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Abstract: In this study, the pristine MgO, MgO/CNT and Ni-MgO/CNT nanocomposites were
processed using the impregnation and chemical vapor deposition methods and analyzed for hy-
drogen evolution reaction (HER) using the electrochemical water splitting process. Furthermore,
the effect of nickel on the deposited carbon was systematically elaborated in this study. The highly
conductive carbon nanotubes (CNTs) deposited on the metal surface of the Ni-MgO nanocomposite
heterostructure provides a robust stability and superior electrocatalytic activity. The optimized Ni-
MgO/CNT nanocomposite exhibited hierarchical, helical-shaped carbon nanotubes adorned on the
surface of the Ni-MgO flakes, forming a hybrid metal–carbon network structure. The catalytic HER
was carried out in a 1M alkaline KOH electrolyte, and the optimized Ni-MgO/CNT nanocomposite
achieved a low (117 mV) overpotential value (ï) at 10 mA cm−2 and needed a low (116 mV/dec)
Tafel value, denotes the Volmer–Heyrovsky pathway. Also, the high electrochemical active surface
area (ECSA) value of the Ni-MgO/CNT nanocomposite attained 515 cm2, which is favorable for
the generation of abundant electroactive species, and the prepared electrocatalyst durability was
also performed using a chronoamperometry test for the prolonged duration of 20 h at 10 mA cm−2

and exhibited good stability, with a 72% retention. Hence, the obtained results demonstrate that
the optimized Ni-MgO/CNT nanocomposite is a highly active and cost-effective electrocatalyst for
hydrogen energy production.

Keywords: water splitting; hydrogen evolution reaction; chemical vapor deposition; overpotential;
hydrogen production

1. Introduction

In an ever-expanding global landscape, the imperative for energy harvesting becomes
increasingly vital to minimize energy loss and gather many different forms of energies
to meet the escalating demand for energy driven by a surging global population. This
necessity is further featured by the imperative to sustain socioeconomic progress, enhance
well-being and safeguard public health. Simultaneously, the exponential growth in the
population has become a catalyst for a spectrum of environmental challenges, notably the
alarming rise in greenhouse gas emissions. Consequently, amidst this complex scenario,
the pressing need arises for a transition towards renewable energy including solar, wind
power, biomass and biogas, which may offer a sustainable alternative to fulfill the energy
requirements of the burgeoning population while mitigating the adverse impacts associated
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with the depletion of finite fossil resources. This shift towards renewable energy not only
addresses the immediate energy needs, but also aligns with the imperative of fostering a
more sustainable environment and contributing to a more environmentally conscious en-
ergy landscape [1]. In the pursuit of establishing a clean and sustainable energy production
paradigm, molecular hydrogen (H2) has garnered recognition as a carbon-free alterna-
tive. Renowned for its exceptional gravimetric energy density, reaching approximately
282 KJ mol−1, hydrogen stands out as a highly efficient and eco-friendly option. This
characteristic makes it an appealing choice in the quest for sustainable energy solutions,
offering the potential to significantly reduce carbon emissions [2]. Industrial hydrogen
production, so far, has predominantly relied on the conventional steam–methane reforming
method. A notable drawback of this approach, however, is the inherent generation of
hazardous carbon dioxide (CO2) emissions during the reaction process. This poses a signif-
icant environmental concern, as it contributes to the ever-increasing issue of greenhouse
gas emissions, underscoring the pressing need for alternative and sustainable methods in
hydrogen production to mitigate these adverse environmental impacts [3]. Over the past
few decades, electrocatalytic water splitting was adopted by researchers as an effective
technique for pure hydrogen production [4–7]. The electrocatalysis of water primarily
consists of two half redox reactions: anodic oxygen evolution (OER), with a four-electron
step transfer and cathodic hydrogen evolution reaction (HER), with a two-electron step
transfer [5]. The efficient hydrogen evolution reaction mainly comprises two reaction mech-
anisms named as the Volmer–Heyrovsky and Volmer–Tafel mechanisms. In those two steps,
hydrogen generation proceeded depending on the process of adsorption (Volmer) and the
desorption and recombination (Heyrovsky and Tafel) process of the adsorbed hydrogen
(H*) and hydroxide ions (OH−), which plays a vital role in H2 generation and in high
HER catalytic performance. To this date, noble catalysts such as Pt/C- or Ru/IrO2-based
materials have exhibited outstanding electrocatalytic performances towards overall elec-
trochemical water splitting [6–10]. Consequently, the expensive costs and instability of
these worthy candidates severely limit their growth in industrial applications. Therefore,
switching to efficient non-noble catalysts at a lower cost with an enhanced electrocatalytic
performance is highly advisable to provide sustainable alternative energy [10,11]. Recently,
transition metal-based electrocatalysts like oxides/hydroxides, sulfides, carbides, nitrides
phosphides, etc., are widely explored in many energy conversion and storage applications,
owing to their high stability, affordability and earth-rich nature [12]. Among many metal-
oxide-based electrocatalysts, magnesium oxide (MgO) has attracted great interest because
of its large surface sites, lattice defects, ion vacancies (that can promote the surface chemical
kinetics) and its catalytic behavior [13,14].

The single metal oxides, however, are known to possess a lack of stability, low con-
ductivity and inferior catalytic activity, which may obstruct the improvement of catalytic
activity at the large-scale level. On the other hand, carbon materials can be used as po-
tential additives for nanocomposite formation with the improved catalytic conductivity
and active site dispersibility [15]. Carbon nanotubes have attracted significant attention in
the development of advanced sustainable energy storage applications. The formation of
nanocomposites of metal oxides and CNTs facilitates the access to metal carbon surfaces for
better charge storage activities of high electrolyte ions and amplifies the specific material
surface area [16]. Ni has been recognized as an effective element to form the metal–metal
oxide carbon lattice structure due to its high redox active sites and being known to enhance
electrical conductivity and stability [17]. Liu et al. [18] achieved low (70 mV) overpotential
values at 10 mA cm−2 in an alkaline medium using Ni–Mg–La for HER studies. Darb and
et al. [19] synthesized a Ni-CNT nanocomposite using the electrodeposition method and
achieved low overpotential values of 82, 116 and 207 mV at 10, 20 and 100 mA cm−2.

So far, various synthesis methods were explored such as hydrothermal processes,
microwave-assisted synthesis, electrodeposition, chemical vapor deposition, sol–gel tech-
niques, etc., dwere used to develop the three-dimensional hierarchical nanostructures
comprising metal–carbon nanocomposites with enhanced electrocatalytic activities [20–24].
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Furthermore, the chemical vapor deposition method (CVD) is recognized as a cost-effective
approach for synthesizing carbon nanotubes (CNTs). By carefully adjusting the temperature
within the range of 550–1000 ◦C, the fast growth of CNTs along with a desired alignment
of the tubular structure was obtained [25]. In the present study, the impregnation pro-
cess followed by the chemical vapor deposition method was used. We also specifically
focused on elucidating the heterogeneous electrocatalytic action of the composite structure
in facilitating the hydrogen evolution reaction.

2. Materials and Methods
2.1. Materials

Magnesium oxide light LR (MgO) was acquired from S.D. Fine Chem. Ltd., Mumbai,
Maharashtra, India while nickel(II) nitrate hexahydrate (Ni(NO3)2·6H2O) was obtained
from Sigma Aldrich, St. Louis, MO, USA. High-purity nitrogen (99.999%), hydrogen
(99.99%) and acetylene (99.9999%) were sourced from Success Trader, Karaikudi for use in
our experimental procedures.

2.2. Synthesis Procedure

MgO (0.7 g) powders were placed in a CVD reactor under an inert gas atmosphere (N2)
for 1 h 40 min to reach 500 ◦C, and then, a mixture of H2+N2 served as the pretreated carrier
gas that assists in restructuring the catalyst and aids in transporting the hydrocarbons
during the CVD process [26], with the gradual increase in temperature from 500 ◦C to
800 ◦C during the period of 1 h. After the temperature reached 800 ◦C, a precursor gas
(C2H2) was introduced to induce slow cooling for 30 min. Meanwhile, a solution of 0.2 g
Ni(NO3)2·6H2Odissolved in 20 mL of distilled water (stirred for 30 min) was prepared.
As 0.2 g of magnesium oxide (MgO) was completely dissolved in the mixed solution after
approximately 1 h, the color of the solution gradually changed from pale white to pale
green. The prepared material was filtered using distilled water, acetone and methanol.
Ni-MgO powder was placed in a CVD reactor under an inert gas atmosphere (N2) for 1 h
40 min until the temperature reached 500 ◦C. Then, H2+N2gases were supplied to reduce
the catalyst and promote carbon nanotube growth on it for 1 h at 500 ◦C. The temperature
was then increased from 500 to 800 ◦C for 1 h. After the temperature reaches 800 ◦C, a
precursor gas(C2H2) was introduced for 30min, and subsequently, it was slowly cooled.
The preparation of the Ni-MgO/CNT nanocomposite is shown in Scheme 1.
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Scheme 1. Ni-MgO/CNT nanocomposite preparation.

2.3. Characterizations
2.3.1. Electrode Fabrication

The electrochemical study was conducted employing the Bio-logic SP-150 workstation
was purchased from Seyssinet Pariset, France. A slurry of the working substance was
carefully produced employing a MgO, MgO/CNT and Ni-MgO/CNT catalyst, activated
carbon and polyvinylidene fluoride (PVDF) in 85:10:5 ratios, respectively. Manual mixing
was performed in a few drops of N-methyl pyrrolidinone (NMP). Also, 3 mg of catalyst was
loaded to each electrode for the electrochemical investigations. Ni substrate was subjected
to precleaning with 1 M HCl in 100 mL of deionized (DI) water employing ultrasonication
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for 30 min, effectively removing the NiOx surface layer. For the electrochemical studies, the
catalyst-coated Ni foam (1 × 1 cm2) served as the working electrode, Pt wire as the counter
electrode and the Ag/AgCl electrode functioned as the reference electrode in a 3-electrode
system specifically for HER applications.

2.3.2. Electrochemical Analysis Parameters

A total of 1 M KOH was employed as an alkaline electrolyte. All potential applied in
the cyclic voltammetry analysis was referenced to the reversible hydrogen electrode (RHE)
employing the Nernst equation ERHE = EAg/AgCl + 0.197 + (0.059 × pH), where ERHE refers
to RHE potential conversion, EAg/AgCl denotes the potential of the reference electrode
(Ag/AgCl), the value 0.197 represents the standard potential of the reference electrode
and the pH of the KOH alkaline electrolyte was estimated as 13.6. Furthermore, double-
layer capacitance (Cdl) values were evaluated by using the formula of |ja − jc|/2ν, where
|ja − jc| represents the difference between anodic and cathodic current densities and ν

denotes the applied scan rates (mV/s). The ECSA was calculated approximately employing
a formula that involved dividing the acquired double-layer capacitance value (Cdl) by the
specific capacitance of the substrate used (Cs)ECSA(cm2) = Cdl/Cs [27]. Also, the value
0.040 mF cm−2 for Cs was adopted, consistent with prior reports on HER activity [28].
The LSV analysis of the prepared electrode was performed at 0 to −0.6 V vs. the RHE
at 2 mV/s. From the analysis, the overpotential values were evaluated at a minimum
current density of 10 mA/cm2 using the condition ï = ERHE − 0 V. To probe the dynamics
of the electrochemical reaction process, electrochemical impedance spectroscopy (EIS)was
carried out from 100 kHz to 0.1 Hz at an amplitude range of 5 mV, additionally with a
chronoamperometry study, which was carried out at10 mA cm−2 to further evaluate the
electrochemical performance.

2.3.3. Material Characterization

The structural and phase purity was studied employing a high-temperature powder X-
ray diffractometer (HT-XRD) equipped with an HTK 1200N—Bruker D8 Advance, Leipzig,
Germany. Additionally, small changes in the structural morphology and disorder of the
carbon nanomaterials were detected using micro–laser Raman instruments (Seiki, Japan).
Furthermore, the morphologies of the sample were examined through the utilization of a
CAREL ZEISS EVO 18, Oberkochen, Germany scanning electron microscope and a JEOL-
2100+ high-resolution transmission electron microscope, Tokyo, Japan. The composition
and chemical state of the Ni-MgO/CNT were examined employing a PHI-VERSAPROBE
III—X-ray photoelectron spectrometer, (ULVAC, Chigasaki, Japan). An electrochemical
study was conducted employing a Biologic SP-150 instrument, Seyssinet-Pariset, France to
investigate the electrochemical properties of the system under study.

3. Results and Discussion
3.1. Phases and Chemical Structure Analysis

In order to explore the phase stabilities and nanostructures of the MgO, MgO/CNT
and Ni-MgO/CNT, the constituent phases were explored using X-ray diffraction (XRD).
Figure 1 exhibits the XRD peaks from the MgO (dark blue), MgO/CNT (green) and Ni-
MgO/CNT (pink). All the characteristic peaks shown in the XRD pattern of MgO (dark
blue) are related with the peaks from the (111), (200), (220) and (222) crystalline planes of
MgO(standard JCPDS card no 75-1525),with the cubic crystal under an Fm-3m space group
as explored in the earlier reports [29]. The high intensity and sharp peaks of the MgO/CNT
demonstrated the prepared product’s good crystallinity. Also, the diffraction peaks at
25◦ to 26◦ indicate the presence of a carbon peak due to the typical multilayer nanotube
structure [30,31]. No impurities or extra diffraction peaks were found with the CNT
addition, which confirmed the phase purity of the material formation. The comparison
of the peaks from the Ni-MgO/CNT to those from the MgO/CNT revealed no major
differences except the broad and low intensity peak at 2θ = 44.2◦ in the Ni-MgO/CNT. No
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clear crystalline peaks were observed from the (111), (200) and (220) peaks from crystalline
Ni [32]. The broad and low intense diffraction peak centered at around 44~45◦ is known to
belong to the amorphous Ni (JCPDS card no 87-0712) [33,34]. It is interesting to note that
no sharp peaks from Ni were observed in the Ni-MgO/CNT. The formation of amorphous
Ni using nickel nitrate hexahydrate (Ni(NO3)2·6H2O) using the liquid-phase chemical
reduction approach has been reported previously [35].
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Figure 1. XRD analysis of MgO, MgO/CNT and Ni-MgO/CNT.

Figure 2 demonstrates the differences in the characteristic chemical structures of the
as-prepared pristine MgO, MgO/CNT and Ni-MgO/CNT samples revealed using Raman
studies. For pristine MgO (dark blue), a small peak observed at 442 cm−1 is linked with the
presence of Mg, and the peak located at 3656 cm−1 indicates the vibrational broadening of
the –OH group. The spectra ofthe MgO/CNT (green) and Ni-MgO/CNT (pink) in Figure 2
demonstrate the presence of two pronounced bands at 1333 (D-band) and 1591 cm−1 (G-
band). The D-band is known to reveal defects or lattice distortions of carbon atoms, whereas
the G-band is correlated with graphite E2g and/or is brought about by sp2-bonded carbon
atoms. The crystallinity of graphite or the CNT is supported by the G-band in Figure 2.
The ID/IG in Figure 2 was estimated with values of 2.11 and 0.97 for the Ni-MgO/CNT
and MgO/CNT electrocatalyst, respectively. Fe, Co orNi are commonly employed as
the catalyst for CNT synthesis [34–38]. The (ID/IG) relative intensity ratio is greater in
the Ni-MgO/CNT, demonstrating defects in the synthesized Ni-MgO/CNT compared to
those in the MgO/CNT. More defects might be introduced during the rapid growth of the
CNT that are promoted by the catalysis reaction of Ni. Small peaks situated at 2676 and
2933 cm−1 were revealed as the second order of 2D and G′ bands. A small peak observed
at 2933 cm−1 is known to be characteristic of the presence of CNTs. Here, the presence of a
G′ band supports the higher fraction of CNTs in the Ni-MgO/CNT than in the MgO/CNT
(green), although more defects were introduced in the CNT of the Ni-MgO/CNT [32–36]
because of its faster growth facilitated by the catalytic function of Ni.
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3.2. Microstructural/Nanostructural Analysis

Figure 3 shows the surface morphologies of the as-synthesized MgO (a–c), MgO/CNT(d–f)
and Ni-MgO/CNT (g–i) electrode materials observed using as canning electron microscope
(SEM). Figure 3a shows the plate-like fuzzy appearance of the MgO sample [37–39]. The
high magnification image in Figure 3b,c clearly exhibits the plate-shaped MgO crystals on
the surface. The (100) plane of MgO is suggested to be stable because of its low surface
energy [39], and the (110) plane is therefore naturally exposed after cleavage, and it is also
the most favorably exposed surface generated by wet chemical methods as shown in the
present study. The plate-shaped crystals are likely MgO crystals [40]. Figure 3d–f depicts
the morphologies of CNTs grown on MgO using acetylene (C2H2) as a carbon precursor at
800 ◦C for 20 min of gas flow. The long and thin, curly tube-shaped CNTs are found to be
formed over MgO and are synthesized from an acetylene (C2H2) precursor at 800 ◦C for
20 min of gas flow. The approximate thickness and length of CNTs formed on the surface
of the MgO catalysts were observed to be ~100 nm and few micrometers, respectively. The
appearance of the CNTs shown in Figure 3e,h is compatible with the CNTs observed by
other investigators [30,31]. Figure 3g–i displays the well-aligned, helical-shaped CNTs on a
flake-like structure of Ni-MgO, which clearly revealed the formation of a fair amount of
curly CNTs on the surface, which was induced by the catalytic effect of Ni on the substrate
surface. The abundance of CNTs in the Ni-MgO/CNT (Figure 3h,i) compared to those in
the MgO/CNT (Figure 3e,f) supports the faster growth facilitated by the catalytic action.
Furthermore, the CNT diameters could be decreased by adding a small amount of Ni
content [41]. From the SEM images of the Ni-MgO/CNT (Figure 3h,i), the average diameter
value was observed as 15–20 nm.
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The nanostructure of the synthesized Ni-MgO/CNT nanocomposite was examined
using the transmission electron microscopy (TEM) study, and its nanostructural details are
illustrated in Figure 4a–h. The high-magnification TEM images presented in Figure 4a–e
vividly exhibit the morphology of the nanoflakes encapsulated by conductive carbon nan-
otubes (CNTs), with the average diameter ranging from 15 to 25 nm. These observations
align well with the findings from scanning electron microscopy (SEM) studies. Furthermore,
Figure 4f,g distinctly revealed lattice fringes corresponding to MgO at the (111) and (200)
planes, with interlayer distances of 0.29 and 0.32 nm, respectively, consistent with results
obtained from the XRD analyses. The nanostructure of the Ni-MgO/CNT nanocompos-
ite is further validated using selected area electron diffraction (SAED) and presented in
Figure 4h, highlighting the lattice planes (111), (200), (220) and (222), corresponding well
with the XRD results [42–45]. Additionally, the SEM images of the prepared Ni-MgO/CNT
nanocomposite reveal an aggregated structure of the carbon nanotubes with a noticeable
cracked curvature. This phenomenon is likely a result of covalent modifications occurring
in the functionalization of the outer wall structural defects. Furthermore, the existence of
defects within the nanostructure will diminish the toughness of the metal–carbon matrix.
From the previous literature on metal oxide/CNTs, it is suggested that the synergistic effect
between the metal and carbon components enhances electron transfer, thereby improving
the overall efficiency [46,47]. The SEM/TEM images of the Ni-MgO/CNT nanocomposite
reveal the initial phase of nanotube development. According to the earlier literature of Liu
et al. [48], the metal integrated into the carbon network can serve as a catalyst for carbon
graphitization in the vapor phase. As a result, the catalyst and carbon nanotubes have
simultaneously overlapped with each other during the formation. Moreover, the interfacial
adhesion occurring on the nanotube surface induces cracks and entanglement in the tube
alignment, resulting in excessive separation during the nanotube formation [49].
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The surface elemental composition and chemical and binding energies were examined
using X-ray photoelectron spectra (XPS). The successful formation of the Ni-MgO/CNT
nanocomposite with the constituent elements of Ni, Mg, O and C is confirmed by the peaks
from these constituent elements, as exhibited in Figure 5a. The core broad spectrum of
Ni 2p at 855 eV explored Ni 2p3/2, and their satellite peaks observed at 860.3 eV denote
the abundant presence of a Ni2+oxidation state. Additionally, a peak at 871 eV can be
assigned to Ni 2p1/2in Figure 5b [50]. The typical peaks of Mg 2s located in the binding
energy at 88.7, 90.0 and 91.3 eV can be attributed to those from the surface MgO layer and
the chemisorbed surface compounds of Mg with carbon and oxygen such as MgOH and
MgCO, as depicted in the Figure 5c [51], which matches the previous report of Hassan
et al. [52]. The O1s spectra of oxygen positioned at 527.1, 531and 532.9 eV in Figure 5d
correspond to the oxygen functional groups of C=O, C–O–C/C–O–H and O=C–O observed
for the Ni-MgO/CNT, and are shown in Figure 5d [53]. The C1s spectra at 284, 284.6, 285.1
and 286.1 eV in Figure 5e of the prepared electrocatalyst represent the peaks associated
with C–C, C=O, C–O and C–N [54].
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3.3. Electrocatalytic Hydrogen Evolution Reaction

The HERs were analyzed in three electrodes consisting of a working electrode (active
material), reference electrode (Ag/AgCl) and counter electrode (graphite rod) using a 1 M
alkaline KOH electrolyte solution in an ambient environment. The cyclic voltammetry
curves of the prepared pure MgO, MgO/CNT and Ni-MgO/CNT were studied from 0.9 to
1.0 (V) vs. the RHE varying from 10 to 100 mV/s (Figure 6a–c).The attained CV exhibited
an ideal electrochemical double-layer capacitance (EDLC) behavior and maintained a good
charge storage. Additionally, the ECSA values were estimated by applying ECSA = Cdl/Cs,
and are depicted in Figure 6d. The optimized Ni-MgO/CNT electrocatalyst achieved large
Cdl and ECSA values of 20.6 mF cm−2 and 515 cm2, respectively, which are higher than
those (5 mF cm−2 and 125 cm2) of the pure MgO and the values (17.2 mF cm−2 and 430 cm2)
of the MgO/CNT. The large electrochemical surface area of the Ni-MgO/CNT appears
to be responsible for creating a large reactive active site and escalating the possibility of
subsequent ion charge transport [55]. Accordingly, the Ni-metal oxide-based electrocatalyst
delivers a high catalytic activity due to the confinement effect [56].
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The linear sweep voltammetry comparison of the prepared pure MgO, MgO/CNT and
Ni-MgO/CNT catalysts at 2 mV/s was explored and is presented in Figure 7a. Among all
other samples, the Ni-MgO/CNT nanocomposite explored had the lowest value (117 mV)
at 10 mA/cm2, whereas the pure MgO and MgO/CNT exhibited the highest over potential
values of 147 mV and 141 mV, respectively. This suggests that incorporating Ni as a host
element into the MgO/CNT greatly improves the charge transfer efficiency and lowers
the activation energy barrier to achieve an enhanced HER catalytic reaction. The pivotal
enhancement of rigidity and robustness relies on the effective transfer of the load between
the interfacial bonding of the metal oxide (Mg–O) and carbon nanotube (CNT) nanocom-
posite. As a result, the active participation of the metal oxide MgO is crucial for improving
the electrocatalytic performance [57]. The enhanced electrochemical performance of the
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fabricated Ni-MgO/CNT electrocatalyst was compared with that which was reported in
the earlier literature [58–65]. It will help to analyze the novel and integrated level of the
electrocatalytic activity. For instance, the attained overpotential values were compared
with the previous literature as expressed in Table 1.
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Table 1. Comparison of overpotential with the previous literature.

Catalyst Electrolyte j (mA/cm2) ï (mV) Ref.

Ni-N-C-250/Pt KOH 10 400 [58]
Ni/NiFe2O4@PPy KOH 10 127 [59]
Ni-Cu-Ti/CNTs-Ni KOH 100 140 [60]

Ni/0.1CePO4catalyst KOH 10 120 [61]
Ni-MSACs KOH 10 270 [62]

NS-Ni/Mo2C@NF KOH 100 151 [63]
Ni3S2@NiS-250/NF KOH 10 129 [64]

CNS/PHS/CP KOH 10 186 [65]
Ni-MgO/CNT KOH 10 117 Present study

Additionally, the intrinsic catalytic kinetics of the prepared samples as rate-limiting
steps were evaluated using the Tafel slope analysis using ï = b log (j) + a, where ï denotes
the overpotential, j is the current density and b denotes the Tafel slope, which is shown
in Figure 7b.Accordingly, the Ni-MgO/CNT nanocomposite electrocatalyst achieved a
116 mV/dec Tafel value, smaller than the pure MgO (133 mV/dec) and the MgO/CNT
(124 mV/dec).The hydrogen evolution reaction consists of semi-half reactions of electro-
chemical water splitting which involve the two-step electron transfer process. Initially, the
molecular hydrogen from water was generated via an HER through three different reac-
tion pathways named as Volmer, Heyrovsky and Tafel. In an alkaline medium, primarily
the adsorbed hydrogen intermediates (Hads) were formed by the hydrolysis of the water
molecule (H2O + e− + catalyst → catalyst-Hads + OH−), which we will call the Volmer
step (discharging). Also, the adsorbed hydrogen unites with the H+ and e− to form H2,
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which is known as the Heyrovsky step (desorption). The two adsorbed hydrogen on the
catalyst surface combine to form an H2 molecule, acknowledged as the Tafel step (chemical
desorption step) [66]. Hence, the achieved Tafel value of 116 mV/dec is lower than the
Volmer step (120 mV/dec), indicating that the optimized electrode has a good agreement
with the Volmer–Heyrovsky step of the reaction mechanism of the hydrogen absorption
process (M-Hads) occurring on the electrode surface, which can increase the charge transfer
rate of the Ni-MgO/CNT electrocatalyst [67].

Figure 7c shows the Nyquist plot of the as-prepared MgO, MgO/CNT and Ni-
MgO/CNT samples. Comparatively, the Ni-MgO/CNT electrode exposed a lower solution
and charge transfer resistance compared to the MgO/CNT and MgO electrodes because
of the inverse correlation of the charge transfer reaction kinetics and minimum charge
transfer resistance of the Ni-MgO/CNT electrode, which is obviously seen in the Nyquist
plot with the clear evidence of a reduced arc. The electrochemical impedance (EIS) of the
Ni-MgO/CNT electrocatalyst was fitted with the corresponding equivalent circuit using
Nyquist plots (Figure 7c). The semicircle in the low frequency illustrated an electrode
charge transfer resistance (Rct); the Ni-MgO/CNT attained a low Rct value of 1.5 Ω and
solution resistance (Rs) value of 0.75 Ω, which are comparatively lower than all other
electrodes of the pure MgO and MgO/CNT [68].

The durability and stability of the fabricated electrode was systematically measured
using chronoamperometry testing, where the starting potential was set at 10 mA/cm2. The
insightful results are illustrated in Figure 7d, showcasing the electrode’s commendable
durability. Notably, the electrode exhibited a robust stability, retaining 72% of its perfor-
mance over a prolonged duration of 20 h. While a slight decline in the current density
was observed, this change is further corroborated in the linear sweep voltammetry (LSV)
curve after stabilization, depicted in Figure 7e [69]. This observed stability positions the
Ni-MgO/CNT composite as an optimal electrocatalyst for enduring energy applications.
The minimal degradation over an extended period, coupled with the slight decline in
current density, show its reliability and suitability for a sustained electrocatalytic activity.
These findings highlight the Ni-MgO/CNT potential for long-term energy applications,
attributing its performance to a high thermal capacity within alkaline media.

4. Conclusions

A Ni-MgO/CNT nanocomposite with animproved specific surface area was synthe-
sized through the cost-effective impregnation and chemical vapor deposition methods.
The comparison of the peaks from the Ni-MgO/CNT to those from the MgO/CNT re-
vealed no major differences except for the broad and low intensity peak at 2θ = 44.2◦ in the
Ni-MgO/CNT. The broad and low intense diffraction peak centered at around 44~45◦is
known to belong to the amorphous Ni. The (ID/IG) relative intensity ratio observed in
the Raman spectra is greater in the Ni-MgO/CNT, indicating more defects in the syn-
thesized Ni-MgO/CNT compared to those in the MgO/CNT. The presence of a G′ band
in the Raman spectra supports the higher fraction of CNTs in the Ni-MgO/CNT than
in the MgO/CNT (green), although more defects were introduced in the CNTs of the
Ni-MgO/CNT because of its faster growth facilitated by the catalytic function of Ni. The
evaluation of the morphological features of the Ni-MgO/CNT nanocomposite revealed
the presence of helical-shaped CNTs adorning the surface of the Ni-MgO flakes, with the
growth of the CNTs facilitated by the catalytic activity of Ni. The abundance of CNTs in the
Ni-MgO/CNT compared to those in the MgO/CNT supports the faster growth facilitated
by the catalytic action. Notably, the electrochemical performance of the Ni-MgO/CNT
demonstrated a remarkably low value of 117 mV at 10 mA cm−2, signifying an exceptional
catalytic activity toward the hydrogen evolution reaction (HER). The explored high elec-
trochemical surface area (ECSA) value of 515 cm2 and low charge transfer resistance of
1.5 Ω are indicative of enhanced active metal sites and efficient ion transportation during
the electrode–electrolyte interaction. Notably, the processed electrode in the present study
exhibited a robust stability, retaining 72% of its performance over a prolonged duration
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of 20 h. While a slight decline in the current density was observed, this change is further
corroborated in the linear sweep voltammetry (LSV) curve after stabilization. The observed
stability position of the Ni-MgO/CNT composite is as an optimal electrocatalyst for endur-
ing energy applications. The commendable catalytic action and the enhanced stability of
the synthesized electrodes suggest the potential reusability of the Ni-MgO/CNT electrode
for diverse applications.
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