only choice but can provide a reference for researchers. Firstly, the working
mechanisms of S-S TENGs and L-S TENGs are reviewed. Furthermore, based on different
data characteristics and target task requirements, the latest research progress and applica-
tions of various ML algorithm-assisted, self-powered sensors are discussed, as shown in
Figure 1. Finally, ideas are provided for the future development of the combination of ML
and TENG sensors.

1 
 

Figure 1. ML algorithm-assisted TENG sensors. (a) TENG sensor for object recognition [67]; (b) TENG
sensor for user identification [68]; (c) TENG sensor for liquid leakage monitoring [69]; (d) TENG
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sensor for speech classification [70]; (e) TENG sensor for real-time pressure visualization [71];
(f) TENG sensor for artificial synapses [72]; (g) TENG sensor for marine environmental monitor-
ing [54]; (h) TENG sensor for image recognition [73]; (i) TENG sensor for material identification [74];
(j) TENG sensor for taste sensing [57]; (k) TENG sensor for lip decoding [75]; (l) TENG sensor for
blood pressure monitoring [76].

2. Working Mechanism of TENG
2.1. Working Mechanism of S-S TENG

The working mechanism of S-S TENG is based on the coupling of the triboelectric
effect and electrostatic induction [77]. The core components of S-S TENG are two kinds of
solid materials with different electronegativities. When the contact state of the two mate-
rials changes, equal and opposite charges will be generated on the contact surfaces. The
charge symbol on both sides depends on the electronegativity of the two solid materials. It
tends to produce positive triboelectric charges on the side of the material that loses electrons
and generates negative triboelectric charges on the other side. After the two solid materials
are separated from each other, the triboelectric charges generate an induced potential
difference at the electrodes on both sides. It drives electron transfer to the external circuit,
resulting in continuous alternating current (AC) output. At present, according to the device
structure and operation mode of S-S TENGs, it can be divided into four working modes,
including contact–separation mode [78], sliding mode [79], single-electrode mode [80],
and free-standing triboelectric-layer mode [81]. The S-S TENGs based on the triboelectric
effect can not only convert external mechanical energy into electrical energy but also act
as self-powered sensors. In recent years, the S-S TENG sensors have been widely used
in security identification [82–85], tactile sensing [86–88], motion analysis [89–91], etc. For
example, Mu et al. developed an electro-mechanosensory finger that achieved remote
control and tactile sensing [92]. Based on a TENG array composed of the liquid metal-
polymer conductive layer, the contact voltage signals of different objects were collected to
realize the identification of 18 materials under different contact forces. Zhang et al. demon-
strated an AI toilet that integrated triboelectric pressure sensing and image sensing [93].
It realized human health monitoring by using the pressure distribution of users’ different
sitting postures.

2.2. Working Mechanism of L-S TENG

The long-term mechanical durability will be affected by the continuous CE of the two
solid materials [94]. In addition, the performances of S-S TENG are greatly influenced by
environmental factors, such as humidity and atmospheric pressure [95]. These issues can be
addressed by changing from solid–solid to liquid–solid CE, which involves the triboelectric
layers participating in CE composed of solids and liquids. Compared to S-S TENG, the output
of L-S TENG is stable and durable, with advantages in efficiency, cost, and lifespan. For the
solid–liquid contact process, a “two-step” model of electrical double-layer (EDL) formation
was proposed by Wang et al. [96]. For example, when liquid contacts with a fluorinated
ethylene propylene (FEP) surface, the overlap of electron clouds between molecules in the
liquid and atoms on the FEP surface leads to electron transfer. This step only occurs when
the liquid first contacts the FEP. Ion transfer happens in the second step, where cations
migrate to the negatively charged FEP surface due to the electrostatic interaction, forming the
EDL. L-S TENGs have also been classified into four working modes: contact–separation [97],
lateral sliding [98], free-standing [99], and single electrode [100]. Recently, L-S TENGs can
potentially be used as self-powered sensors in chemical detection [101–104], environmental
monitoring [105–107], etc. For example, Liu et al. reported a chemical sensing probe that
can measure the sucrose concentration based on the electron transfers of solid–liquid CE in
different dissolution states of sucrose [108]. Wang et al. proposed a solid–liquid–solid structure
TENG, which used the EDL to transmit energy and signals [109]. The device successfully
converted the output voltage into an international Morse code and decoded the state of the
finger in real time on the mobile phone screen.
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3. ML for TENGs

Compared with other sensors, the signals generated by TENG sensors may have
unique spectrum and waveform characteristics. Therefore, the time domain and frequency
domain characteristics of the TENG signal need to be considered when selecting the
algorithms. In addition, TENG sensors are usually used for energy harvesting and sensing
tasks. In the case of limited energy, it is more practical to choose lightweight, low-power
machine learning algorithms. When selecting the algorithm for the wearable TENG sensor,
the requirements of real-time performance and small model size should also be considered.
Whether it is S-S TENGs or L-S TENGs, the wide range of material selectivity and simple
structure of the devices enable them to continuously collect a large amount of sensing data
in a short period [110]. However, it is difficult to process these data directly without AI. To
improve the analysis and processing of massive sensing data as well as sensing accuracy,
ML has been widely employed as a tool to assist TENG sensors. Traditional ML methods
include SVM, KNN, RF, etc., which can be used to deal with small-scale datasets [111].
Deep learning (DL) is a sub-field of ML as an extension of traditional ML. Including CNN,
RNN, ANN, etc., DL is more suitable for large-scale datasets [112]. Traditional ML methods
require manual design and extraction of features to convert raw data into a format suitable
for the model. It is difficult to make use of the advantages of big data by relying on the prior
knowledge and parameter adjustment experience of designers. DL can automatically learn
features through the network, reducing the need for manual intervention [113]. Moreover,
DL models use multi-layer neural networks, and each layer is capable of learning feature
representations at different abstract levels of the data. It makes DL highly effective in
handling massive multidimensional data. Although DL has such high performance, it does
not mean that it universally applies to all situations. For smaller datasets, traditional ML
algorithms are often superior to deep networks. It has stronger interpretability, making
it easier to adjust parameters or change model designs. For TENG sensors, most of the
output data that need to be analyzed and processed are electrical signals. Therefore, the
considerations of electrical signal characteristics and target tasks are very important.

3.1. ML Algorithms for Small Datasets
3.1.1. SVM for TENGs

When analyzing and processing small datasets, that is, only a relatively small number
of samples or data points can be collected, SVM can be employed to assist TENGs in
performing sensing tasks and avoiding overfitting. In the 1960s, Vapnik et al. began
exploring the basic concepts of SVM and proposed the maximum margin principle for
linear classifiers. In 1995, his team published a paper formally introducing the SVM
algorithm [114]. The fundamental idea behind SVM learning is to find several data points
on the margin and use them to define a plane (decision plane) that maximizes the distance
to support vectors. Before the popularity of DL, SVM was the most popular classical model
due to its robust mathematical foundation and the ability to achieve a global optimum. SVM
is suitable for structured data types and was initially designed for binary classification [115].
It can cleverly handle nonlinear classification problems in high-dimensional space by
introducing a kernel function. SVM proves effective in various tasks for TENG sensors,
particularly in the classification of electrical signal data with distinct separation boundaries.

SVM for S-S TENGs

In scenarios with a limited number of samples featuring distinguishable characteristics,
SVM holds a significant advantage. Therefore, it can assist the TENG sensors in achieving
simple object and character recognition [116–118]. Recently, Zhao et al. designed an
untethered triboelectric patch for intelligent sensing and energy harvesting [67]. The
patch is primarily composed of polytetrafluoroethylene (PTFE) triboelectric layers and was
attached to human skin, utilizing the human body as a conductor for TENG. As shown in
Figure 2a(i), the operational cycle of the patch involved two phases: contact and separation.
The triboelectric effect generated negative charges on the surface of PTFE during the contact
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process, resulting in a current when the human surface potential exceeded the ground
(Figure 2a(ii)). The current direction reversed during the separation process (Figure 2a(iii)).
The research showed that the sensor patch on the finger collected a total of 660 samples,
which were randomly divided into a training group (58.4%) and a test group (41.6%).
Combined with the SVM algorithm, it can effectively distinguish 11 objects, achieving
an accuracy of 93.09–94.91%. In 2020, Ji et al. successfully engineered a TENG with
remarkable sensitivity to recognize handwriting signals [119]. The detailed design of the
smart TENG is shown in Figure 2b(i). The triboelectric layers in the TENG comprised a
meticulously woven copper mesh and a NaCl-molded polydimethylsiloxane (PDMS) film.
Throughout the handwriting process, the dynamic contact and separation between PDMS
and the copper mesh facilitated electron transfer, generating discernible electrical signals
(Figure 2b(ii)). Handwritten signals of 26 letters were collected, with a total of 520 samples.
The t-distributed stochastic neighbor embedding was applied to reduce the dimension of
the letter fingerprint to seven dimensions and used as features for further ML analysis.
Combined with the SVM model, the data acquisition and processing of the writing signals
for 26 letters resulted in a handwriting recognition accuracy of 93.5%. 

2 

 
Figure 2. Applications of SVM for S-S TENGs. (a) Untethered triboelectric patch for wearable smart sens-
ing [67]. (b) Design of a copper-mesh-based triboelectric nanogenerator for identification of 26 letters [119].
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(c) Keystroke dynamics-based security system for identifying users [120]. scale bar = 2 cm. (d) Bionic
principle, structure, and working mechanism of the BTUSE sensor [68]. (e) Machine fault detection
based on a multi-node, self-powered sensor network [121].

For two-class or multi-class high-dimensional tasks, such as user recognition [122,123]
and working condition recognition [124], etc., SVM exhibits absolute advantages. SVM
can be integrated with principal component analysis (PCA) [125]. After feature extraction
and dimension reduction by PCA, user authentication and recognition can be realized
by the classifier. Wu et al. devised a keystroke dynamics security system leveraging
distinct typing patterns among users [120]. The structure of a single triboelectric key is
shown in Figure 2c(i), and the proof-of-concept triboelectric numeric keypad is displayed
in Figure 2c(ii). A single triboelectric key consisted of a shielding electrode and a TENG
employing the contact–separation mechanism. The sensitivity of the triboelectric keystroke
device resulted in varied signal outputs for different finger sizes and typing forces. A
user classification software platform was constructed based on the PCA algorithm and
a customized SVM model based on the LibSVM toolbox [126] (Figure 2c(iii)). For an
exemplary number sequence consisting of six digits, “8-0-7-3-4-5”, 17 features could be
obtained. A total of 150 sets of data for each of the 5 users were randomly selected for
training and testing. It achieved a remarkable 98.7% accuracy in verifying and precisely
identifying user identity through the analysis of unique typing behavior. In addition to the
keystroke dynamics device for user identification, in 2021, Zhou et al. drew a bioinspired,
TENG-driven, self-powered sensor [68], enabling accurate user recognition through ML. In-
tegrating a motion module and a TENG module, the structural design of the sensing system
is shown in Figure 2d(i). The TENG module comprised a silver nanowires (AgNWs)-based
bottom electrode, a silver nanowires/barium titanate nanoparticles/polydimethylsiloxane
(AgNWs/BaTiO3NPs/PDMS) composite triboelectric layer, and a carbon-based top elec-
trode. The contact and separation of TENG were analogous to the contraction and relaxation
of muscles, resulting in corresponding current signals. A total of 15 features were collected
after 4 triggers. Similarly, PCA was employed for feature extraction and dimensionality
reduction, and a two-class SVM classifier constructed a database for decision-making
(Figure 2d(ii)). With the assistance of ML, the user successfully obtained system authoriza-
tion after four triggers, while the intruder who imitated the user to trigger four times was
denied access. Based on different vibration state data of the vibration TENG, machine faults
can be detected. As shown in Figure 2e(i), Li et al. collected mechanical vibration energy
by using a multi-layer vibration triboelectric nanogenerator (V-TENG) and established a
multi-node sensor network to identify the different working states of the machine [121].
Three self-powered vibration sensor node (SVSN) modules based on V-TENG were placed
on the working machine to obtain vibration information. The radar plot of the data received
of four working conditions/faults is shown in Figure 2e(ii). The multi-classification SVM
classifier was used to train and test the 500 sets of data samples under 4 working conditions
(Figure 2e(iii)). Finally, the recognition accuracy of different vibration states of the machine
reached 83.36%, achieving fault detection.

SVM for L-S TENGs

Compared with other sensing mechanisms, the characteristics of the output signals of
L-STENG are diverse. Therefore, it is challenging to quantitatively characterize its physical
parameters directly. With the development of AI, an increasing number of next-generation
sensors integrate data acquisition with signal processing to improve the efficiency and
accuracy of sensing. As the most classical traditional ML method, SVM has been employed
not only to assist S-S TENGs but also in studies on L-S TENGs. With the assistance of
SVM, L-S TENGs can effectively monitor and identify liquid leaks. Zhang et al. designed a
liquid leakage detection and identification device based on a single-electrode liquid–solid
(SELS) TENG [69], as shown in Figure 3i. Using p-type silicon wafer as a solid triboelectric
layer, the system realized high-sensitivity detection of liquid leakage. When liquid droplets
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continuously fell and came into contact with the liquid remaining on the SiO2 surface,
the triboelectric effect and electrostatic induction phenomenon produced a continuous
and periodic current flowing from the ground to the copper electrode (Figure 3ii). The
SELS TENG self-powered sensors could be installed at locations such as pipe joints, valves,
and flanges, where liquid leaks are most likely to occur (Figure 3iii). The frequency
of the short-circuit output current can be used to qualitatively characterize the liquid
leakage rate. Additionally, using PCA dimensionality reduction and the SVM-based ML
model, an intelligent detection and recognition system could be established to distinguish
different types of liquids (Figure 3iv). After using the k-fold cross-validation (K-CV)
method to optimize the parameters, the system achieved a good performance, exceeding
90% classification accuracy for each of the two liquids on 120 data samples. 

3 

 
Figure 3. Applications of SVM for L-S TENGs. The test platform, working mechanism, and potential
practical application of the SELS TENG-based self-powered liquid leakage detection sensor [69].

In summary, SVM can be an effective tool in TENG sensors, especially excelling
in handling high-dimensional spaces and/or small datasets. Compared to some other
algorithms, SVM performs well even with a relatively small number of training samples,
demonstrating robustness against overfitting. However, SVM may become computationally
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intensive when dealing with large-scale datasets, requiring significant memory and time
resources. This might limit its practical use in certain sensing applications. At the same
time, careful parameter tuning (for example, selecting the kernel function and setting
regularization parameters, etc.) is necessary to achieve optimal performance. These
limiting factors prompt further exploration of more suitable ML algorithms in diverse
application scenarios to enhance the performance of TENG sensing systems.

3.1.2. KNN for TENGs

In scenarios with small-scale datasets where the distribution of signal data is irregular
in space, it may be challenging for SVM to give a decision plane. In such cases, KNN [127],
as an instance-based learning method, might offer a more straightforward solution. KNN
classifies or regresses based on the majority class of the k-nearest neighbors around a new
data point, making it less influenced by data distribution. The KNN model is simple and
easy to implement and is often employed for classification tasks [128]. After selecting the
appropriate k-value range, it can achieve high-precision recognition while mitigating the
impact of individual outlier signals. Therefore, for some simple problems and small-scale
datasets where the neighbor relationship among data points needs to be considered, KNN
can be a preferred choice.

In addition to considering the information within individual signals, handwritten
signals also require an understanding of their relationship with neighboring signals, mak-
ing KNN a suitable choice for simple handwritten recognition. Guo et al. reported an
intelligent HMI based on TENG [129]. They utilized TENGs with a horizontal–vertical
symmetric array of electrodes to record the triboelectric signal sequences of different hand-
writing trajectories. The triboelectric signal of handwritten characters based on triboelectric
nanogenerators is shown in Figure 4a(i). When the slider came into contact with the PDMS
surface, PDMS became negatively charged. As the slider moved across the electrodes,
negative charges on the PDMS surface were gradually screened, leading to a current flow
from the electrodes to the ground. Subsequently, as the slider moved away from the
electrode, positive charges were induced on the PDMS corresponding to the electrode,
generating a current from the ground to the electrode. Combined with PCA dimensionality
reduction and the KNN algorithm model (Figure 4a(ii)), the system successfully identified
handwritten English letters, Chinese characters, and Arabic numerals, while eliminat-
ing interference from individual abnormal noise signals (Figure 4a(iii)). Moreover, the
applications of the KNN models to assist TENGs in speech recognition have also been
explored. In 2020, Liu et al. introduced a self-powered artificial auditory pathway driven
by TENG [70], effectively distinguishing speech commands in a noisy environment. The
artificial auditory pathway consisted of TENG and field effect synaptic transistor (FEST),
with its structure shown in Figure 4b(i). The contact electrification process induced by
the speaker’s sound wave applied a negative gate voltage on the synaptic transistor due
to charge transfer (Figure 4b(ii)). The acoustic signal recognition process by the artificial
auditory pathway is shown in Figure 4b(iii). Each word records 40 groups of data, of which
20 groups were used as the training database and the other 20 groups were used as the
test database. Utilizing KNN as the classifier, after eight rounds of training, the speech
recognition accuracy for the seven-word instructions successfully reached 95%. In the
selection of the KNN algorithms, it is essential to choose an appropriate k-value range. In
2023, Liu et al. presented a method to enhance the triboelectric electrification of marine
polysaccharides and developed a flexible, flame-retardant, and environmentally friendly
TENG sensor [130]. As shown in Figure 4c(i), the sensor used alginate fibers and vermi-
culite (VMT) nanosheets as triboelectric materials to construct a vertical contact–separation
mode triboelectric nanogenerator (CS-TENG). To capture the clustering features of the
target motion, PCA was performed using the three extracted features. After dimensionality
reduction with PCA and classification using KNN with k = 2 (Figure 4c(ii)), the predictive
accuracy of 9 different motion types reached 96.2%.
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4 

 
Figure 4. Applications of KNN for TENGs: (a) Schematic of the human–machine interface based on
an intelligent handwriting recognition system [129]. (b) Self-powered artificial auditory pathway for
sound detection [70]. (c) Phyllosilicate-polysaccharide triboelectric for human motion prediction [130].
(d) The working principle and application of the bioinspired bimodal mechanosensors [71]. scale
bar = 10 mm.

As an algorithm that stores data in the training phase and calculates in real time in the
prediction phase, KNN excels at completing real-time tasks. Moreover, KNN can directly
add new data points for classification, while SVM needs to retrain the model. Therefore,
KNN is well-suited for applications that require adaptation to new data in real-time and
rapid predictions. Qiu et al. reported a bionic, mechanical, dual-modal sensor capable of
real-time pressure sensing and display in a pattern [71]. The mechanical sensor adopted
a single-electrode-mode TENG, and its triboelectricity–mechanical luminescence scheme
is shown in Figure 4d(i). It can visualize the writing trajectory in real time and reflect the
strength of the writing (Figure 4d(ii)). Based on this, researchers developed an electronic
skin array for HMI. The KNN algorithm was utilized to effectively identify and classify a set
of training data (numbers 0–9) with an accuracy of 96.92% (Figure 4d(iii)). Traditional ML
methods, such as SVM and KNN, demonstrate excellent performance in handling limited
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data and demand fewer hardware resources. However, in large-scale sensing systems, it is
usually necessary to process more complex data types. Traditional ML methods require
additional feature engineering, whose training speed, memory usage, time, and other
factors constrain the applications in more complex sensing tasks. Therefore, the integration
of DL methods with TENGs can assist in accomplishing more intricate sensing tasks and
adapting to a broader range of application scenarios.

3.2. DL Algorithms for Large-Scale Datasets
3.2.1. ANN for TENGs

Traditional ML methods usually require feature engineering, which makes it difficult to
take advantage of big data in triboelectric sensing [131]. In contrast, DL eliminates this step
and it can also handle large volumes of multidimensional and multi-type data, adapting
to various tasks [132]. Therefore, DL has become the preferred choice to assist TENGs in
achieving target detection, image recognition, multifunctional sensing [133], etc. ANN was
first proposed in the 1950s and formed the foundation of DL [134]. Inspired by biological
neural networks, ANN is a mathematical model simulating information transmission
among neurons in the brain. Its basic principle involves constructing multiple layers of
neurons for information transmission and processing through weighted connections and
activation functions [135]. ANN comprises input layers, hidden layers, and output layers,
with each layer containing multiple neurons. The advantage of ANN lies in its ability to
learn complex nonlinear relationships, making it suitable for various ML tasks, including
classification, regression, clustering, etc.

ANN for S-S TENGs

When the features of the electrical signal data are not readily interpretable or des-
ignable, the sensing performance can be enhanced by utilizing ANN to learn effective
features from the data. In 2022, Zhang et al. reported a wearable TENG gait analysis
and waist motion capture device for improving the performance of lower limbs and waist
rehabilitation [53], as shown in Figure 5a. The device included two triboelectric sensors for
walking state detection. The ANN model combined with fast Fourier transform (FFT) was
used to extract features from the triboelectric signals, eliminating time-domain information
while retaining frequency characteristics to identify patients for rehabilitation plan selection.
Each sensor performed 150 tests on each of the 5 participants to obtain a dataset. At the
same time, the 400-point length signals were visualized using a specific window. Therefore,
each sample has 400 × 2 = 800 features. Notably, the network structure with different fully
connected layers (FCL) was adopted, and dropout and batch normalization layers were in-
serted to enhance robustness and accelerate the training speed. Ultimately, the 5-FCL-based
ANN model architecture exhibited the best predictive performance, achieving an overall
recognition accuracy of 98.4%. Due to its versatility, ANN is also extremely important for
multimodal sensing systems. Pang et al. developed a multifunctional tactile sensor [136],
as shown in Figure 5b. This tactile sensor has been proven capable of recognizing speech
and real-time monitoring of physiological signals and human movement. Combining an
ANN model consisting of one input layer, three hidden layers, and one output layer, the
recognition of nine material types with different textures reached 94.44%. Specifically, all
neurons between each layer are fully connected, and the input time domain signal of each
material has 400 neurons.
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Figure 5. Applications of ANN for S-S TENGs: (a) Wearable triboelectric sensors for IoT-based
smart healthcare [53]. (b) Textile tactile sensors for multifunctional sensing [136]. scale bar = 100 µm.
(c) Bioinspired mechano-photonic artificial synapse [72]. (d) Retina-inspired neuromorphic optoelec-
tronic device [137].
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Developing multifunctional and diverse artificial neural systems to integrate multi-
modal plasticity, memory, and supervised learning functions is a crucial task in neuromor-
phic computing simulation. Because artificial synapses coincide with the original intention
of ANN design, the use of artificial synaptic models in artificial neural networks is also a
very common application. In 2021, Yu et al. designed a biomimetic, mechanical, photonic
artificial synapse combining a phototransistor and a TENG, as shown in Figure 5c(i) [72].
While simulating the synaptic function (Figure 5c(iii)), high-precision image recognition
could be achieved by constructing an ANN (Figure 5c(ii)) assisted by mechanical plasticity.
With 6 × 105 synapses and an increase in the number of training samples to 60,000, the
highest recognition accuracy reached 92%. An example of the mapping image obtained
from ANN is shown in Figure 5c(iv). Moreover, inspired by the retina, Guo et al. proposed
an optoelectronic synaptic device based on polyimide (PI)/graphene heterostructures [137].
The basic structure and function are shown in Figure 5d(i). The bidirectional dynamic
control of synaptic weights was achieved through the photoelectric coupling modulation
of TENG and ultraviolet light (Figure 5d(ii)). Furthermore, an analog ANN was further
constructed for handwritten digit recognition. In the absence of a hidden layer, an accuracy
of 84% was achieved in less than 2100 training cycles. The digit “8” at initial and final states
is shown in Figure 5d(iii).

ANN for L-S TENGs

S-S TENGs may encounter limitations on stretchability and flexibility when applied to
soft electronic systems. The introduction of hydrogel into TENGs to form liquid–solid CE
can effectively solve the above problems [138]. The previously mentioned ANN can assist
TENGs in gait analysis. Hydrogels are also used in flexible sensors for gait analysis due to
their stretchable, self-healing, and biodegradable properties. Wang et al. developed a self-
powered strain sensor based on graphene oxide-polyacrylamide (GO-PAM) hydrogel [139],
as shown in Figure 6a. The sensor served both as a TENG for harvesting mechanical energy
and as part of a wearable insole monitoring system. Various algorithms were employed
to recognize normal and pathological gaits, with ANN achieving the highest recognition
accuracy of 99.5% and 98.2%, respectively. ANN models can also contribute to constructing
self-powered sensing systems for L-S TENGs used in marine environmental monitoring. In
2022, Wang et al. reported a wave-driven L-S TENG [54], which was constructed with an
ethylene chlorotrifluoroethylene (ECTFE) film and an ionic hydrogel electrode for SO2 gas
detection (Figure 6b(i,ii)). As shown in Figure 6b(iii), the working principle of the system
was based on a sliding L-S TENG. Since ANN has advantages in sensor error correction,
the model was selected and three input samples of temperature, humidity, and voltage
response were set as input layers. After repeated learning and correction, the effective
monitoring of the marine environment was realized, with the final error being less than 3%.

In conclusion, ANN serves as the foundational framework for DL, capable of approx-
imating various functions. However, its performance is often suboptimal when dealing
with complex data structures, such as images and sequential data of TENGs. Therefore,
specialized neural network architectures, such as CNN for spatial data and RNNs for
sequential data, have been designed based on ANN to address these specific challenges.
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Figure 6. Applications of ANN for L-S TENGs: (a) A triboelectric smart sensor based on graphene
oxide and polyacrylamide hydrogel [139]. (b) Ethylene chlorotrifluoroethylene/hydrogel-based L-S
TENG [54].

3.2.2. CNN for TENGs

The signals may be coupled with a variety of information, making it challenging for a
simple neural network to distinguish and extract specific features, especially when dealing
with complex information types, such as images. In such cases, building neural networks
to handle more intricate data structures becomes necessary. CNN is a specialized variant
of ANN that is designed for processing images and spatial data and proves invaluable
in these scenarios. As one of the representative algorithms in DL, the basic concept of
CNN dates back to the 1960s and 1970s. However, the real development and widespread
application occurred in the early 21st century [140]. The success of CNN is attributed to
advancements in computational power, the availability of large-scale datasets, such as
ImageNet, and improvements in DL algorithms. It has become a crucial foundation in
computer vision and DL, achieving remarkable accomplishments in various fields [141].
The basic structure of a CNN includes layers, such as the input layer, convolutional layers,
pooling layers, fully connected layers, and the output layer. The core idea of a CNN
involves the hierarchical extraction and combination of features through multiple layers
of convolution and pooling operations. CNN’s capability to gradually extract multi-
level feature representations allows it to efficiently construct abstract representations,
starting from simple to complex features. The convolutional operations in CNN effectively
reduce the number of model parameters, improving the training speed and generalization
capability [142,143]. Therefore, by combining the CNN algorithm with TENGs, efficient
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high-precision sensing can be achieved for tasks such as image recognition [144–146],
gesture recognition [147,148], material identification [149–151], etc.

CNN for S-S TENGs

The original purpose of CNN is to process image data, making it indispensable in
scenarios where triboelectric signals contain image features. Yun et al. proposed a triboelec-
tricity touchpad (TTP) featuring a TENG array built on a flexible substrate [73], as shown in
Figure 7a(i). The data acquisition board collected the triboelectric data from each row and
column, determining positions generating electric signals (Figure 7a(ii)). This facilitated the
inference of handwritten digits on the TTP. A pre-trained neural network was employed
for handwritten digit recognition on the TTP, with the CNN comprising input, hidden, and
output layers, along with convolution and linearization layers (Figure 7a(iii)). Following
training with 60,000 data points, the classification accuracy of handwritten digits ranged
from 93.6% to 91.8% at bending angles of 0◦, 119◦, and 169◦. In 2022, Yang et al. devel-
oped a multifunctional wearable tactile sensor [152], as shown in Figure 7b(i), combining
TENG and the piezoelectric nanogenerator (PENG) in a six-layer structure. The sensor
attached to the hand sensed deformation and output electrical signals during various hand
gestures. Based on a convolutional neural network with six convolutional layers, three
pooling layers, a connection layer, and a dropout, a deep learning framework was built
(Figure 7b(ii)). Convolution and pooling were employed to extract high-level features from
images, reducing feature maps to one-dimensional vectors fed into the fully connected
layer. After 1000 iterations of training and testing, an accuracy of 94.16% was achieved. To
extract more abstract features when processing images, the visual geometry group (VGG),
one of the representative networks of CNN, is applied to triboelectric sensing [153]. In 2022,
Wei et al. developed an intelligent tactile sensing system [154], which realized the accurate
perception of test materials under different contact conditions and external environments.
As shown in Figure 7c, the system consisted of a triboelectric triple tactile sensor (TTS)
array and a CNN-based DL model. The total dataset (containing 6365 sets) used for training
came from different touch and environmental conditions of nine materials. By extracting
features from three single tactile sensors and normalizing them, a material recognition
system using image extraction feature points was built. The high recognition rate of 96.62%
was achieved in the material recognition of nine kinds of materials.

CNN excels at extracting subtle features hidden in signals, providing an effective
approach for recognizing and processing signals that are challenging to distinguish directly.
For the multi-channel TENG systems, CNN proves to be an efficient aid. To achieve
comprehensive and continuous monitoring of infants, Guo et al. proposed a triboelectric
hydrogel sensor [155], as shown in Figure 7d(i). A single sensor consisted of 3 layers,
agar hydrogel, and gelatin sponge (Figure 7d(ii)), with 11 sensors attached to the baby’s
breasts, hands, knees, feet, neck, back, wrists, and buttocks, forming an 11-channel data
acquisition system. CNN was used to rapidly process signals generated by multiple
channels and identify the different motion states of the baby (Figure 7d(iii)). CNN has been
demonstrated to analyze various types of sensing data. In 2022, Fang et al. developed a
breathable and moisture-proof TENG sensor [156], as shown in Figure 7e(i). The textile
sensor was composed of two types of twisted triboelectric yarns: PVDF and epoxy resin
(Figure 7e(ii)). It collected respiratory signals from common respiratory cases and combined
a 1D-CNN algorithm to achieve accurate identification of different breathing patterns for
respiratory diagnosis (Figure 7e(iii)). In 2023, Zu et al. proposed a sensor composed of a
fully 3D-printed, multi-angle TENG (MA-TENG) to realize effective monitoring of head
impact [157], as shown in Figure 7f(i). The structure and working principle are shown in
Figure 7f(ii). The array consisted of 32 MA-TENG units, and each MA-TENG unit operated
in single-electrode mode. Then, 180 data points were recorded for each channel signal data
input. To accurately assess head impacts, a deep convolutional neural network (DCNN)
was employed (Figure 7f(iii)), achieving a high accuracy of 98% in damage level evaluation.
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Figure 7. Applications of CNN for S-S TENGs: (a) The schematic illustration of the proposed
touchpad and the pre-trained neural network [73]. (b) Design of an intelligent system for gesture
recognition of the tactile sensor [152]. (c) The enhanced material-identification system using a neural
network model (VGG) [154]. (d) Design of a soft, edible triboelectric hydrogel sensor for infant
care [155]. (e) Design of the respiratory monitoring system [156]. (f) Multi-angle, self-powered sensor
array for real-time monitoring of head impact [157].
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CNN for L-S TENGs

Small but important characteristics are hidden in the output signals of different so-
lution types or concentrations after CE. The convolution operation of CNN can realize
automatic learning and local extraction of these features. Based on prior research efforts,
the L-S TENGs can utilize CNN models for tasks such as classification and recognition [158].
In pursuit of low-cost, real-time sediment detection, Yu et al. reported a droplet-driven
triboelectric nanogenerator (PLDD-TENG) [159]. As shown in Figure 8a(i), the mechanism
included liquid–PTFE contact electrification and particle–electrode electrostatic induction.
When the droplets fell on the pre-charged PTFE, the EDL was formed to generate a positive
current, and then the droplets rebounded to generate a negative current. Utilizing the
current signals from PLDD-TENG, a 1D CNN model was employed to identify sediment
types and mass fractions (Figure 8a(ii)). This method achieved high-precision identification
of two types of tasks and developed a dual-target recognition system that can monitor
suspended sediment parameters in real time. Similarly, capitalizing on the sensitivity
of L-S TENG output signals to particle types and concentrations, Huang et al. devised
a structurally straightforward L-S TENG for identifying and detecting microplastics in
liquids [160], as shown in Figure 8b. It utilized FEP film and liquid as triboelectric materials.
Upon contact of the FEP film with water, a negative charge layer was formed on the FEP
surface. The reciprocating motion of L-S TENG caused charge transfer to generate electrical
signals. It was observed that the output voltage signals of the L-S TENG were sensitive
to the particle types and mass fractions of microplastics in the liquid, exhibiting a good
linear relationship with the content of microplastics. Each dataset was randomly divided
into two groups: 161 groups for training and 60 groups for testing. Before training, the
collected data must be normalized. Combining a CNN model consisting of one input layer,
three convolutional layers, three pooling layers, and one fully connected layer, the type
and content of each microplastic were predicted. The TENG sensor achieved a higher
average recognition accuracy rate (86.7%), especially with a 100% recognition accuracy for
polystyrene (PS).
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Figure 8. Applications of CNN for L-S TENGs: (a) Real-time monitoring of sediment particle parame-
ters [161]. (b) Detection of microplastics based on L-S TENG [160]. (c) Droplet-based triboelectric
taste-sensing system mimicking the human taste receptor [57]. (d) Demonstration of the FMTS as an
angle sensor for gesture recognition [162].
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Based on liquid–solid CE, TENGs present unique advantages in chemical sensing.
Recently, Wei et al. proposed a triboelectric taste sensing system based on the dynamic
morphological changes of droplets and the principle of liquid–solid CE [57]. This system
efficiently sensed liquids by detecting the difference in charge transfer between the liquid
and the solid surface. The sensing system is shown in Figure 8c. The differences in electron
affinity and physicochemical properties of different liquids led to distinct triboelectric
signals caused by the charge transfer triggered on the electrode. The total dataset used for
robotic taste sensing was from 5 different liquids, containing 52,586 samples (training set,
47,330). Through the combination of CNN, a “liquid fingerprint database” was established
to achieve high accuracy (91.3%) in robot taste applications. Further integration of visual
information with sensory signal information was performed to extract complete visual
information about the liquids. This improved the perception capabilities of the taste
system, increasing the accuracy to 96%. To enhance the stability of triboelectric electric
sensors, quantifying sensor performance through the number of wave peaks rather than
the output amplitude has been recognized as an effective method. Ge et al. developed
a flexible microfluidic triboelectric electric sensor (FMTS) that utilized the flow of liquid
in microfluidic channels to generate output signals [162]. The structure and mechanism
of the FMTS are shown in Figure 8d(i,ii). It consisted of a flexible PDMS substrate with
microfluidic channels and two chambers, cross-shaped ITO electrodes, and a PDMS film
serving as the triboelectric layer. The squeezing of the finger when the finger was bent led
to the difference in the output signals, and the multidimensional feature extraction of the
output waveforms was carried out (Figure 8d(iii)). The sensors were attached to 5 fingers,
respectively, and each sensor signal recorded 200 data points. A total of 500 samples were
collected, and each gesture was 100. Utilizing a CNN model, accurate recognition of five
hand gestures was achieved with a precision of 99.2% (Figure 8d(iv)). Furthermore, based
on the waveform characteristics of the sensor under dynamic pressure, a coding system
was established, achieving a recognition accuracy of 98.8% for eight types of information.

In summary, CNN is effective in extracting local features and reducing computa-
tional complexity through parameter sharing. It enhances TENG’s performance in image
recognition, target detection, etc. However, CNN has limitations in effectively handling
sequential data due to its lack of memory capacity for sequence information. Therefore, to
process the time series data of TENG and achieve dynamic monitoring and recognition, the
introduction of RNN is necessary.

3.2.3. RNN for TENGs

The sensing data sometimes contain temporal information, which can be challenging
for CNN to effectively capture and process. Therefore, another ANN variant, RNN, was
proposed to analyze and process the triboelectric signals containing temporal informa-
tion [163]. RNN is suitable for describing outputs in continuous states, exhibiting memory
capabilities [164]. In RNN, neurons not only receive information from other neurons
but also themselves, forming a network structure with loops. By utilizing internal states
(hidden states) to retain previous information, RNN can capture contextual information,
making it more effective than traditional neural networks in handling sequential data.
However, traditional RNN suffer from issues such as vanishing gradients and exploding
gradients. Subsequently, improved structures, such as gated recurrent units (GRU) and
long short-term memory networks (LSTM) [165], were developed to further enhance the
performance of RNN in time series tasks.

When dealing with time series data, RNN is good at capturing the sequence relation-
ship. In 2022, Lu et al. proposed a lip-reading decoding system based on a flexible TENG
sensor [75], as shown in Figure 9a(i). The sensor employed the contact–separation mode of
the dual-electrode TENG structure, to monitor the change in the oral state (Figure 9a(ii)).
There was no charge change in the closed state of the mouth. When the mouth opened, the
nylon membrane came close to the PVC, generating a current from the PVC side electrode
to the nylon side electrode. An extended RNN model based on the prototype learning
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method was presented, with GRU chosen as the basic unit of the recurrent neural net-
work (Figure 9a(iii)). The test accuracy of 20 kinds of words reached 94.5% in training
20 classes with 100 samples each, providing convenient life assistance for people with
speech impairments. 
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Figure 9. Applications of RNN for TENGs: (a) The lip-language decoding system supported by
triboelectric sensors [75]. (b) Blood pressure monitoring system with a double-sandwich structure [76].
(c) The concept, structure, and mechanism of the real-time non-driving behavior recognition system
aided by triboelectric sensors. (d) System overview of the TENG-based gait sensor system for human
activity recognition and user identification [166]. (e) Overview of the intelligent IoMT monitoring
system and detailed sensor structure design [167].
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In RNN, each output is determined by both the current input and the preceding
information, which is a clever approach but comes with a problem. When the sequence is
very long, the issue of vanishing gradients arises. This means the weights of neurons in the
early layers hardly change, leading to ineffective training. LSTM addresses it by replacing
traditional neurons in the RNN architecture with input, output, and forget gates [168],
learning long-term-dependent information easily [124,168,169]. Ran et al. developed
a real-time blood pressure monitoring system using a TENG with a double-sandwich
structure [76]. As shown in Figure 9b(i), the system operated a silicone rubber film and
cardboard to form an outer interlayer, and a Cu film and cardboard to form an inner
interlayer, which flexibly responds to various scenarios in a single-electrode mode. By
capturing pulse signals at the radial artery, a multi-network structure consisting of an LSTM
layer, an attention layer, a convolution layer, and a fully connected layer was developed for
blood pressure estimation (Figure 9b(ii)). The mean absolute error and standard deviation
of error were 3.79 ± 5.27 and 3.86 ± 5.18 mm Hg, respectively. The LSTM model has
also been applied in capturing non-driving behaviors. Zhang et al. proposed a real-time
non-driving behavior recognition system [170]. As shown in Figure 9c(i), the triboelectric
sensor data and image data of five types of non-driving behaviors of eight drivers were
collected and analyzed using a clever single-electrode structure. To achieve accurate
recognition, two multi-class classifiers based on artificial feature extraction and three multi-
class classifiers based on neural network feature extraction were trained and tested. Among
them, LSTM (Figure 9c(ii)) had the highest test accuracy (93.5%). Building upon LSTM,
Bidirectional LSTM (BiLSTM) [171] has been introduced. In BiLSTM, the input sequence
is processed simultaneously in both forward and backward directions, generating two
sets of hidden states: one composed of forward information and the other composed
of backward information. This bidirectional structure enables the network to capture
long-term dependency relationships and contextual information within the sequence more
effectively. Li et al. developed a TENG-based gait sensing unit for monitoring human
activities and identifying users [166], as shown in Figure 9d(i). They designed a Residual
Dense-BiLSTM network to extract deep features from multi-channel temporal gait data
(Figure 9d(ii)). The multi-layer stacked structure helped address the problem of multi-class
time series gait recognition and improved the recognition performance. After 500 iterations,
the sensing system achieved accuracy rates of 97.9% for human behavior recognition and
99.4% for user identity recognition. To achieve efficient extraction of temporal and spatial
features simultaneously, Mao et al. introduced a hybrid CNN–BiLSTM–Attention model
into a wearable TENG sensor to detect and analyze the limb movement of patients with
Parkinson’s disease [167]. As shown in Figure 9e(i), the electrical signals were obtained
by the contact and separation processes of nylon and PET. Local features of the signal
were extracted by CNN, and then the BiLSTM model was employed to learn the long-
term dependence between features. Following the bidirectional LSTM layer, an attention
mechanism was added to automatically capture the most relevant features in the input
sequence (Figure 9e(ii)). In the present dataset, 532 training samples (80%) and 228 test
samples (20%) were used for each action. Finally, the recognition accuracy of eight postures
reached as high as 97.3%.

In conclusion, the strength of RNN lies in its capacity to capture dependencies in
TENGs’ sequence data, leading to extensive applications in fields such as natural language
processing and speech recognition. LSTM, as an improved version of RNN, successfully
addresses issues such as vanishing and exploding gradients present in traditional RNN,
exhibiting enhanced memory capacity and an improved capability to capture long-term
dependencies. Therefore, RNN and LSTM are well-suited for handling sequence data of
varying lengths and complexities in time series tasks, holding significant relevance for the
dynamic monitoring functionality of TENG sensors.
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3.3. Comparison of Key Parameters

The evaluation of key parameters of ML algorithms in some TENG sensors has been
summarized, such as numbers of training data (the number of data samples in the training
set), training epochs, accuracy, etc., to provide suggestions for different self-powered
sensors. To show them more intuitively, a comparison table (Table 1) was constructed. For
TENG sensors with small sample collection, traditional ML algorithms, such as SVM and
KNN, can achieve high-precision sensing. When the larger sample data could be obtained
by TENG sensors, the neural networks were selected more often in the past research.

Table 1. Comparison of key parameters of ML algorithms in TENG sensors.

ML Algorithms Numbers of Training Data Training Epochs Accuracy

SVM

120 \ 90% [69]
260 \ 93.5% [119]
300 \ 98.9% [123]
385 \ 94.91% [67]

1500 \ 83.6% [121]

KNN
140 8 95% [70]

56/315 \ 98.2%/100% [66]

ANN
1000 10 98.4% [53]
6480 20 94.44% [136]

CNN

800 50 96% [82]
3920 50 99.07%/99.32% [74]
6365 100 96.62% [154]

47,330 3 91.3% [57]
60,000 1000 96.83% [73]

311,950/128,000 100 98.50%/98.3% [172]

RNN
2000 500 94.5% [75]
4256 \ 97.3% [167]
5000 100 81.06% [173]

4. Conclusions and Prospects

As the datasets collected become increasingly complex, different approaches to ML
and DL algorithms have been proposed to efficiently process output signals from self-
powered TENG sensing systems. In this review, suitable scenarios for various algorithms
are proposed in Figure 10. This summary aims to assist future research on TENG-based
sensors, guiding making faster and more effective choices when selecting ML algorithms.
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Figure 10. ML algorithms for TENGs with the complexity of datasets.
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In summary, when dealing with TENG sensors that can only gather a limited amount
of sample data, traditional ML methods, such as SVM and KNN models, exhibit superior
performance. Specifically, SVM proves effective in improving the sensing accuracy when
dealing with highly distinctive sample data. Additionally, if there is a complex nonlinear
relationship between the signals and the sensing tasks, SVM can flexibly handle nonlinear
mappings through kernel functions, enhancing its ability to model complex relationships.
However, challenges arise when the triboelectric signals exhibit irregular distribution in
space, making it difficult for SVM to identify a suitable decision surface. In such cases,
KNN was usually selected by researchers. Furthermore, KNN is a lazy learning algorithm,
which only stores data during the training phase and conducts real-time calculations during
the prediction phase. If real-time processing is a crucial requirement for sensing tasks, KNN
might be a feasible choice.

When a substantial amount of data is accumulated, traditional ML methods might fail.
In this case, DL algorithms, such as ANN, CNN, and RNN, become essential. Serving as
the foundation for DL, ANN proves valuable when the features of triboelectric data are
challenging to interpret or design. In addition, since ANN is a general neural network,
it plays a pivotal role in assisting TENG sensing systems in integrating multimodal data.
However, when the triboelectric signals contain complex data structures, such as images or
time series data, CNN and RNN are more concerning to researchers. CNN can automatically
learn and extract local features through convolution operations. If the performance of the
TENG sensors is influenced by specific local environments, it can adeptly capture the local
features. It is essential to note that if triboelectric sensing data involve image information,
CNN might be the preferred choice. Furthermore, when the data are temporal, RNN is
proficient in capturing sequential relationships in the time series data. To overcome the
gradient disappearance, GRU and LSTM have been introduced to improve the RNN. In
conclusion, when choosing ML algorithms to enhance the accuracy of sensors based on
S-S TENGs or L-S TENGs, it is essential to consider the data characteristics and system
requirements to ensure the algorithm model matches the task requirements.

To meet the requirements of the development of the IoT for large-scale sensing sys-
tems, more and more algorithms will be integrated with TENGs. Currently, self-powered
intelligent sensing systems based on TENGs are primarily confined to laboratory research,
and external or internal disturbances in non-ideal environments will affect the sensing
performance of the systems. Faced with a multi-field coupling environment, using a single
S-S TENG or L-S TENG, it is challenging to collect all the signal data. Moreover, the
existing single ML methods struggle to decouple and process complex data. Therefore,
the prospects of integrating ML algorithms with TENGs to construct new generations of
sensing systems may include:

• Improve the data acquisition capability of TENGs. Develop G-S, G-L, L-L, or composite
TENG structures [174,175]. Hybrid nanogenerators can collect high-quality and more
comprehensive signals under complex environmental conditions. The improvement
of the data acquisition capability ensures that ML algorithms achieve better learning
effects in training and testing. Additionally, since ML is highly dependent on data, it is
essential to develop TENGs with stable output to guarantee data quality. This can be
achieved by selecting triboelectric materials or structures with better durability [176].

• Optimize the algorithms. When the existing algorithms cannot meet the deployment
requirements of large-scale triboelectric sensors, new ML algorithms can be developed
based on the specific data characteristics of TENGs. On the other hand, the integration
of multiple DL algorithms, such as using multi-modal information [177] or multi-task
learning [178] methods, can improve the data processing ability of the system. In addi-
tion, the algorithm models should learn human environmental perception, emotional
preferences, and the ability to avoid disadvantages. Reinforcement learning [179] is
an effective strategy to adapt to dynamic environmental conditions by cultivating the
interaction between agent and environment to learn the best decision.
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• Multi-domain applications. Knowledge in different fields can provide more opti-
mization schemes for TENG sensing systems. Intelligent sensing systems gain more
knowledge reserves and key technologies in different human activities, which help the
machine to more comprehensively imitate the perception, thinking, decision-making,
and collaboration capabilities of the human brain [180].

• Optimize energy harvesting. The energy harvesting functionality of TENGs can
also benefit from algorithmic assistance [181]. Utilizing ML to optimize the energy
management of triboelectric sensors enables more efficient energy harvesting and
utilization. This optimization enhances the stability and sustainability of the sensor,
reducing energy waste.

The advancement of integrated circuits and embedded technology allows computer
systems to be integrated into a variety of devices. It facilitates the design, testing, and de-
ployment of hardware and software collaboration, and improves the efficiency of intelligent
sensing systems. ML-assisted TENG sensors will continue to focus on technologies such as
HMI and brain–computer interfaces to transform machines from passive output to active
creation. In the future, intelligent sensing systems will broaden the scope of applications,
including smart homes, smart cities, smart healthcare, smart manufacturing, etc.
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