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Abstract: The narrowband Internet-of-Things (NB-IoT) has been developed to provide low-power,
wide-area IoT applications. The efficiency of a power amplifier (PA) in a transmitter is crucial for a
longer battery lifetime, satisfying the requirements for output power and linearity. In addition, the
design of an internal complementary metal-oxide semiconductor (CMOS) PA is typically required
when considering commercial applications to include the operation of an optional external PA. This
paper presents a dual-mode CMOS PA with an external PA driver for NB-IoT applications. The
proposed PA supports an external PA mode without degrading the performances of output power,
linearity, and stability. In the operation of an external PA mode, the PA provides a sufficient gain to
drive an external PA. A parallel-combined transistor method is adopted for a dual-mode operation
and a third-order intermodulation distortion (IMD3) cancellation. The proposed CMOS PA with
an external PA driver was implemented using 40 nm-CMOS technology. The PA achieves a gain
of 20.4 dB, a saturated output power of 28.8 dBm, and a power-added efficiency (PAE) of 57.8% in
high-power (HP) mode at 920 MHz. With an NB-IoT signal (200 kHz π/4-differential quadrature
phase shift keying (DQPSK)), the proposed PA achieves 24.2 dBm output power (Pout) with a 31.0%
PAE, while satisfying −45 dBc adjacent channel leakage ratio (ACLR). More than 80% of the current
consumption at 12 dBm Pout could be saved compared to that in HP mode when the proposed PA
operates in low-power (LP) mode. The implemented dual-mode CMOS PA provides high linear
output power with high efficiency, while supporting an external PA mode. The proposed PA is a
good candidate for NB-IoT applications.

Keywords: narrowband-Internet of Things (NB-IoT); dual-mode; CMOS; power amplifier (PA);
external PA driver; 3rd-order intermodulation distortion (IMD3) cancellation

1. Introduction

The Internet of Things (IoT) has attracted considerable interest because it enables
information access from anywhere and at anytime. The narrowband IoT (NB-IoT) is the
most suitable mobile network technology for IoT applications, which requires exceptionally
deep coverage and extremely low power consumption [1–3]. For a low-cost solution
with low power consumption of NB-IoT devices, CMOS technology is used widely to
consider a fully integrated system-on-chip solution [4–6]. With CMOS technology, the most
challenging block in an RF transceiver is the power amplifier. On the other hand, PAs
using III-V compound semiconductor technology typically provide a higher output power
with high efficiency because of the low breakdown voltage of the transistor and a lossy
substrate of CMOS, degrading the performance of the designed PAs [7–9]. Thus, when
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considering commercial applications, the design of an internal CMOS PA needs to include
the operation of an optional external PA [10–13]. When a higher linear output power level
is required, the main internal CMOS PA is turned off, while the external PA mode can
support the operation of an external III-V HBT-based PA operation. Although a design
method was introduced elsewhere [12], only the loss performances were considered. The
present study analyzes other circuit performances in the main internal PA mode, such as
linearity and stability.

This paper proposes a dual-mode CMOS PA with an external PA driver, which includes
a parallel-combined transistor, as shown in Figure 1. The proposed CMOS PA includes
switches and a drive amplifier for the external PA mode to provide sufficient gain for the
external PA mode, without degrading the performances of the main internal PA. Parallel-
combined transistors are adopted for the third-order intermodulation distortion (IMD3)
cancellation method and dual-mode operation.
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Figure 1. Block diagram of the proposed dual-mode PA with an external PA driver.

2. Design of Dual-Mode PA with an External PA Driver
2.1. Supporting External PA Mode

An additional path is generally required to support the external PA operation, as
described in Figure 1. With the operation of the external PA, an additional switch and
output port may be required for the additional signal path [10,11]. Several structures have
been introduced and compared in terms of the loss/gain of the path for the external PA
mode [12]. Considering the compact package form factor, input and output matchings
can be shared without adding an additional a port for the external PA mode, as shown in
Figure 2. The path for the external PA mode can be simply constructed with additional
switches, as shown in Figure 2a. An additional driver amplifier, which is called an external
PA driver (Ex_PA DA shown in Figure 2b), can also be added. Figure 2b shows the
proposed path structure of the path for the external PA mode with a switch and external
PA driver. The insertion loss of the switch can be minimized by increasing the size of the
switch, as shown in Figure 2a. Ahn et al. [12] analyzed only the loss/gain performances for
structures supporting an external PA mode. On the other hand, the interaction caused by
the shared output port should be considered carefully. Additional switches placed at each
path before the output matching in Figure 2 can minimize the interaction between the two
paths. On the other hand, an additional switch at an output part of the main internal PA
will substantially affect the output power and efficiency of the overall PA; this structure is
not the preferred method.
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Figure 2. Structures of the main internal CMOS PA supporting an external PA mode: (a) case
1: additional path with switch only; (b) case 2: the proposed structure with switch and external
PA driver.

Figure 3 presents a design process of a CMOS PA with an external PA driver for NB-IoT
applications. First, separately design each path for the main internal PA and external PA
modes. Second, consider the design of the main internal PA with the path for an external
PA mode. Each path must be redesigned if the design fails to meet the target specifications.
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Figure 3. Design process of CMOS PA with an external PA driver for NB-IoT applications.

NB-IoT requires at least 23 dBm linear output power for wide-area communication [1,14].
Performance degradation of the PA due to interactions with other blocks can occur when
a PA is implemented with other blocks in a transmitter chain. In addition, considering
the nonlinearity of the preceding blocks, some margins will be needed for a stand-alone
PA. Therefore, the target linearity specification of the PA in this work is −45 dBc adjacent
channel leakage ratio (ACLR) at 24 dBm output power. Considering the relationship
between ACLR and third-order intermodulation distortion (IMD3) performances, the target
IMD3 specification of the PA at the simulation stage is −37.5 dBc IMD3 at 22.5 dBm output
power. The stability of the designed PA is a critical consideration and can be determined
through the S parameters. S-parameter simulations have been performed using a Cadence
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Spectre simulator. The Rollett’s stability factor (K-factor) should be larger than one to
guarantee that the PA with an external PA driver remains stable [15].

For the operation of the external PA mode, the performance of loss/gain is a main
design consideration. Larger losses in the operation of the external PA mode can result in
the need for higher output power of the preceding block to compensate for this loss. Thus,
the target performance of the loss/gain in this work is greater than −2 dB.

Figure 4 shows the operation of the main internal PA mode for two cases (case 1 and
case 2) in the shaded region. The switch in the path for the external PA mode SWEX_PA
is turned off, while the switch in the main path SWMain is turned on. A large signal
operation will cause a significant interaction in the operation of the internal main path
because the linear output power level of the NB-IoT PAs is typically more than 20 dBm. In
addition, the increases in the size of the switches produce a larger parasitic capacitance,
resulting in a severe interaction at the off-state condition of the switch. For the case 1,
the performance variations in the main internal PA due to the interaction from different
switch size are examined by performing two-tone simulations centered at 920 MHz with
a 200 kHz tone spacing. As shown in Figure 5, the IMD3 performances are degraded as
the switch size increases. The proposed structure includes a cascode-based external PA
driver that minimizes the interaction compared to the switch only. Figure 6 shows the
simulation results of the K-factor with the path for an external PA mode. In the case of the
switch only, the K-factor degrades as the size of the switch increases because of the large
interaction from the large parasitic capacitance. The K-factor is less than one with a size of
W/L = 160 µm/550 nm and W/L = 320 µm/550 nm, as shown in Figure 6. The proposed
structure provides better isolation performance than that of the switch only.
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Figure 4. Main internal PA mode operation: (a) case 1: additional path with switch only; (b) case 2:
the proposed structure with switch and external PA driver.
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Figure 5. Simulated IMD3 results of the main internal PA with the path for an external PA mode.
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Figure 6. Simulated K-factors of the main internal PA with the path for an external PA mode.

Although a smaller switch size can minimize the interaction owing to the path for
the bypass mode, the loss of the bypass mode from the switch should be carefully in-
vestigated. Figure 7 shows the operation of the external PA mode for two cases in the
shaded region. The SWEX_PA is turned on, while the SWMain is turned off. Figure 8 com-
pares the simulated loss/gain for the external PA mode. Mismatches from the input and
output matchings increase the loss in the external PA mode because the input and out-
put matchings are optimized mainly for the performances of the main internal PA. The
switch size of W/L = 320 µm/550 nm produces a lower loss for considering the design
of an additional path with switch only. On the other hand, because case 1 using the size
of W/L = 320 µm/550 nm gives the worst IMD3 performances and stability issues for the
main internal PA mode, this case cannot be adopted. Thus, case 1 cannot satisfy the design
specifications for both the main internal PA and external PA modes. Although additional
power consumption exists, the proposed structure with an external PA driver can meet all
the design specifications.

Nanomaterials 2024, 14, x FOR PEER REVIEW 5 of 13 
 

 

 

Figure 6. Simulated K-factors of the main internal PA with the path for an external PA mode. 

Although a smaller switch size can minimize the interaction owing to the path for the 

bypass mode, the loss of the bypass mode from the switch should be carefully investigated. 

Figure 7 shows the operation of the external PA mode for two cases in the shaded region. 

The SWEX_PA is turned on, while the SWMain is turned off. Figure 8 compares the simulated 

loss/gain for the external PA mode. Mismatches from the input and output matchings in-

crease the loss in the external PA mode because the input and output matchings are opti-

mized mainly for the performances of the main internal PA. The switch size of W/L = 320 

μm/550 nm produces a lower loss for considering the design of an additional path with 

switch only. On the other hand, because case 1 using the size of W/L = 320 μm/550 nm gives 

the worst IMD3 performances and stability issues for the main internal PA mode, this case 

cannot be adopted. Thus, case 1 cannot satisfy the design specifications for both the main 

internal PA and external PA modes. Although additional power consumption exists, the 

proposed structure with an external PA driver can meet all the design specifications. 

 
 

(a) (b) 

Figure 7. External PA mode operation: (a) case 1: additional path with switch only; (b) case 2: addi-

tional path with switch and external PA driver. 

0.2 0.4 0.6 0.8 1.0 1.2 1.4
-1

0

1

2

3

4

5

6

7

8

9

10

Case 1: Switch only

 Size(80um/550nm)

 Size(160um/550nm)

 Size(320um/550nm)

Case 2: Proposed DA+Switch

 

 Frequency (GHz)

 

 
K

-f
a
c
to

r

Interstage

Matching  PA DA
Input

Matching

Output

Matching

SWEx_PA

SWMain

Interstage

Matching  PA DA
Input

Matching

Output

Matching

SWEx_PA

EX_PA 

DA

SWMain

Figure 7. External PA mode operation: (a) case 1: additional path with switch only; (b) case 2:
additional path with switch and external PA driver.



Nanomaterials 2024, 14, 262 6 of 13Nanomaterials 2024, 14, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 8. Simulated loss/gain of the external PA mode for switch only and the proposed case. 

2.2. Design of Dual-Mode with an External PA Driver 
A parallel-combined transistor is typically used for the IMD3 cancellation method 

[12], [16–18]. This configuration is also adopted for the dual-mode operation to save the 
current consumption in the lower power region in this work. Figure 9a,b show the opera-
tions of the proposed parallel-combined transistors for HP and LP modes, respectively. 
As shown in Figure 9a, for the power stage in a two-stage PA, parallel-combined transis-
tors for the common-source devices are adopted. Two switches, SW1 and SW2, control the 
parallel-combined transistors. 

  
(a) (b) 

Figure 9. Operations of the parallel-combined transistors: (a) IMD3 cancellation in HP mode; (b) 
current consumption reduction in LP mode. 

For the HP mode in the main PA, both SW1 and SW2, which are connected to the DC 
gate bias of the parallel-combined transistors, are turned off. The parallel-combined tran-
sistors are used for the IMD3 cancellation. The gate bias voltage of one of the parallel-
combined transistors, M1, is closer to the class-A region in the HP mode. In contrast, the 
gate bias voltage of the other transistor M2 is closer to the class-B region in the HP mode. 
The phase of fundamental components is similar; thus, they are added. While the phase 

0.8 0.9 1.0 1.1
-8

-6

-4

-2

0

2

4

6

8

10

Case 1: Switch only
  Size(80um/550nm)
  Size(160um/550nm)
  Size(320um/550nm)

Case 2: Proposed DA+Switch
 

 Frequency (GHz)

 
Lo

ss
/G

ai
n  (d

B
)

Vg1

Vg2

SW1

SW2

M1 M2
freq

two-tone

IIN,fund

Vgcg1

VDD

RFIN

RFOUT

Iout1,fund, Iout1,IMD3 Iout2,fund, Iout2,IMD3 

IOUT,fund

freq

freq

freq

DC: Vg2 V

DC: Vg1 V

Vg1

Vg2

SW1

SW2

M1 M2

DC: 0 V
(M1: turned off)

DC: Vg2 V

Vgcg1

VDD

RFIN

RFOUT

Figure 8. Simulated loss/gain of the external PA mode for switch only and the proposed case.

2.2. Design of Dual-Mode with an External PA Driver

A parallel-combined transistor is typically used for the IMD3 cancellation
method [12,16–18]. This configuration is also adopted for the dual-mode operation to
save the current consumption in the lower power region in this work. Figure 9a,b show the
operations of the proposed parallel-combined transistors for HP and LP modes, respectively.
As shown in Figure 9a, for the power stage in a two-stage PA, parallel-combined transistors
for the common-source devices are adopted. Two switches, SW1 and SW2, control the
parallel-combined transistors.
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Figure 9. Operations of the parallel-combined transistors: (a) IMD3 cancellation in HP mode;
(b) current consumption reduction in LP mode.

For the HP mode in the main PA, both SW1 and SW2, which are connected to the
DC gate bias of the parallel-combined transistors, are turned off. The parallel-combined
transistors are used for the IMD3 cancellation. The gate bias voltage of one of the parallel-
combined transistors, M1, is closer to the class-A region in the HP mode. In contrast, the
gate bias voltage of the other transistor M2 is closer to the class-B region in the HP mode.
The phase of fundamental components is similar; thus, they are added. While the phase
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of the IMD3 components is approximately 180◦, they cancel each other, resulting in the
linearity improvement.

For the LP mode, either SW1 or SW2 is turned off, while the other is on, as shown in
Figure 9b. Therefore, one parallel-combined transistor is turned off to reduce the current
consumption. Because PAs can operate longer in LP mode than in HP mode, the efficiency
improvement in LP mode is helpful for a longer battery lifetime [19].

Figure 10 presents the overall schematic of the proposed CMOS PA. The main internal
PA consists of a two-stage design to provide a sufficient gain. Inter-stage matching is
implemented using on-chip elements, while input and output matchings are implemented
using off-chip elements on a printed circuit board (PCB). For the drive and power stage
in the main PA, a cascode configuration is adopted to reduce a voltage stress between
two terminals in both common-source and common-gate devices. The reliability of the
PA is improved using 2.5-V and 3.3-V thick-gate devices for the common-source and
common-gate devices, respectively.
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Figure 10. Simplified circuit schematic of the dual-mode CMOS power amplifier with an external
PA driver.

An additional path is combined in parallel to the main internal PA path to support the
external PA mode. The output and input matchings are shared. In the external PA mode,
the switch in the path for the external PA mode SWEX_PA is turned on, while the switch in
the main path SWMain is turned off. Figure 7 presents the mode selection for the HP, LP,
and the external PA modes. The size of all switches is W/L = 80 µm/550 nm.

3. Fabrication and Measurement Results

The proposed PA was fabricated in the 40 nm CMOS process, as shown in Figure 11.
The chip is 0.9 mm × 0.6 mm in size. Figure 11 also presents photographs of the imple-
mented PA, including the off-chip output matching elements. The supply voltage was 3.3 V
for both the main PA and external PA driver.
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Figure 11. Photograph of the implemented dual-mode CMOS PA with external PA driver.

Figure 12 shows the measured small-signal performances, power gain, and PAEs
of HP, LP, and external PA modes. As shown in Figure 12a, the measured S21 shows a
band-limited performance owing to the inductor–capacitor resonance characteristics of
the input, inter-stage, and output matchings. For the 920 MHz signal, the power gain for
the HP, LP, and external PA modes are 20.4 dB, 17.3 dB, and 6.9 dB, respectively. The PA
achieves a saturated output power PSAT of 28.8 dBm while obtaining a peak PAE of 57.8%
in HP mode.
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Figure 12. Measured (a) small-signal; (b) large-signal performances.

The two-tone signal measurement was performed at a center frequency of 920 MHz
with a tone spacing of 200 kHz, as shown in Figure 13. When applying the IMD3 cancella-
tion method, the gate bias voltage of M1 is closer to the class-A region, while the gate bias
voltage of M2 is closer to the class-B region. The same gate bias voltage is applied to both M1
and M2 for the case without applying the IMD3 cancellation. With the IMD3 cancellation
using parallel-combined transistors, the IMD3 of the PA is maintained at less than −36 dBc
up to an output power of 23.5 dBm. The PA was tested with a 200 kHz π/4-DQPSK signal
to verify the NB-IoT applications and evaluate the linearity performance. The PA in HP
mode achieves an output power of 24.2 dBm with a PAE of 31.0% by adopting the IMD3
cancellation method with a −45 dBc ACLR without external linearization techniques, as
shown in Figure 14a. The PA in LP mode achieves an output power of 12 dBm with
−45 dBc ACLR. In the external PA mode, the current consumption at 920 MHz is 40 mA at
an output power of −2 dBm with −58 dBc ACLR. The PA was also tested with a 10 MHz
64- quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing
(OFDM) signal, as shown in Figure 14b. While meeting −40 dBc ACLR, the PA in HP and
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LP modes achieves output powers of 20.0 dBm and 12.1 dBm, respectively. The PA in the
external PA mode achieves an output power of −2 dBm with −54 dBc ACLR. Figure 15
presents the ACLR performance and current consumption according to the output power
sweep when it was tested with a 200 kHz π/4-DQPSK signal. The red solid line shows
of the current consumption with the dual-mode operation while meeting −45 dBc ACLR.
By selecting LP mode at 12 dBm output power, the current consumption is 97 mA, and
approximately 82% of the current consumption is saved compared to 177 mA in HP mode.
In addition, by selecting the external PA mode, the PA achieves an output power of 0 dBm
with 40 mA current consumption while meeting −55 dBc ACLR. Figure 16 presents the
output spectrum results of the PA. Figure 16a–c depict the output spectrums in HP, LP,
and external PA mode, respectively, when it was tested with a 200 kHz π/4-DQPSK signal.
Figure 16d–f show the output spectrums in HP, LP, and external PA mode, respectively,
when it was tested with a 10 MHz 64-QAM OFDM signal.
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Figure 13. Measured IMD3 performance with and without IMD3 cancellation.
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Figure 14. Measured ACLR in HP, LP, and external PA modes with (a) a 200 kHz π/4-DQPSK signal;
(b) 10 MHz 64-QAM OFDM signal.
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Table 1 lists the performance of the proposed CMOS PA compared to other CMOS
PAs. The table includes the performance of recently published state-of-the-art CMOS PAs
operating at the sub-GHz frequency range. In addition, the performances of CMOS PAs
supporting an external PA mode are also included. Compared with other works operating
at the sub-GHz frequency range, the proposed PA gives the highest PAE at a saturated
output power. The PA in this work provides a dual-mode operation to save the current
consumption in the lower output power region. The proposed PA provides high linear
output power with high efficiency, while supporting an external PA mode for NB-IoT
applications. When it is tested with a NB-IoT signal, compared with the results of [20],
the output power is higher than 7 dB, and the PAE in this work is much higher than that
reported elsewhere [20], while meeting −45 dBc ACLR. In addition, the proposed PA
provides the highest saturated output power and PAE compared to other works supporting
an external PA mode. Thus, the proposed design supporting an external PA mode is a good
candidate for NB-IoT applications.

Table 1. Performance comparison with CMOS PAs operating sub-GHz range and CMOS PAs
supporting an external PA mode.

Reference This Work [20] [21] [2] [14] [22] [12] [13]

CMOS
Technology 40 nm 55 nm 0.18 µm 0.18 µm 55 nm 0.18 µm 40 nm 40 nm

Frequency
(MHz) 920 920 921 750−960 850 880 2450 2445

Gain (dB) 20.4 24.0 * 29.3 N/A N/A 13.3 24.8 37

PSAT (dBm) 28.8 28.8 * 27.0 24.2 28.9 31.8 * 27.9 26.5 *

PAESAT (%) 57.8 47.5 * 44.4 28.9 36.8 56.2 * 39.5 38 (DE)

Signal

NB-IoT
(π/4-DQPSK)

200 kHz /
OFDM

(64-QAM 10
MHz)

NB-IoT
200 kHz

16-QAM
20 MHz

NB-IoT (π/4-
DQPSK)
3.75 kHz

NB-IoT
180 KHz/
64-QAM
20MHz

16-QAM
10 MHz

802.11ac
256-QAM
20 MHz

802.11 g
20 MHz

PAE (Current)
@ Pout

with −45 dBc
ACLR

(NB-IoT Signal)

31.0%(245mA)
@24.2 dBm

(HP),
177 mA (HP)/

97 mA (LP)
@12 dBm

12.8% *
@16.5 dBm *

NA

w/−26.1 dB
EVM
28.9%

@19.1 dBm
DPD applied

w/−21.6 dB
EVM
29.5%

@24.4 dBm
DPD applied

NA NA NAw/
−33.9 dBc

ACLR, 44.3%
@27.7 dBm

PAE (Current)
@ Pout

with −40 dBc
ACLR

(OFDM Signal)

14.6% (148 mA)
@20.0 dBm

(HP),
177 mA (HP)/

97 mA (LP)
@12 dBm

NA

6.0%* @
17.0 dBm *

NA

w/−25.3 dB
EVM
26.1%

@22.9 dBm
DPD applied

7.8% *
@7.5 dBm * 12.9%

@19.2 dBm
w/−32 dB

EVM

14%(DE)
@18.5 dBm
w/−25dB

EVM

w/−30 dBc
ACLR,
28.0% *

@21 dBm

w/−33 dBc
ACLR 47.4%

@27 dBm

External Mode

(NB-IoT Signal)
<−58 dB ACLR

@ −2 dBm
(40mA)

- - - - -

−37 dB
EVM

@−5 dBm
(18mA)

−34.8 dB
EVM

@−5 dBm *
(NA)

* graphically estimated, not implemented.

4. Conclusions

This paper introduces a design approach for the CMOS PA with an external PA mode,
which has been applied to a 40 nm CMOS technology. The design approaches supporting
an external PA mode have been analyzed. The proposed PA with an external PA driver
can support an external PA mode without degrading the performance of the main internal
CMOS PA. Furthermore, the proposed dual-mode CMOS PA adopts parallel-combined
transistors to cancel out the IMD3 components in the HP mode and reduce the current
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consumption in the LP mode. The linearity performance of the proposed PA has been
evaluated with NB-IoT and OFDM signals.
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