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Abstract: Lithium niobate is a lead-free material which has attracted considerable attention due
to its excellent optical, piezoelectric, and ferroelectric properties. This research is devoted to the
synthesis through an innovative sol–gel/spin-coating approach of polycrystalline LiNbO3 films on Si
substrates. A novel single-source hetero-bimetallic precursor containing lithium and niobium was
synthesized and applied to the sol–gel synthesis. The structural, compositional, and thermal charac-
teristics of the precursor have been tested through attenuated total reflection, X-ray photoelectron
spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The LiNbO3 films
have been characterized from a structural point of view with combined X-ray diffraction and Raman
spectroscopy. Field-emission scanning electron microscopy, energy dispersive X-ray analysis, and
X-ray photoelectron spectroscopy have been used to study the morphological and compositional
properties of the deposited films.

Keywords: LiNbO3 porous films; sol–gel deposition; X-ray diffraction; lithium ion batteries

1. Introduction

The broad range of applications offered by ferroelectric and piezoelectric materials
has generated significant interest in sensors, actuators, memories, and acoustic and optical
devices. Recently, such increased attention can be attributed to the rising demand for
exceptional materials in diverse fields, including microelectronics, integrated photonic
circuits, surface acoustics, and catalysis. Lithium niobate (LiNbO3—LN), among several
other alternatives, has emerged as a crucial component in the advancement of optical
and acoustic technologies for its excellent pyroelectric, ferroelectric, nonlinear optical,
electro-optical, and piezoelectric properties [1,2]. When lithium niobate is in its ferroelectric
state (below its Curie temperature of 1483 K), its structure is composed of oxygen atoms
arranged in a distorted hexagonal closed packed configuration. In the structure, the
octahedral holes are alternatively filled by Li atoms, Nb atoms, or vacancies. The cations
are slightly off-center along the z-axis within the oxygen cages or within an oxygen plane
rather than precisely centered, resulting in the spontaneous polarization of LiNbO3 along
this same axis [3,4]. LN has played a crucial role in the development of non-linear optics
and electro-optic devices as a bulk single crystal [5,6]. The molar ratio of Li to Nb in the
LN phase, the presence of impurities, and the quantity of vacancies and antisites in the
cation sublattice are the main factors affecting the physical and structural properties of
LiNbO3 [7]. In fact, the congruent composition of LN is nonstoichiometric (48.38 mol%
Li2O) [8]. Therefore, a more elaborate growth process is required for the development
of a stoichiometric single crystal of LN than the well-known Czochralski process used

Nanomaterials 2024, 14, 345. https://doi.org/10.3390/nano14040345 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano14040345
https://doi.org/10.3390/nano14040345
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-0746-2956
https://orcid.org/0000-0001-5382-8205
https://orcid.org/0000-0003-1977-1721
https://orcid.org/0000-0001-6106-8875
https://orcid.org/0000-0002-8862-2669
https://orcid.org/0000-0001-7483-3070
https://doi.org/10.3390/nano14040345
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano14040345?type=check_update&version=1


Nanomaterials 2024, 14, 345 2 of 16

for congruent LN single crystal growth [9,10]. The potential for developing LiNbO3 thin
films is of particular interest for integrated and miniaturized devices such as optical filters,
optical waveguides or modulators, and reduced control voltage [6,11,12]. In fact, epitaxial
thin films of LN have found applications in various devices so far, including optical
switches [13], photonic crystals [14], solid-state batteries [15], surface acoustic wave (SAW)
and bulk acoustic wave (BAW) devices [16–18], and quantum memories [19]. In addition, it
has been reported that incorporating LiNbO3 layers into lithium ion battery (LIB) systems
might enhance their stability, mitigate unwanted reactions, and facilitate the transfer of
lithium across surfaces [20,21]. Thus, the research on LIBs has been primarily focused
on defects and nanoscale entities, including mesoporous materials, nanoparticles, and
nanoplates [22–25]. Therefore, while optical technologies have been known to use LiNbO3
single crystals or epitaxial films, polycrystalline or amorphous-based LiNbO3 layers are
needed for applications in LIBs, being positioned at the electrode/electrolyte interface to
optimize the interface characteristics of solid-state LIBs for industrial applications.

Another added value of the LiNbO3 phase is that, together with other materials such
as (K,Na)NbO3 [26,27] and BiFeO3 [28,29] phases, it is a lead-free material [30]. The signifi-
cant attention garnered by lead-free (K,Na)NbO3 arises from its exceptional ferroelectric,
dielectric, and piezoelectric features, which are comparable to most lead-based piezoelec-
tric materials [31,32]. In addition, together with its remarkable transparency in the visible
spectrum and luminescence potential, (K,Na)NbO3 is a promising material for use in light
emitters, optoelectronics, and opto-electronic sensors [33]. On the other hand, the inorganic
BiFeO3 perovskite is widely known for its multiferroic properties, possessing both ferro-
electric and antiferromagnetic characteristics [34,35]. Apart from these two features, BiFeO3
has attracted attention because of its outstanding properties such as strong magnetoelectric
coupling, high spontaneous polarization, and high Curie temperature [36,37]. In addition,
the piezo-enhanced photocatalytic activity of BiFeO3 based composites has recently been
shown [38]. These properties imply that there is a great deal of potential for several uses.

Concerning the methods employed thus far to deposit thin films of LiNbO3, the most
commonly utilized techniques include liquid phase epitaxy (LPE) [39], chemical beam vapor
deposition [40], metalorganic chemical vapor deposition (MOCVD) [16,41–44], pulsed layer
deposition (PLD) [45,46], molecular beam epitaxy (MBE) [47,48], RF sputtering [49–51],
atomic layer deposition (ALD) [52,53], and sol–gel deposition [54,55]. In the early 1990s,
Nashimoto et al. reported the sol–gel deposition of epitaxial LN films from lithium ethoxide
and niobium pentaethoxide with varying water contents on sapphire substrates [56]. They
discovered that films made from solutions that had not been pre-hydrolyzed showed
epitaxial growth on sapphire, but adding water to promote the sol hydrolysis favored the
creation of a random microstructure [56]. Other research groups have recently proposed
a promising method for the deposition of high-quality LiNbO3 using a combination of
Li2CO3, Nb2O5, ethylene glycol, and citric acid and employing spin-coating to deposit the
LiNbO3 nanostructures [57]. Structural data revealed that the nanostructured LN exhibited
a polycrystalline nature, resulting in poor optical characteristics [57]. Actually, the sol–gel
deposition method offers a number of significant advantages, such as the capacity to operate
at low temperatures, the ability to precisely manage composition at the molecular level, and
a guarantee of atomic homogeneity and purity of the final product. Indeed, the selection
of appropriate molecular precursors is crucial in the sol–gel synthesis, particularly for
multi-component systems like LiNbO3 [58]. To create sols with a high degree of uniformity,
it is essential to select the right molecular precursors. This selection ensures that clusters
of molecules in the solution cross-link favoring the process of gelation, while avoiding
unfavorable processes such as precipitation [59]. The metal alkoxides of Nb(OC2H5)5 and
LiOC2H5 have been the most frequently employed precursors for the deposition of LiNbO3
thin films [60,61].

Very few lithium precursors are known for LN deposition techniques using the va-
por phase, such as MOCVD or ALD, or from solutions, such as sol–gel deposition. The
vapor pressure of known organometallic Li precursors is typically low. Research on the
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coordination of new β-diketonate Li precursors with polyether has been recently pub-
lished [62]. Engineering the coordination sphere of Li+ ions has led to the synthesis of
intriguing compounds with desirable functional characteristics for use in LiNbO3 deposi-
tion approaches. Preliminary deposition studies have been applied to the fabrication of
epitaxial LiNbO3 films on sapphire substrates through a pulsed injection MOCVD reactor
utilizing [Li12(hfa)12monoglyme•4H2O]n and Nb(tmhd)4 in a 2:1 Li/Nb ratio [62].

In the production of thin films composed of multiple elements, it would be a great
advantage to employ a single precursor that incorporates all the necessary elements in the
desired stoichiometry for the growth of the final product. Recently, sodium and rare earth
(RE) heterobimetallic complexes have been synthesized and used to deposit NaREF4 films
using chemical vapor deposition [63]. These “third-generation” precursors have proven to
be volatile, thermally stable, and capable of concurrently supplying every element required
for the desired phase.

Thus, producing a single bimetallic precursor that contains all necessary components
(Li, Nb, and O) would ensure better monitoring of all process variables and greater atomic
uniformity, reduce the occurrence of undesirable contaminants, and improve control over
the production process. In fact, the use of LN thin films is still severely constrained by the
challenge of regulating the mix of components.

To ensure the stoichiometric composition of LiNbO3 films, we here present an ex-
tensive investigation on the synthesis of a multi-metal precursor that combines Li and
Nb elements in the same molecule. This innovative single hetero-bimetallic precursor
has the formula “Li2Nb(hfa)7•diglyme•xH2O” and simultaneously supplies all the ele-
ments required for the target phase, namely, two metal ions and oxygen. The structural,
compositional, and thermal characteristics of “Li2Nb(hfa)7•diglyme•xH2O” have been
tested through attenuated total reflection Fourier transform infrared spectroscopy (ATR-
FTIR), energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS),
thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Subse-
quently, a unique sol–gel/spin-coating method has been used to produce polycrystalline
LN thin films, using this innovative heterobimetallic fluorinated β-diketonate precursor,
for potential applications in lithium ion batteries [20].

The polycrystalline LiNbO3 thin films have been characterized from a structural point
of view with a combined XRD/Raman study and from morphological and compositional
points of view with field-emission scanning electron microscope (FE-SEM), energy disper-
sive X-ray (EDX) analysis, and X-ray photoelectron spectroscopy.

2. Materials and Methods
2.1. Starting Materials

Lithium hydroxide (LiOH), niobium pentachloride (NbCl5), and 1,1,1,5,5,5-hexafluoro-
2,4-pentanedione (H-hfa) were purchased from Strem Chemicals Inc. Bischheim (France)
and were used without other purifications. Diglyme [bis(2-methoxyethyl)ether] and
dichloromethane (CH2Cl2) were purchased from Sigma Aldrich (Merck KGaA, Darm-
stadt, Germany).

2.2. Synthesis of “Li2Nb(hfa)7•diglyme•xH2O”

The NbCl5 (0.312 g, 1.2 mmol) was first suspended in dichloromethane (40 mL). An
excess of LiOH (0.771 g, 12.4 mmol) and diglyme (0.158 g, 1.2 mmol) were added to the
suspension. Hhfa (1.74 g, 8.4 mmol) was added after 10 min, and the mixture was refluxed
under stirring conditions for 1 h. The excess of LiOH was filtered out. After the solvent
partially evaporated, the light-yellow colorless crystals formed. The crystals were collected,
cleaned with pentane, filtered, and dried in air. The reaction yield was 66%. The melting
point of the product was 69–78 ◦C.
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2.3. Characterization of the Precursor

The attenuated total reflection infrared spectrum was recorded using a Spectrum Two
FT-IR PerkinElmer spectrometer (PerkinElmer, Milano, Italy). Thermogravimetric analyses
were conducted using Mettler Toledo TGA2 (Mettler-Toledo S.p.A., Milano, Italy) and
STARe software. Dynamic thermal studies were performed under 50 sccm pure nitrogen
flow conditions, at atmospheric pressure, and with a heating rate of 5 ◦C/min. The sample
weight was around 10 mg. Differential scanning calorimetry analyses were carried out
using a Mettler Toledo Star System DSC 3 (Mettler-Toledo S.p.A., Milano, Italy) under
purified nitrogen flow conditions (50 sccm) at atmospheric pressure with a 5 ◦C/min
heating rate. X-ray photoelectron spectroscopy (XPS) was carried out using a PHI 5600
multi-technique ESCA Auger spectrometer (Physical electronics Inc., Chanhassen, MN,
USA) equipped with a standard Mg-Kα X-ray source. The XPS binding energy (BE) scale
was calibrated using the C 1 s peak of adventitious carbon at 285.0 eV.

2.4. Sol–Gel Deposition

The sol–gel reaction occurred in the ethanol/water solution of “Li2Nb(hfa)7•diglyme•xH2O”
single precursor. For the sol hydrolysis, the following molar ratio of precursor, solvent and
catalyst was used: “Li2Nb(hfa)7•diglyme•xH2O”/87 C2H5OH/3H2O/0.8 CF3COOH. The
sol was spin-coated on 1 cm × 1 cm Si (100) substrates after stirring it at 60 ◦C for 20 h.
A SPIN-150 spin-coater (SPS Europe, Putten, The Netherlands) was used to perform the
spin-coating operation with an acceleration of 1000 RPM/sec and a speed of 3000 RPM
(revolutions per minute). In more detail, the sample was heated in air for 10 min at 350 ◦C
after each 60 s spin of 0.2 mL of the gel on the substrate. A final annealing procedure at
temperatures between 600 ◦C and 800 ◦C was carried out for one hour in air. A computer-
controlled hardware setup and K-type thermocouples with a ±1 ◦C precision was used to
monitor the temperature during the whole heating procedure.

2.5. Film Characterization

A Smartlab Rigaku diffractometer (Rigaku, Tokyo, Japan) with a Cu Kα radiation
rotating anode at 45 kV and 200 mA was used for structural analysis. The patterns were
recorded in grazing incident mode (0.5◦) with a 0.02◦ step resolution across a range of 15 to
60 degrees. Film morphology was observed by field-emission scanning electron microscopy
using a ZEISS SUPRA VP 55 microscope (ZEISS, Jena, Germany). The EDX spectra were
recorded using an INCA-Oxford detector (Oxford Instruments, Abingdon, UK), having a
resolution of 127 eV as the FWHM of the Mn Kα. Non-polarized Raman measurements
were collected by using an S&I MonoVista Raman spectrometer (Spectroscopy & Imaging
GmbH, Warstein, Germany) with excitation at 532 nm using an objective with ×100 magni-
fication, resulting in an analyzed area with a diameter of 1 µm. For comparison purposes,
stoichiometric LiNbO3 powder was prepared using Li2CO3 (99.9%) and Nb2O5 (99.9%)
with molar ratios of 50% as starting chemicals. To eliminate moisture, the Li2CO3 was dried
for 16 h at 250 ◦C. The powders were mixed, milled, and sintered for 120 h at 1000 ◦C. XPS
characterization was carried out using the same instrument and conditions reported in the
section of precursor characterization.

3. Results and Discussion
3.1. Heterobimetallic Li-Nb Single-Source

In order to achieve the precise stoichiometric balance in LiNbO3 films, we have
effectively synthesized a multi-metal precursor by combining Li and Nb elements within a
single molecule. The resulting innovative single hetero-bimetallic precursor, having the
formula “Li2Nb(hfa)7•diglyme•H2O”, represents the first case of a Li-Nb metalorganic
compound. This novel type of precursor provides all the essential metal elements required
for the desired phase while maintaining suited properties for their application in the
fabrication of LiNbO3 films. The formation of this multi-metal complex was achieved
through a one-pot reaction, where LiOH, NbCl5, hexafluoroacetylacetone, and diglyme
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were mixed in dichloromethane. A LiOH/NbCl5/Hhfa/diglyme stoichiometry of 7:1:7:1
was used following the reaction:

7 LiOH + NbCl5 + 7 Hhfa + diglyme → [Li2Nb(hfa)7•diglyme•xH2O] + 5LiCl + H2O

To determine the structural nature of the adduct, numerous attempts were made to
grow single crystals, but unfortunately all the single crystals were twinned. Thus, the
complex nature has been investigated through FT-IR spectroscopy, XPS, DSC analysis, and
melting point measurements. The 2:1 Li/Nb ratio of the precursor determined through XPS
(vide infra), though different from that present in the LiNbO3 phase, is actually an added
value considering that usually a nominal composition of the 2Li/1Nb ratio is needed in
order to produce stoichiometric LiNbO3 phase films, due to the volatility of the Li2O phase.

The transmittance spectrum obtained from ATR-FTIR analysis of the complex, as
depicted in Figure 1, reveals the presence of a small peak around 3600 cm−1 [64]. This
peak is indicative of stretching vibrations related to --OH groups, implying the presence
of a small number of water molecules within the coordination sphere of the complex. In
the adduct, the presence of peaks at 1656 and 1544 cm−1 corresponds to the stretching
vibrations of C=O and C=C bonds, respectively [62]. These peaks are characteristic of the
β-diketonate framework, and the peak shifts compared to the position of the free ligand
(C=O and C=C bonds at 1690 and 1630 cm−1, respectively) confirm the coordination of the
hfa ligand, indicating the complex formation. The peaks detected in the range of 1000−1250
cm−1 exhibit characteristics typical of polyether C−O−C bending and/or stretching, which
are combined with the features of C−F stretching of the anionic ligand [64,65].
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Figure 1. Comparison between the ATR/FT-IR spectrum of the “[Li2Nb(hfa)7•diglyme•xH2O]”
adduct (black line) and the Hhfa neat sample (red line) (a) and an enlarged region between 1000 cm−1

and 1800 cm−1 (b).

Investigating the thermal properties of the adduct is an essential aspect in ensuring
its effective application in vapor or solution processes. To this end, differential scanning
calorimetry (DSC) analysis and thermogravimetric (TG) measurements were conducted
under atmospheric pressure, using purified nitrogen as flowing gas. Figure 2a illustrates
the DSC curve for the “[Li2Nb(hfa)7•diglyme•xH2O]” sample. The adduct demonstrates a
well-defined melting point at 79.2 ◦C, which aligns closely with the melting point observed
using a Kofler microscope. Following the melting, the precursor initiates decomposition
within the temperature range of 285–295 ◦C, as supported by the presence of an exothermic
band within this range. The TG curve shown in Figure 2b displays two distinct weight
loss steps. The first step, resulting in a 20% mass loss, occurs within the temperature range
of 105 ◦C to 180 ◦C. The second weight loss step, occurring between 240 ◦C and 295 ◦C,
is primarily attributed to the decomposition of the precursor, resulting in a residue of
24%. According to this finding, such a heterobimetallic precursor does not possess good
mass-transport properties for the conventional MOCVD approach, but it is expected to
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work well for the deposition of LiNbO3 thin films through solution processes, either sol–gel
or solution-assisted MOCVD.
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Subsequently, the complex powders have been characterized by means of EDX and
XPS techniques to accurately evaluate the presence and quantification of the different
elements within the structure. Figure 3a shows the EDX spectrum, which reveals the
presence of the Nb Lα peak at around 2.2 KeV. The F Kα, O Kα, and C Kα elements are
also confirmed by the presence of peaks at 0.69 KeV, 0.52 KeV, and 0.28 KeV, respectively,
due to the hfa and diglyme ligand. A small peak at 2.6 keV is due to the Kα peak of Cl,
present as an impurity arising from the NbCl5 reagent. It should be emphasized that special
consideration was not paid to their quantitative analysis, since the quantification of light
elements is highly critical, especially in this case of an insulating powder sample.
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adduct.

Moreover, given the lightweight nature of lithium, it becomes essential to employ sup-
plementary characterization techniques like XPS analysis to gain comprehensive insights
into the nature of the complex under investigation. The spectral region shown in Figure 3b
indicates the presence of Nb 4s at 60.1 eV and Li 1s at 55.5 eV.

The chemical composition obtained from the XPS analysis is presented in Table 1.
Based on the quantitative analysis, it is evident that both lithium and niobium are present
in the precursor structure. The ratio of these two elements is approximately 2Li/1Nb.
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This ratio implies the existence of an adduct with twice as much lithium as niobium. The
sample survey spectrum is reported in Figure S1a, while the binding energy regions of all
other elements forming the precursor’s structure, i.e., Nb 3d, O1s, C1s, Li 1s, and F1s, are
reported in Figure S1b.

Table 1. XPS quantitative analysis of the “[Li2Nb(hfa)7•diglyme•xH2O]” adduct.

XPS Quantitative Analysis

Li 1s Nb 3d C 1s F 1s O 1s Cl 2p

4.3 2.1 32.5 42.0 18.9 0.1

3.2. Sol–Gel Synthesis of LiNbO3 Films from the Single Li-Nb Precursor

The “[Li2Nb(hfa)7•diglyme•xH2O]” heterobimetallic adduct has been confirmed to
be a reliable single source of Li and Nb elements by using it in the sol–gel synthesis of
lithium niobate films on silicon substrates. The stoichiometric ratio of 2Li/1Nb, though
different from that observed in the LiNbO3 phase, is actually an advantage since usually
a higher amount of lithium precursor is needed to produce the LN films with the correct
ratio, considering that usually a more lithium-rich mixture is used in the pulsed injection
metalorganic vapor phase deposition to produce single-phase LN films due to the lithium
oxide volatility. Each experiment has been duplicated two or three times to guarantee the
consistency and reproducibility of the methodology. In this particular process, ethanol has
been used as the solvent to dissolve the precursor, while trifluoroacetic acid (CF3COOH)
has been employed as the catalyst for sol hydrolysis. The molar ratios of the precursors,
solvent, and catalyst are provided below:

“[Li2Nb(hfa)7•diglyme•xH2O]”/87 Et-OH/3 H2O/0.8 CF3COOH

After being aged at 60 ◦C for 20 h, the sol has been spun onto Si (100) substrates.
According to published studies, annealing temperatures ranging from 600 ◦C to 800 ◦C
have been investigated (see Scheme 1) [14,66].
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Scheme 1. Scheme of the sol–gel process of LiNbO3 films.

The grazing incidence X-ray diffraction (GIXRD) patterns, depicted in Figure 4, illus-
trate the variations in LiNbO3 thin films formed on silicon substrates through annealing at
different temperatures. Indeed, the analysis of diffraction patterns confirms the formation
of polycrystalline LiNbO3 phase films across the temperature range of 600–800 ◦C, with an
increase in crystallization starting between 600 and 700 ◦C, as confirmed through Raman
measurements. These patterns exhibit distinct diffraction peaks at specific 2θ values, in-
cluding 23.72◦, 32.74◦, 34.84◦, 38.98◦, 40.04◦, 48.5◦, 53.3◦, 56.12◦, and 57.06◦. These peaks
correspond to the characteristic reflections of the LiNbO3 trigonal phase, specifically the
012, 104, 110, 006, 113, 024, 116, 122, and 018 reflections, respectively, as documented in
the ICDD database (PDF no. 074-2239). The relative intensities of the peaks observed
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in these patterns are well aligned with the reported values of the ICDD database, sug-
gesting that there is no preferential direction of growth. Unfortunately, there are a few
extra peaks at 19.70◦, 25.60◦, 26.70◦, 39.22◦, 43.52◦, and 52.40◦, visible in the patterns and
indicated with red stars, which are related to an impurity phase likely due to Li and/or Nb
containing systems.
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To gain further insights, additional characterizations were conducted. Specifically, a
Raman study was performed on the samples deposited on silicon substrates and annealed
at 600 ◦C, 700 ◦C, and 800 ◦C. It is known that the LiNbO3 crystal belongs to the R3c
space group (Z = 2) at room temperature with 4A1 + 9E + 5A2 optical modes. Only
the A1 and E modes are Raman-active [67]. We investigated how different annealing
temperatures influenced the Raman spectra, as presented in Figure 5a. The Raman spectra
of synthesized polycrystalline films were compared to that of stoichiometric LN powder
Raman modes and identified according to the assignment given in Ref. [67]. Notably, the
phonon modes observed in the film spectra closely resemble the equivalent modes observed
for stoichiometric LiNbO3 powders. No additional modes were observed, indicating that
the film is composed mainly of a single LiNbO3 phase and that the additional impurity
phase, observed in XRD patterns, could be segregated locally [68]. In fact, while micro-
Raman spectroscopy is a punctual analysis with a much smaller analyzed area, the XRD
measurement in grazing incidence analyzes a large area of the films. The wavenumbers
of observed modes with highest intensity were compared to those reported for the single
crystals (Table 2). It is important to note that fundamental Raman modes are present
together with quasi-/oblique modes due to angular dispersion of crystallite orientation in
LN polycrystalline samples [69]. This introduces the mode wavenumber deviation from
those observed in the single crystal samples. Nevertheless, the mode wavenumbers remain
relatively close to those measured for single crystals and agree very well with the measured
intensity ratios and the wavenumbers of the Raman modes in the stoichiometric LN powder.
It is known that the E(6TO) mode is particularly sensitive to the residual stresses in the LN
films [70]. The films sintered at 700 ◦C and 800 ◦C present the E(6TO) mode with a very
close wavenumber to that of stress-free powders. This indicates minimal mechanical stress
within the films. One can note that LN films crystallized at 600 ◦C present less defined
Raman mode profiles, indicating lower crystalline quality/higher defect concentration than
films annealed at 700–800 ◦C. The widths/dampings of Raman modes are dependent on the
defect concentration, including nonstoichiometry and other crystalline defects in the LN
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structure [67,70]. Therefore, E(1TO) mode profiles of sintered films at different temperatures
were compared to this mode profile in powders sintered at 1000 ◦C (Figure 5b). The increase
in the annealing temperature considerably ameliorates the crystalline quality of the films.
We would like to stress that the broader Raman modes can also be related to the deviation
from the stoichiometric Li composition as well as different oblique mode profiles (Figure 5b)
related to the different local distribution of crystallite orientation.
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Table 2. Comparison of the Raman modes of the sol–gel grown LN films and literature data.

Raman Modes

E Modes Our Work (cm−1) Ref. [67] (cm−1)

1TO 153 155

2TO-2LO 239 240–241

3TO 262 265

4TO 322 322

6TO 368 370

7TO 434 433

8TO 583 579

A1 modes

1LO-2TO 277 275–276

2LO-3TO 335 334

4TO 624 632

The powders normally present larger grains than submicrometer grains in thin films,
vide infra, and this results in less pronounced oblique mode dispersion in powders than in
the thin films.

Compositional EDX analysis of the LN films deposited at different temperatures con-
firmed the presence of a phase free of C or F impurities, since only the peaks corresponding
to Nb and O were present at 2.19 KeV and 0.53 KeV, respectively.
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XPS quantitative analysis confirms a stoichiometric ratio of Li/Nb close to 1:1. The
accuracy of XPS in Li concentration was found to be 20% [71]. The presence of C is
attributed to adventitious contamination, while the low percentage of F suggests some
fluorine contamination from the β-diketonate ligands (as shown in Table 3). In the region
reported in Figure 6, we observe the presence of Nb 4s at 60.2 eV and Li 1s at 54.7 eV, in
accordance with literature data [40]. For the quantitative evaluation, a Gaussian shape was
used for the Li 1s peak, while an asymmetric Gaussian–Lorentzian shape was used for the
Nb 4s peak [72,73]. The sample survey spectrum and spectra of additional elements that
form the LiNbO3 phase are reported in Figure S2a and Figure S2b, respectively.

Table 3. Quantitative analysis of LN films.

Element Atomic Percentage

C 1s 15.8%

O 1s 49%

F 1s 6.6%

Nb 3d 11.2%

Li 1s 13.3%

Si 2p 4.1%
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The morphology of the samples deposited at various temperatures has been examined
using FE-SEM microscopy, as illustrated in Figure 7. The observed morphology exhibits
characteristic features consistent with sol–gel deposition, displaying a highly wrinkled
structure accompanied by small-sized grains. However, as the temperature is increased, a
significant transformation becomes evident. In fact, upon increasing the temperature from
600 ◦C to 800 ◦C, a noticeable increase in crystallinity becomes apparent in the morphology
of the LN films deposited on Si substrate: the individual grains become more distinct
and well-defined, leading to a crystallinity enhancement in the overall surface structure.
Specifically, the grains exhibit a pronounced increase in both granularity and definition:
at 600 ◦C, rounded grains of the order of 100 nm are observed; at 700 ◦C more defined
grains with dimensions around 200–300 nm are found; while at 800 ◦C, the film shows
cubic grains ranging from 200 to 500 nm.
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Figure 7. FE-SEM and cross-sectional images of LN films annealed at 600 ◦C, 700 ◦C, and 800 ◦C.

The cross-sectional images provide a comprehensive overview of the films deposited
on Si substrates, illustrating the variations in film thickness at different deposition tem-
peratures. Upon analysis, it has been observed that the films treated at 600 ◦C exhibited
a thickness of 1.4 ± 0.03 µm. As the deposition temperature increased to 700 ◦C, the film
thickness decreased to 1.0 ± 0.3 µm. Furthermore, the films deposited at 800 ◦C demon-
strated a thickness of 970 ± 80 nm. This observation establishes a clear dependence of film
thickness on the treatment temperature. Notably, an increase in temperature resulted in a
slight reduction in film thickness, indicating a trend towards enhanced film compactness.
As the temperature rose, the film structure appeared to become more tightly packed, lead-
ing to a thinner overall thickness. This correlation between treatment temperature and
film thickness highlights the importance of temperature control in achieving desired film
properties and characteristics.

3.3. Sol–Gel Synthesis of LiNbO3 Films from Individual Precursors

As a parallel investigation into the synthesis of LiNbO3 films, sol–gel/spin-coating
experiments have been conducted using individual precursors for lithium and niobium.
Specifically, the [Li2(hfa)2•diglyme•H2O] [62] and Nb(tmhd)4 precursors, which have been
previously reported in the literature, have been used. This comparison aimed to determine
whether similar results could be achieved using these individual, well-established pre-
cursors and validate the advantages of the single [Li2Nb(hfa)7•diglyme•xH2O] precursor
under investigation.

Preliminary deposition experiments have been conducted using a sol–gel approach,
employing the [Li2(hfa)2•diglyme•H2O] adduct and Nb(tmhd)4 dissolved in ethanol
solvent in a 1:2 ratio. For the sol hydrolysis process, the molar ratio of the precursor,
solvent, and catalyst have been adjusted to 1 [Li2(hfa)2•diglyme•H2O]/2 Nb(tmhd)4/87
C2H5OH/3 H2O/0.8 CF3COOH. The sol solution has been stirred at 60 ◦C for 20 h before
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being spin-coated onto Pt/Si (100) substrates. Subsequently, the spin-coated films have
been annealed at 700 ◦C in air for one hour. Figure 8 depicts the principal structural and
morphological characterization of the sample.
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from [Li2(hfa)2•diglyme•H2O]/2 Nb(tmhd)4 single precursors. Red stars in the XRD pattern indicate
peaks of the LiNb3O8 phase, while black stars are due to the substrate.

The XRD pattern (Figure 8a) reveals distinct reflections associated with the polycrys-
talline nature of the LiNbO3 phase, alongside some small peaks at 21.60◦, 24.60◦, 30.25◦,
35,80◦, and 38.10◦, indicated with red stars that could be attributed to the LiNb3O8 phase
(ICDD PDF no. 075-2154). Raman spectroscopy analysis conducted on the sample (Fig-
ure 8b) confirms the presence of the LiNbO3 phase as well, as evidenced by the presence of
characteristic modes associated with this phase. The shift of Raman modes related to the
strong presence of the quasi-/oblique modes are due to the local texture of the grains.

The FE-SEM image (Figure 8c) shows the formation of a homogeneous surface, charac-
terized by noticeably smaller and distorted grains compared to those obtained using the
previous precursor. This observation suggests that the new single precursor “[Li2Nb(hfa)
7•diglyme•xH2O]” may have good potential as a single source for the deposition of LiNbO3
thin films.

4. Conclusions

Polycrystalline LiNbO3 phase films have been synthesized through a sol–gel/spin-
coating approach for application in lithium ion batteries. To conveniently develop this
material in the form of thin films through solution approaches, the starting point is the engi-
neering of the initial metalorganic precursors. The research has included the synthesis of a
novel heterobimetallic precursor, “[Li2Nb(Hfa)7•diglyme•xH2O]”. This innovative precur-
sor offers all the necessary elements for achieving the desired phase. The heterobimetallic
adduct has been proved to be a viable single source of Li and Nb elements through use
in the sol–gel production of lithium niobate films on silicon substrates. The formation
of this complex involving multiple metals has been performed via a one-pot reaction, in
which all the metal reagents, the hexafluoroacetylacetone, and diglyme were combined in
dichloromethane. Thin films of LiNbO3 were developed using a tailored sol–gel approach
at different temperatures (600 ◦C to 800 ◦C), as confirmed by the GIXRD patterns and
Raman spectroscopy. The observed morphology displays features that are typical of sol–gel
deposition, including a highly porous structure and small-sized grains. The optimized
process has been also compared to the sol–gel/spin-coating synthesis of the LN films using
a combination of two separate precursors, the [Li2(hfa)2•diglyme•H2O] and Nb(tmhd)4.
The effectiveness of the single “[Li2Nb(hfa)7•diglyme•xH2O]” precursor approach, with
respect to the use of individual ones, has been proved by the good quality of the prepared
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polycrystalline LiNbO3 films, whose highly porous morphology with small-sized grains
makes them appealing and promising for application in lithium ion batteries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano14040345/s1, Figure S1: XPS survey and binding energy
regions of the “Li2Nb(hfa)7•diglyme•xH2O” precursor; Figure S2: XPS survey and binding energy
regions of a LN film.
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