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Abstract: A new functional Fe-30Mn-5Si-xCu (x = 1.5 and 2 wt%) biomaterial was obtained from
the levitation induction melting process and evaluated as a biodegradable material. The degrada-
tion characteristics were assessed in vitro using immersion tests in simulated body fluid (SBF) at
37 ± 1 ◦C, evaluating mass loss, pH variation that occurred in the solution, open circuit potential
(OCP), linear and cyclic potentiometry (LP and CP), scanning electron microscopy (SEM), energy
dispersive spectroscopy (EDS) and nano-FTIR. To obtain plates as samples, the cast materials were
thermo-mechanically processed by hot rolling. Dynamic mechanical analysis (DMA) was employed
to evaluate the thermal properties of the smart material. Atomic force microscopy (AFM) was used to
show the nanometric and microstructural changes during the hot rolling process and DMA solici-
tations. The type of corrosion identified was generalized corrosion, and over the first 3–5 days, an
increase in mass was observed, caused by the compounds formed at the metal–solution interface.
The formed compounds were identified mainly as oxides that passed into the immersion liquid. The
degradation rate (DR) was obtained as a function of mass loss, sample surface area and immersion
duration. The dynamic mechanical behavior and dimensions of the sample were evaluated after
14 days of immersion. The nanocompounds found on the surface after atmospheric corrosion and
immersion in SBF were investigated with the Neaspec system using the nano-FTIR technique.

Keywords: biodegradable FeMnSi; in vitro immersion; degradation rate; nano-FTIR

1. Introduction

Biodegradable alloys for temporary implants are a special category of materials studied
in the scientific world for various medical applications where their presence is necessary to
heal a diseased tissue, and later to degrade in the body [1,2]. Compared to conventional
permanent implants, this type of biodegradable implant is designed to eliminate possible
long-term complications as well as additional surgery. Until healing is complete, the
first stage of the reconstruction of the diseased tissue is required, while the implant must
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maintain its mechanical integrity and then gradually degrade until complete removal [3,4].
Researchers addressing this topic are studying three major classes of Mg, Zn and Fe-
based alloys for microsurgical, cardiovascular and orthopedic applications. Biodegradable
iron-based materials are considered a suitable solution for medium-time implantation
materials, which degrade in the body after a certain healing stage. Manganese alloying
with low percentages of silicon can functionalize the alloy to exhibit a shape memory effect
(SME) and copper can modify the transformation temperature range and improve the
antiseptic property. This alloy belongs to the biodegradable materials class and can be
functionalized considering SME for specific medical applications. Each of these classes
of biodegradable alloys has advantages and disadvantages in terms of DR, mechanical
properties and SME [5]. Mg-based alloys show both biocompatibility and good mechanical
properties [6–11], but the DR is very high and hydrogen gas evolution has been observed
in degradation [12]. Zn shows good biocompatibility, has an intermediate DR between
Mg and Fe, and its melting point is low [13]; however, its mechanical properties limit its
application in some medical implants [14]. Fe has been a good candidate in biodegradability
studies due to its excellent formability and ductility properties, giving the opportunity to
realize structures with very fine details, e.g., stents for cardiovascular applications [15].
Another attractive aspect that Fe alloys possess is their biocompatibility and mechanical
properties that can be exploited [16–18].

The study of pure Fe as a biodegradable alloy has brought to light a very low DR [19],
which requires improvements to reach a compromise between the curing period and
the maintenance of mechanical integrity for support [20]. Alloying with Mn led to the
non-magnetic properties, useful for MRI compatibility, but also for increasing the DR by
increasing the Mn content [21,22]. Subsequently, numerous alloying techniques for Fe-Mn
with elements such as Si [23], C [24–26], Pd [27,28] and Ag [29,30] have been addressed
for accelerating the DR, for antimicrobial properties or for obtaining a new bifunctional
shape memory alloy (SMA) [31]. A biodegradable alloy with SME and superelasticity
would represent a big breakthrough for medical applications of implants due to its healing
efficiency [32] by providing real-time adjusted correction or support in minimally invasive
surgery implants [33] and crush-resistant stents [34]. Si was a contributory element in the
creation of a novel biodegradable and biocompatible alloy that also offers shape memory
properties [35]. In vitro cytotoxicity experiments by Liu et al. [36] confirmed the good
biocompatibility of Fe--Mn-Si as an SMA for potential stent use. Due to a modification in
phase composition caused by increasing Mn concentration, Drevet et al. [37] discovered
that the DRs of Fe-Mn-Si SMAs improved with higher Mn concentration, i.e., 0.48, 0.59,
and 0.80 mm·y−1 for Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively (Table 1).
Cu is an element with known antibacterial properties, combatting certain types of highly
resistant bacteria [38]. Biodegradable Fe-Mn-based alloys with Cu addition are less studied
in the scientific world, although the data provided so far show that they deserve more
attention in further research.

Mandal et al. [39] investigated Fe-Mn-Cu alloys with up to 10%wt Cu added as an
antibacterial element. They observed that Fe-25Mn-10Cu has a DR about six times higher
than Fe-35Mn (Table 1). The addition of Cu led to excellent cell viability, with a bacterici-
dal effect that recommends it for potential use in internal fracture fixation implants [39].
Ma et al. [40] investigated Fe-30Mn-1C-0.8Cu wt% alloy as a possible material for urinary
implants and obtained excellent results showing that the alloy is non-magnetic, biodegrad-
able and has antibacterial and anti-encrustation properties due to its continuous release
of Cu ions, making it a good candidate for urinary tract infections and stone treatments.
Wei et al. [41] reported the influence of different percentages of Cu (0.5, 1, 1.5 wt%) added
to the Fe-30Mn-1C system and found that the DR increased with the increase in Cu wt%
associated with the aging treatment (Table 1). Goudarzi et al. [42] investigated the Fe-35Mn
alloy with different contents from 0 to 10 wt% Cu and concluded that the compressive
strength increased continuously with the increase in Cu content, and reached the maximum
value of 203 MPa in the FeMn-10Cu alloy; the average DR was 0.27 mm/year for the FeMn-
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6Cu alloy, being five times higher than the base Fe-Mn alloy (Table 1); the improvement of
magnetic compatibility with MRI was also observed with the increased Cu content, leading
to the stabilization of the austenitic phase. Different reported DRs obtained in the corrosion
resistance study of biodegradable Fe and FeMn-based alloys in physiological solutions are
shown in Table 1.

Table 1. Reported results of Fe- and FeMn-based biodegradable alloys according to corrosion
resistance tests.

Tested Material Solution Used in
the Experiment

DR
ReferenceElectrochemical

mm/Year
Immersion
mm/Year

Pure Fe Hank’s solution 0.105 - [43]

Pure Fe Hank’s solution 0.16 - [44]

Pure Fe
SBF

0.041 0.101 (70 days)
[45]Fe-30Mn 0.899 0.028 (70 days)

Fe-30Mn SBF 0.29 0.24 (21 days) [46]

Fe-2Pd SBF - 0.025 (70 days) [47]

Fe-23Mn-5Si
Hank’s solution

0.48
- [37]Fe-26Mn-5Si 0.59

Fe-30Mn-5Si 0.80

Fe-15Mn-3Si Ringer’s solution 0.133 0.45 (3 days) [48]

Fe-14Mn-4Si-2Al Ringer’s solution 0.054 0.13 (7 days) [5]

Fe-29Mn-5Si-1Ag Ringer’s solution - 0.08 (14 days)
[49]Fe-29Mn-5Si-2Ag 0.14 (14 days)

Fe-35Mn-0Cu
Hank’s solution

0.043
- [39]Fe-34Mn-1Cu 0.032

Fe-25Mn-10Cu 0.258

Fe-30Mn-1C-0.8Cu Artificial urine solution - 0.4 (7 days)
[40]0.3 (90 days)

Fe-30Mn-1C-0.5Cu
SBF

0.04
- [41]Fe-30Mn-1C-1Cu 0.05

Fe-30Mn-1C-1.5Cu 0.05

Fe-35Mn

Hank’s solution

0.05

- [42]
FeMn-1Cu 0.06
FeMn-3Cu 0.07
FeMn-6Cu 0.27
FeMn-10Cu 0.06

In this paper, the authors propose a biodegradable material with a possible SME,
FeMnSi alloyed with Cu, for implantable medical applications, and discuss the experi-
mental results obtained from chemical, microstructural and phasic analyses, chemical and
electrochemical corrosion resistance, dynamic stress behavior and the identification of
oxides on the alloy surfaces after different immersion intervals by EDS, FTIR and nano-
FTIR analysis.

2. Materials and Methods

By melting and remelting the first ingots in a magnetic levitation induction furnace
with a cold crucible made by Fives Celes (Lautenbach, France), the Fe29Mn5Si1.5Cu and
Fe29Mn5Si2Cu (wt%) SMAs were developed from high-purity materials (99.98% electrolytic
Fe, 99.7% Mn, 99.5% Si and 99.9% electrolytic Cu). FeMnSi-1.5Cu and FeMnSi-2Cu were
used as further identifiers for the experimental alloys. The final ingots had a diameter of
18.5 mm and a height of 35–40 mm.
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Parallelepipedal samples with dimensions of 25 mm × 15 mm × 3 mm and cylindrical
samples (used as cast samples in the experiments) with a thickness of 3 mm to 4 mm
and 16–18 mm diameter were obtained. The parallelepipedal specimens underwent three
rounds of hot rolling at 1050 ◦C to achieve a thickness of 1 mm.

X-ray diffraction (XRD) studies were used for phase analysis with Expert PRO-MPD
equipment (Panalytical type, Cu anode, K-beta (Å) = 1.3923; step scan (2θ): 0.01313; time
count for step: 51 (s)). Samples (cast 3 mm × 18 mm; HR 16 mm × 10 mm × 1 mm) were
sanded on SiC sheets up to 5000 grit, and rinsed in alcohol for 60 min with ultrasound
(PRO 50 ASonic, Ultrasonic Cleaner, Beijing, China).

Hot-rolled (HR) samples cut with an electro-discharge machine (EDM) of 25 mm ×
4 mm × 1 mm were tested for DMA, prepared as described in the previous paragraph.
The FeMnSi-(1.5-2)Cu HR samples were each subjected to a heating cycle from room
temperature, i.e., 25 ◦C, to 100 ◦C, at a rate of 3 ◦C/min. During this time, the samples
were deformed by 20 µm, applying a maximum deformation force of 12 N, of which 9 N
corresponds to the dynamic part, at a frequency of 1 Hz. The experiments were performed
before and after immersing the HR plates for 30 days in SBF at 37 ◦C.

The immersion tests were performed using SBF obtained in a laboratory (1000 mL
capacity glass beaker (using a hot-plate/magnetic stirrer); Teflon-coated magnetic stirrer
+ 960 mL deionized water + 6.5456 g NaCl, vigorously stirred at RT for 3 min + 2.2682 g
NaHCO3, vigorously stirred at RT for 3 min + 0.373 g KCl, vigorously stirred at RT for
3 min + 0.1419 g Na2HPO4 vigorously stirred at RT for 3 min + heating the solution up to
36.5–37 ◦C + 0.3049 g MgCl2 × 6H2O vigorously stirred for 3 min + 9 mL of 1 M HCl solution
(added slowly with a dropper) vigorously stirred for 3 min + 0.3675 g CaCl2 × 2H2O
vigorously stirred for 3 min + 0.071 g Na2SO4 vigorously stirred for 3 min + 6.057 g Tris
[=(CH2OH)3CNH2]).

Cast (3–4 mm × 16–18 mm) and HR (16–20 mm × 8 mm × 1 mm) samples were im-
mersed in individual containers using a ratio of 2 mL/cm2 and placed in a thermostatically
sealed chamber at 37 ◦C (for 1, 7 and 14 days). The pH of the solution was registered for
the first 72 h with a Hanna HI98191 (Darmstadt, Germany) pH-meter.

For each immersion time, the DR based on the mass loss was obtained for all samples.
The samples immersed in SBF were weighed using an AS220 Partner analytical balance
(RADWAG Balances & Scales, Radom, Poland). The masses acquired after immersion
and ultrasonic rinsing were applied to obtain the DR [mm/y] according to ASTM G31-03
using the following equation (w = mass loss [g], A = sample area [cm2], t = time [h] and
ρ = density [g/cm3]) [50]:

DR =
8.76 × 104W

Atρ
(1)

Electrochemical corrosion tests were performed in an OrigaFlex01A workstation with
a three-electrode cell, with saturated calomel electrode and platinum wire as the reference
and counter electrodes, respectively. FeMnSi–Cu alloys (samples: 1 mm × 10.5 mm) with
an exposed surface area of 0.9 cm2 were used as the working electrode. SBF was used as
the working liquid. At room temperature (23 ◦C), the samples were evaluated using LP
and CP as well as electrochemical impedance spectroscopy (EIS). The OCP values were
acquired 30 min before each test. Potentiodynamic scans were conducted at a scan rate of
1 mV/s. Assessments of LP were performed at a voltage of ±250 mV relative to the OCP.
EIS was performed from 50 MHz to 103 Hz with an amplitude of ±1 mV. The EIS recording
data were fitted to equivalent circuits and analyzed using ZSimpWin 3.20 software. For
each alloy, at least three measurements were performed to ensure reproducibility.

A scattering near-field microscope (neaSCOPE, Haar, Germany) equipped with a
tunable laser was used to acquire monochromatic nano-IR images. IR radiation was focused
on a metalized tip through a parabolic mirror. The near-field optical contact between the
tip and material was manipulated using AFM in tapping mode.
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AFM was used to assess the surface morphological modification of the samples before
and after the DMA testing (HR plates: 25 mm × 4 mm × 1 mm). The surfaces were scanned
with a Si tip (PPP CTR10) with the Nanosurf EasyScan II equipment (Liestal, Switzerland).

A VegaTescan LMH II was used to investigate the structure and aspect of the alloys
before and after in vitro tests with SEM. An EDS detector (Bruker, Billerica, MA, USA,
X-Flash 6–10) was employed to examine the surface after immersion and to evaluate the
chemical composition of the compounds.

3. Experimental Results
3.1. Structural and Chemical Analysis of the Experimental Alloys

In the cast state, as shown microscopically in Figure 1a,b, the alloys reveal a dendritic
structure with large grains and compounds formed at the boundaries. Figure 1b shows the
microstructure of the 2%wt Cu sample in the initial cast state without heat treatment or
pre-stressing.
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Figure 1. SEM images of the cast alloys’ microstructures: (a) FeMnSi-1.5Cu; (b) FeMnSi-2Cu and HR;
(c) FeMnSi-1.5Cu; (d) FeMnSi-2Cu.

The chemical analysis averages confirm the high quality of the alloy processing tech-
nique in levitation furnaces. For the 1.5% Cu alloy (Table 2), lower percentages of Mn, Si
and Cu are observed in the solid solution formed, respectively, at point 2, compared to the
results obtained on the dendrites appearing in the structure, respectively, at points 1 and 3
(Figure 1a).
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Table 2. Initial chemical composition of the experimental alloys: (a) FeMnSi-1.5Cu; (b) FeMnSi-2Cu.

(a) FeMnSi-1.5Cu Fe (wt%) Mn (wt%) Si (wt%) Cu (wt%)

Point 1 56.15 34.03 5.89 1.92
Point 2 65.49 29.46 3.94 1.11
Point 3 55.87 34.04 5.69 1.73

Average 59.17 32.51 5.17 1.59

(b) FeMnSi-2Cu Fe (wt%) Mn (wt%) Si (wt%) Cu (wt%)

Point 1 55.22 35.91 5.95 2.92
Point 2 60.73 32.08 4.98 2.22
Point 3 66.40 28.41 3.81 1.38
Point 4 41.85 42.54 7.01 8.58

Average 60.78 32.13 4.91 2.17
St.dev.: Fe: ±0.18; Mn: ±0.08; Si: ±0.05; Cu: ±0.05.

On the 2% Cu sample (Table 2), points 1 and 2 are located on the solid solution and
point 3 on a zone with martensite plates lower in Mn but also in Si. The δ-ferrite, point 4 in
Figure 1b and in Table 2, shows a much higher percentage of Mn compared to the solid
solution formed and also higher percentages of Si and Cu. The differences in chemical
composition and phases favor the material degradation in smaller pieces [51,52].

The experimental materials’ XRD plots (Figure 2) support the findings from the SEM
pictures (Figure 1) and show the presence of two phases: γ-austenite as the predominant
phase and ε-martensite.
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Figure 2. XRD spectra of the alloys: (a) FeMnSi-1.5Cu and FeMnSi-2Cu and (b) detail 40–47 (2θ).

The effect of Si addition in FeMn alloys was reported by Gavriljuk et al. [53], who
showed a lower stacking fault energy of the austenite phase in Fe–Mn–Si alloys with
increasing Si content, which also favors the formation of ε-martensite.

3.2. Dynamic Mechanical Analysis (DMA)

The behavior of a HR alloy under three-point dynamic stresses was evaluated by
a DMA experiment with temperature variation from room temperature (RT) to 100 ◦C.
The stresses occurring in an implant during functioning (during walking for implants in
the lower limbs or stretching forces for the upper ones) can be simulated by mechanical–
dynamic stress at a certain frequency.

The DMA thermograms shown in Figure 3a,b illustrate a continuous decrease in
the storage modulus (E′) during heating in all samples because martensite is stiffer than
austenite, and two internal friction maxima (tanδ) associated with succeeding recoveries to
austenite γ (fcc) of martensite α′-bcc and ε-hcp, respectively [54].
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Figure 3. DMA diagrams (heat 25–100 ◦C, 1 Hz) for the HR plates before (straight line) and after
(dashed line) the immersion: (a) FeMnSi-1.5Cu (25 × 4 × 1 mm); (b) FeMnSi-2Cu (25 × 4 × 1 mm).

With regard to the FeMnSi-2Cu sample, the thermogram in Figure 3b shows a reduc-
tion in the elastic modulus in the temperature domain of 50–60 ◦C and is associated with
the specific solid-state transformations of this alloy [55,56].

Details of the surface profiles in the areas where martensite plates are present are
shown in the AFM scans in Figure 4a–d. Sample surfaces were investigated after DMA at a
frequency of 1 Hz to observe the profile evolution.
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Figure 4. AFM images (3D topography) of the HR plates before DMA testing: (a) FeMnSi-1.5Cu;
(b) FeMnSi-2Cu; and after DMA testing: (c) FeMnSi-1.5Cu; (d) FeMnSi-2Cu.

The characteristic plates of the two alloys’ surface profiles, before and after the thermo-
dynamic stress, were dimensioned by width (w) and height (h) and exhibited a tendency to
decrease in size with mechanical stress (Table 3).

Table 3. AFM results of measured martensite plates (average of 5 determinations on 5 plates for each
sample), before and after DMA testing, for FeMnSi-1.5Cu and FeMnSi-2Cu samples.

Sample Dimension Average—Before
DMA (nm) St. Dev. ± Average—After

DMA (nm) St. Dev. ±

FeMnSi-1.5Cu (1 Hz)
w 368 24.6 92 3.8
h 234 12.6 46 3.1

FeMnSi-2Cu (1 Hz)
w 200 18.6 163 13.3
h 116 6.5 71 11.5

Dimensional measurements were performed using Nanosurf Easyscan 2, version
v1-8-0-2 (Liestal, Switzerland) to quantify the impact of the 1 Hz frequency stress on
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the martensite plates. To observe the deformation tendency, five characteristic groups of
martensite plates and five parallel plates within each group were chosen for dimensioning.

The AFM images showed a slight change in the plate dimensions through refine-
ment due to the applied thermomechanical stress. The dimensional change of the plates
influences the SME [57,58] and changes the corrosion behavior of the material.

3.3. In Vitro Immersion Tests, Degradation Rates and pH Monitoring

The alloy interacts with the liquid medium (in this case, SBF) and releases positive
metal ions while retaining electrons on the metal base through the constituent phases,
particularly the inter-grain boundary elements.

During the immersion stage, a protective layer of metal oxide forms on the surface
due to chemical interactions. This leads to the passivation of the surface. In the first stage,
reactions between the electrolyte solution and the metallic material result in the release of
oxides and hydroxides, which modify the pH of the solution.

Two HR FeMnSi-1.5(2)Cu samples were immersed in SBF at 37 ◦C for 72 h and the pH
of the solution was continuously recorded minute by minute. The pH variations during
immersion are shown in Figure 5.
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1.5Cu; FeMnSi-2Cu.

When corrosion of iron-based alloys occurs, the DR is driven by the cathodic oxygen
reduction reaction [59]:

2H2O + O2 + 4e− → 4OH−, (2)

This reaction was confirmed by the pH variation in both cases (Figure 5). Further, iron
hydroxide (Fe(OH)2) or hydrating iron oxide (FeO·nH2O) are produced when metal ions
are released and react with hydroxyl ions [18]:

Fe+2 + 2OH− → Fe(OH)2, (3)

Some reaction products reached the solution within the first 10 min (600 s) of exposure.
The 2% Cu sample shows a significantly faster increase in the solution’s pH than the other
alloy, which is likely caused by the generation of a higher number of distinct phases.

The structural and chemical results obtained after various immersion intervals reveal
the behavior of the alloys in SBF and confirm the pH variation due to compound formation
over time. For example, after a 14-day immersion, no Ca-based compounds were identified
in either sample, and only slight traces of phosphorus were observed on the surface
(Table 4).
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Table 4. The chemical composition of the 3 alloys FeMnSi-(1.5-2)Cu, cast (C) and HR, after 1, 7 and
14 days (D) of immersion in SBF and after the ultrasonic cleaning (I + U).

D I + U Alloys/wt% Fe Mn Si Cu O C Cl Ca P

1

FeMnSi-1.5Cu
C 70.7 2.36 4.99 1.53 9.66 10.2 - - 0.38

HR 49.8 25.1 4.32 1.52 11.8 5.9 - 0.29 1.27

FeMnSi-2Cu
C 62.2 15.8 4.11 1.13 10.4 5.23 - - 0.99

HR 52.9 24.6 3.73 1.66 9.75 6.44 0.1 - 0.72

7

FeMnSi-1.5Cu
C 31.4 7.8 2.06 2.18 37.5 9.95 0.63 1.64 6.84

HR 32.1 8.65 0.72 0.49 36.5 8.77 3.48 2.09 7.21

FeMnSi-2Cu
C 34.3 4.18 1.41 0.13 37.6 11.8 0.8 1.44 8.34

HR 28.9 7.73 0.41 0.25 40.9 7.93 1.81 2.5 9.54

14
FeMnSi-1.5Cu

C 29.6 13.6 6.03 5.79 34.6 9.44 0.38 - -
HR 29.1 14.2 3.74 5.74 37.1 9.73 0.21 - -

FeMnSi-2Cu
C 25.6 11.8 3.9 8.8 37.6 10.9 0.46 0.6

HR 30.9 14.7 3.5 8.59 31.7 9.59 0.87 - -

EDS detector error % 0.38 0.18 0.07 0.07 2.14 0.77 0.05 0.05 0.19

St.dev.: Fe: ±0.5; Mn: ±0.35; Si: ±0.2; Cu: ±0.2; O: ±1; C: ±0.25; Cl: ±0.1; Ca: ±0.01; P: ±0.01.

The fact that there was an increase in the percentage of Cu following 14 days of
immersion, which is primarily due to a decrease in the percentage of Fe cumulated with an
increase in the percentage of O on the surface compared to the alloy’s surface after 1 day
of immersion, but a decrease in comparison to the amount of O identified after 7 days,
indicates that some of the oxides formed between 7 and 14 days have passed into the
electrolyte solution.

According to the mass losses following immersion and using the formula from Equa-
tion (1), the material DRs were determined (Table 5).

Table 5. DRs determined by each mass gain/loss of the experimental alloys: (a) FeMnSi-1.5Cu;
(b) FeMnSi-2Cu; C and HR, subjected to 1, 7 and 14 days of immersion in SBF and subsequent
ultrasonic cleaning.

(a) FeMnSi-1.5Cu
1 day 7 days 14 days

C HR C HR C HR

Initial mass (mg) 6007.4 698.2 3192.4 851 3471.6 794
Mass after

immersion (mg) 6010.2 (+2.8) 697.4 (−0.8) 3153.8 (−38.6) 858.6 (+7.6) 3436.8 (−34.8) 767.6 (−26.4)

Mass after
ultrasound (mg) 6005.9 (−1.5) 697.3 (−0.9) 3147.2 (−45.2) 844.8 (−6.2) 3434.4 (−37.2) 766.9 (−27.1)

DR (µm/year) 108 184 536 145 200 327

(b) FeMnSi-2Cu
1 day 7 days 14 days

C HR C HR C HR

Initial mass (mg) 5628.8 716.8 4886.4 977.1 6122.4 1100.5
Mass after

immersion (mg) 5629.9 (+1.1) 716.4 (−0.4) 4855.8 (−30.6) 970.3 (−6.8) 6063.8 (−58.6) 1102.7 (+2.2)

Mass after
ultrasound (mg) 5628.6 (−0.2) 716.2 (−0.6) 4850 (−36.4) 966.6 (−10.5) 6058 (−64.4) 1087 (−13.5)

DR (µm/year) 16 134 418 204 369 115

The sample areas: 1.5Cu (1 day) C = 6.8 cm2, 1.5Cu (1 day) HR = 2.4 cm2, 1.5Cu (7 days) C = 5.9 cm2, 1.5Cu
(7 days) HR = 3 cm2, 1.5Cu (14 days) C = 6.5 cm2, 1.5Cu (14 days) HR = 2.9 cm2; 2%Cu (1 day) C = 6.1 cm2, 2Cu
(1 day) HR = 2.2 cm2, 2Cu (7 days) C = 6.1 cm2, 2Cu (7 days) HR = 3.6 cm2, 2Cu (14 days) cast = 6.1 cm2, 2Cu
(14 days) HR = 4.1 cm2.
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The addition of copper to FeMnSi alloy has a role in increasing the DR in the SBF
environment compared to FeMnSi alloy [42], which encourages the addition of this alloy
with a higher number of elements.

The HR alloy, with the exception of the 7-day exposure, shows a higher DR compared
to the cast alloy, and this increase may be attributed to the internal stresses accumulated
during the rolling process or to the stress-induced martensite formation and local micro-
piles, which is also observed and desired for biodegradable Fe.

For the cast FeMnSi-2%Cu alloy, a rather low DR was obtained over the 1-day immer-
sion, probably as a result of the more resistant passivation layer formed by increasing the
percentage of Cu. After its penetration and continued contact with the electrolyte medium,
the DR increased considerably, obtaining higher values for the cast alloy compared to the
HR one.

Significant differences were obtained between the DRs with increasing Cu percentage
from 1.5% to 2%, as confirmed by the structural and chemical aspects.

Compared to the results reported by other researchers and presented in Table 1, in the
present paper, the authors obtained DRs for the cast samples close to those of the FeMnSi
alloy (i.e., 0.45 mm/year for immersion periods of 2 or 4 weeks). The HR samples showed
DRs closer to those presented for the FeMn alloys in question around 0.25 mm/year. The
distribution of chemical elements (Figure 6) after different immersion intervals indicates
generalized corrosion and the growth of a corrosion layer with cracks on the entire surface.
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Figure 6. The chemical element distribution of the samples for the initial alloys: (a) FeMnSi-1.5Cu,
(e) FeMnSi-2Cu; after 7 days immersion in SBF, HR: (b) FeMnSi-1.5Cu, (f) FeMnSi-2Cu; and af-
ter 14 days immersion in SBF, cast: (c) FeMnSi-1.5Cu, (g) FeMnSi-2Cu; HR: (d) FeMnSi-1.5Cu,
(h) FeMnSi-2Cu.

The characteristics of the cast and HR samples immersed for 1, 7 and 14 days in SBF
were investigated by SEM. All cases showed the formation and intergrowth of an oxide
layer and other reaction compounds. After 1 day of immersion, all alloy surfaces showed
traces of corrosion, possibly a little more pronounced for cast FeMnSi-1.5Cu, where pitting
was noticed (Figure 7a), which could be caused by casting defects.
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Figure 7. SEM images of the immersed samples in SBF, without DMA testing and immersed for 1, 7
and 14 days in SBF, for the cast alloys: FeMnSi-1.5Cu: (a) 1 day, (b) 7 days, (c) 14 days; FeMnSi-2Cu
(g) 1 day, (h) 7 days, (i) 14 days; and the HR alloys: FeMnSi-1.5Cu: (d) 1 day, (e) 7 days, (f) 14 days;
FeMnSi-2Cu (j) 1 day, (k) 7 days, (l) 14 days.

After 7 days of immersion (Figure 7b,e,h,k), all surfaces showed a discontinuous
porous layer of compounds whose intermittency followed the boundary distribution be-
tween the grains. After a 14-day immersion, it was noticed that the surfaces were also
covered with a more compact layer compared to the samples immersed for 7 days. No dif-
ferences were observed, at least after 1 day of immersion, between the cast and HR samples,
the material condition being an important factor for the first stage of degradation. On the
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surface, the layer is composed of micrometer-sized components, which are conglomerates
of nano-sized particles. This composition can affect degradation and elimination from
the body.

The XRD results on the corroded surfaces, presented in Figure 8, after immersion peri-
ods of 1, 7 and 14 days, show a reduction in the characteristic peaks of the alloy identified
in Figure 2 due to compounds from the corrosion layer that appeared on the surface.
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Figure 8. XRD spectra of the alloy after 0, 1, 7 and 14 days of immersion: (a) FeMnSi-2Cu and
(b) detail of the 2θ range: 40–47.5.

3.4. Electrochemical Corrosion Resistance Tests (LP and CP, EIS)

A slight increase in the electrochemical corrosion resistance of the cast alloys was
observed with increasing Cu content. The DR of metals is highly dependent on the corrosion
potential of the alloy [60]. This potential is influenced by the chemical composition of the
alloy and its constituent phases. This can be assessed by connecting the alloy to a standard
reference electrode (SRE) and measuring the potential difference.

The voltage value and sign are necessary for measuring and reporting corrosion
potentials. By increasing the percentage of Cu in the FeMnSi alloy, a decrease in the E0
potential was observed. Figure 9a shows a Tafel plot of the linear electrochemical corrosion
behavior, which corresponds to a reduction in the corrosion current caused by a slight
decrease in the corrosion rate.
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Figure 10. Electrochemical measurements of tested samples: (a) Nyquist plots, (b) Bode plots. 
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Table 6 shows the indicative corrosion rate results derived from the linear poten-
tiometry data. Even if the anodic and cathodic reactions are closer in intensity, for the
FeMnSi–1.5Cu alloy, a reduction in the anode activity was observed by increasing the
percentage of Cu to 2%.

Table 6. Electrochemical corrosion parameters (in SBF) of FeMnSi-Cu alloys.

Sample E0
mV

ba
mV

bc
mV

Rp
ohm·cm2

Jcorr
mA/cm2

Vcorr
µm/Year

FeMnSi-1.5Cu −786 92 −85 638 32.1 374
FeMnSi-2Cu −232 68 −124 847 17.37 203

The calculated DRs are closer to those reported in the literature for FeMn-1Cu alloy
(approx. 320 µm/year, Table 1) and lower than those presented for alloys with a higher
percentage of Cu, e.g., FeMn-10Cu, for which a 10-times-higher DR has been reported, for
approx. 250 µm/year where the DR significantly increased due to the different phases that
were formed by adding a higher percentage of Cu and accelerating the corrosion through
the formation of galvanic micro-piles.

The presence of a hysteresis loop is typically associated with pitting corrosion. The
size of the loop is often connected to the number of pits and their depth. Macroscopic and
microscopic analysis results (Figure 7) confirm the localized corrosion at a high rate. The
corrosion areas were merged, resulting in the transformation of localized corrosion into a
more generalized form. Although a similar current density was reached for the two alloys,
an increase in the current density from a potential of −700 mV was observed at higher
speeds for the 1.5% Cu alloy.

For each graph in Figure 10a, the Nyguist splitting consists of a semicircle corre-
sponding to the charge transfer reaction (dissolution) of the alloy against the electrolyte
solution. These diagrams are not perfect semicircles but are slightly compressed on the
imaginary axis. This compression is normally referred to as frequency dispersion and is
caused by microscopic and macroscopic surface discontinuities as inhomogeneities [18].
The approximation provided by the recorded data for a semicircle result in a charge transfer
resistance (Rct) (Table 7), which is expected to be close in value to the Rp obtained from LP
measurements (Table 6).
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Table 7. The values of the equivalent circuit for the FeMnSi-(1.5-2)Cu alloy (HR samples).
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n 0.77 0.8
Rct (ohm·cm2) 4013 138

EIS was also used to evaluate the electrochemical response of the oxide films formed
under exposure to SBF (Bode plots in Figure 10b).

3.5. Nano-FTIR Analysis of Corrosion Products

Figures 11 and 12 illustrate the oxide compounds discovered on FeMnSi–Cu alloys
after 24 h of air contact and immersion in SBF using a new nanoscale analytical method.
The nanoscale degradation process was evaluated by analyzing the surface chemicals.
During sample scanning, a Michelson interferometer was utilized in the pseudo-heterodyne
detection method to identify and analyze the scattered light peak while avoiding far-field
background scattering [61]. This allowed simultaneous capture of the AFM topography,
mechanical phase, IR absorption parameters and reflectance. The spatial resolution was
principally governed by the radius of the probe tip (20 nm), whereas the optical contrast was
determined by the local optical properties of the material under the tip and the wavelength
of the infrared light. The neaSCOPE system utilizes broadband coherent light in the
mid-infrared range from a DFG laser source (Toptica) for nano-FTIR spectroscopy [62].
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Figure 11. AFM images of the corroded FeMnSi-2Cu sample.

On the left, Figure 11 displays the scanned surface at 2 µm. The profile and com-
pounds observed on the surface were less than 100 nm. Various types of illumination were
used to display corroded areas of the surface profile. These include AFM scanning by
impinging a laser light focused on a sharp tip of the AFM, and all-optical interferometric
scanning which recovers both the amplitude and phase of light scattered from the tip and
provides a comprehensive understanding of the complex optical properties of the sample,
such as absorption and reflectance.

On the side of interest, there were primarily two types of regions: one with a compara-
tively thin coating and the other with a pretty thick layer.
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Spectra on the polished side were similar to each other, but rather different to the
spectra on the polished side of previous samples.
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4. Discussion

In a major part of the structure, the γ-austenite phase can be seen, and the average
grain size can be estimated (from 50 measurements using VegaTc version 3.5.0.0 Measuring
feature software) to be about 27 ± 4 µm. Fine plates of ε-martensite can also be observed,
which is usually more pronounced in pre-stressed samples. The identification of this phase
on unstressed samples is unexpected; however, it has also been observed in other studies,
and it is possible that this may result from internal stresses around the nanoparticles found
in this type of alloy [63]. The prestressed samples also showed twins generated during
mechanical stress (Figure 1c,d). The presence of an additional ferrite (δ-ferrite) phase,
located more precisely at the grain boundaries, was observed in the case of the 2%wt Cu
alloy and can be attributed to high-temperature residues.

Depending on the balance between ferrite-stabilizing elements (generally Cr, Si or
V, and in this case Si) and austenite-stabilizing elements (Ni, C, Mn), in this case the
increase in the percentage of Cu favored the appearance of the δ-ferrite form due to the
additional segregation of these elements. It usually occurs in a low volume fraction (less
than 2%) [17,64]. An important aspect is that the Mn concentration of 13 to 22 wt% in
Fe-Mn binary alloys promotes the formation of ε-martensite phase, whereas a Mn level
higher than 22 wt% promotes the γ-austenite formation [49]. Nevertheless, this observation
is not as substantial as expected in the case of Fe–Mn–Si alloys because of the addition of
4–5 wt% Si to the alloy. According to these data, the martensitic transformation γ → ε is
significantly more visible in Fe26Mn5Si and Fe23Mn5Si alloys than in Fe30Mn5Si alloys.
When subjected to external pressures, the elastic influence of the austenitic matrix was
identified in alloys with higher Mn concentrations. The mechanical stability of the implant
is particularly important for performing its intended function, particularly during the first
stage of implantation, when bone remodeling occurs. After the bone remodeling stage, the
period of implanted element degradation may begin. Degradation of the metal element
must occur homogeneously in smaller pieces and in the shortest possible time.
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To evaluate the mechanical behavior of the experimental alloys investigated in this
work, DMA tests were performed before and after a 14-day immersion of the plates in
SBF. The viscoelastic properties of the materials as a function of temperature variation,
immersion time in SBF, and frequency (1 Hz) did not change for any of the two alloys.
However, despite the short immersion period, the specimens showed a high degree of
surface corrosion (Figures 6–8) which may affect the mechanical behavior of the speci-
men under external loads. For a more precise assessment of the mechanical property
evolution over the entire degradation period, further tests are required. Both alloys show
similar tendencies of elastic modulus evolution with temperature. More recent stud-
ies have reported cross-correlated variations in the storage modulus and magnetization
dung heating. Mocanu et al. [65] observed that the occurrence of the first tanδ maximum
around 50 ◦C could be a composed effect from the superposition of the inverse martensitic
ε-(bcc) → γ (fcc) transformation and the antiferromagnetic → paramagnetic transition
at Néel temperature (NT) [66]. Further heating of the alloys to the initial state showed
a decrease in the tand factor, especially for the 2%wt Cu alloy, associated with the me-
chanical energy dissipation capacity of the alloy [67] due to the partial transformation of
the martensite.

After the immersion process of 14 days, in both cases, the same tendencies for a slight
decrease in the elastic modulus with increasing temperature (the dotted lines in Figure 3a,b)
and an increase in the dissipation capacity of the alloy with heating were observed. In
contrast to the sample containing only 1.5% Cu, increasing the proportion of Cu influenced
the change in the elastic modulus over temperature by more martensite transitioning
into austenite.

The behavior of the experimental alloys in SBF was analyzed by immersing the samples
at 37 ◦C and then maintaining them for 1, 7 and 14 days. The samples were flipped from
side to side every 12 h for exposure for equal periods of time. For the results of the chemical
analysis, the EDS technique was followed.

The metal surfaces were analyzed after the mentioned immersion intervals and are
shown in Table 4. The results show surface oxidation after immersion and an increase
in the percentage of O with increasing maintenance of the sample in the solution. In
addition to oxygen, other chemical elements such as calcium and phosphorus due to
natrium phosphate, calcium chloride, or carbon and chlorine were identified.

XRD results from the alloys’ surfaces after immersion periods confirmed the corrosion
process starting from day one, after which immersion peaks of FeOOH, MnOOH, FeCO3,
MnCO3 and CaCO3 can be observed [68]. The presence of ε-martensite phase (Figure 8b) in-
creases the degradation rate of the material, forming micro-piles between material different
phase constituents.

The polarization resistance (Rp) measured from the LP experiments was found to be
only slightly different for the two alloys. This increase in polarization resistance can be
attributed to the appearance of the δ-phase at the grain boundary for the 2%wt Cu sample.
The corrosion current density decreases with increasing Cu percentage from 1.5% to 2%,
indicating that the passive layer formed by oxidation on the surface is more stable at higher
Cu percentages. CP tests (Figure 9b) are commonly used to assess the susceptibility of an
alloy to pitting corrosion in an electrolyte solution. The potential was altered in just one
cycle, and the size of the hysteresis loop was studied in connection with the values of the
OCP and the passivation potential on the return junction, which indicated a generalized
corrosion pattern for the two alloys.

As mentioned in the experimental section, EIS measurements were performed in the
passivity region every 50 mV by an anodic potential sweep. In Figure 10, the Bode varia-
tions for the two alloys are plotted to illustrate the impedance evolution with increasing
frequency. The general pattern is the same for both samples and features an increase in
impedance with increasing process frequency, which can be correlated with a gradual
thickening of the oxide film from the alloy surface. The obtained spectra were modeled
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using the equivalent electrical circuit shown in Table 7, which comprises an array with an
Rct element.

A good accordance between the experimental and figured data can be observed from
the graph shown in Figure 10b. In this model, Rs represents the resistance of the electrolyte
solution, and the high-frequency time constant Rct-CPE is related to the charge transfer
resistance and double-layer capacitance at the oxide–electrolyte layer interface. Given
the semiconducting nature of the film formed from Fe and Mn oxides in general and
with a slight influence of Si and Cu, the double-layer capacitance should incorporate the
contributions of the space charge capacitance, CSC, and the Helmholtz layer capacitance,
CH, so that the overall CPE can figure as a combination of these two components in series.
For this circuit, a low-frequency time constant can be added that can be correlated with
redox processes in the oxide layer. Since the initial increase indicates a reduction of redox
activity, probably because as the film thickness increases, it adopts a more corrosion-stable
structure, the introduction into the fission circuit was discarded [61].

A broad band can be observed around 1100 cm−1, which was the strongest at points
with less material and also in the thick layer (top spectra). We observed several features;
most of them were repeatedly observed in several spectra. Such features are marked
roughly with colored circles. Note that not all the spectra within the circles always showed
the specific feature. At 1382 and 1637 cm−1, the presence of copper oxide can be considered
to appear in the oxide layer formed on the surface [62]. Aside from the thick layer spectra,
a significant and distinct band at about 1100 cm−1 (indicated with a blue circle) was noticed
and has three possible hypotheses: the presence of SiO2, a carbonate compound or the
presence of a C-O-C functional group [69].

A spectrum particle with a strong and broad band, shown in Figure 12 (similar to
phonon absorption of oxides), was discovered on the thin layer, indicating the presence
of a common inorganic ion such as CO3

2− (results presented in Table 4). Simultaneously,
Veneranda et al. found the compound goethite (α-FeOOH) at 798 cm−1, which was more
likely to cover the entire surface of the material [70,71]. In the thick layer, two particles
with a definite peak were detected at roughly 1590 cm−1. The spectra are rather noisy
because the near-field amplitude of these particles is relatively small. Su et al. discovered
the presence of COO− at the 1590 cm−1 peak, which can potentially be assigned to the
carboxylate group [72,73].

5. Conclusions

From a general standpoint, adding Cu to FeMnSi alloy is favorable for its antimicrobial
effect, as well as for improving the SME, workability and corrosion resistance of these alloys.

Cu addition to FeMnSi alloy can influence the DR in two aspects: it can reduce the
corrosion process by contributing to surface stabilization through the copper oxides it
forms, or it can increase the DR by separating it at the grain boundaries or in certain phases
and intermetallic compounds that contribute to the formation of galvanic microstacks
inside the solid solution composed from the main elements, namely Fe, Mn and Si. It
is probable that these processes will participate to varying degrees during the duration
of the alloy’s contact with the electrolyte solution, depending on which factors are more
favorable. No significant changes in mechanical properties were observed after 14 days of
immersion. Nano-sized corrosion traces were found on the surface after 24 h of contact
with an electrolyte solution.
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