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Abstract: The band gap is a key parameter in semiconductor materials that is essential for advancing
optoelectronic device development. Accurately predicting band gaps of materials at low cost is
a significant challenge in materials science. Although many machine learning (ML) models for band
gap prediction already exist, they often suffer from low interpretability and lack theoretical support
from a physical perspective. In this study, we address these challenges by using a combination of
traditional ML algorithms and the ‘white-box’ sure independence screening and sparsifying operator
(SISSO) approach. Specifically, we enhance the interpretability and accuracy of band gap predictions
for binary semiconductors by integrating the importance rankings of support vector regression (SVR),
random forests (RF), and gradient boosting decision trees (GBDT) with SISSO models. Our model
uses only the intrinsic features of the constituent elements and their band gaps calculated using the
Perdew–Burke–Ernzerhof method, significantly reducing computational demands. We have applied
our model to predict the band gaps of 1208 theoretically stable binary compounds. Importantly, the
model highlights the critical role of electronegativity in determining material band gaps. This insight
not only enriches our understanding of the physical principles underlying band gap prediction
but also underscores the potential of our approach in guiding the synthesis of new and valuable
semiconductor materials.

Keywords: machine learning; SISSO; insightful prediction; band gap; binary semiconductors

1. Introduction

Binary semiconductor materials play a vital role in many industries due to their
unique physical properties. The importance of these materials stems largely from their
band gap widths, a pivotal parameter that decisively influences the performance of various
devices, such as field-effect transistors, photodiodes, photo transistors, and solar cells [1–3].
For instance, binary transition metal nitrides exhibit a wide range of physical properties,
including superconductivity, metal-insulator transitions, ferroelectricity, and thermoelec-
tricity characteristics, due to their large band gap distribution [4–7]. These properties
have led to their widespread application in energy-related fields, such as energy storage,
electrocatalysis, and photocatalysis. Particular attention has been given to third-generation
semiconductor devices, especially GaN and AlN. These materials are known for their high
breakdown electric field strength and wide band gaps [8], which gives them significant
advantages in optoelectronic device fabrication, particularly in blue and ultraviolet light
domains [9,10]. On the other hand, narrow band gap binary semiconductors like CdTe
and InAs [2,11], with their high optical absorption coefficients and extended charge carrier
lifetimes, are providing new insights for near-infrared active photoelectrodes [1]. This
diversity in band gap ranges highlights the versatility of binary semiconductors, enabling
them to serve different applications based on their specific band gap characteristics.

The evolution of high-throughput computing has unlocked a vast potential for explor-
ing binary semiconductors [12,13]. However, the well-known ‘band gap problem’—the
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discrepancy between density functional theory (DFT) calculations and actual band gaps
in semiconductors—remains a complex challenge in predicting band gap [14]. Advanced
methods beyond standard DFT, such as HSE hybrid functionals, GW approximation, and
DFT-embedded dynamical mean field theory, have been developed to provide more ac-
curate electronic band structures. However, the high computational demands of these
methods limit their practicality in high-throughput calculations [15].

Machine learning (ML) techniques, known for their precision and cost-effectiveness,
have emerged as a novel approach, enabling materials scientists to predict the electronic
properties of new materials by extracting and integrating information from extensive
material databases [16–18]. For example, Xu et al. used ensemble learning models for the
prediction of band gaps in thermoelectric materials with diamond-like structures, and they
achieved a prediction accuracy of 77.73% [19]. Huang et al. used ML models trained on DFT
results to accurately predict band gaps and alignment of nitride-based semiconductors [20].

A point of contention in the field has been the ‘black-box’ nature of ML models, which
are often criticized for their limited ability to derive new physical laws, thereby constraining
their potential in certain applications [21]. Symbolic regression, an approach that produces
interpretable equations, is gaining attention in various scientific fields. A notable applica-
tion of this approach is the sure independence screening and sparsifying operator (SISSO)
method [22], which has been used successfully in band gap prediction models. For instance,
Zhang et al. trained on high-throughput calculations of two-dimensional semiconductors
and utilized complex descriptors identified by the SISSO algorithm, and they achieved high
accuracy in predicting HSE band gaps with a coefficient of determination (R2) of 0.96 [23].
Ma et al. proposed a physically interpretable three-dimensional descriptor to obtain the
Γ-point gap of twist bilayer graphene at arbitrary twist angles and different interlayer
spacings, demonstrating high accuracy as evidenced by a 99% Pearson coefficient [24].

In this study, we developed an interpretable machine learning model for precise band
gap prediction in binary semiconductors, using a limited but targeted set of elemental
properties. This model provides in-depth insights into how specific descriptors affect the
band gap, enhancing our understanding of the material’s intrinsic properties. We initially
employed various conventional machine learning algorithms to train and optimize the
model with non-metallic material data. The most effective models were then selected for
interpretative learning. By assigning weights to the feature importance in these models, we
identified the most effective feature combinations. Subsequently, the SISSO algorithm was
applied to discern descriptors from the feature space that accurately represent the band
gap. Utilizing the SISSO algorithm, we could generate prediction models in the form of
equations, thus providing significant physical insights regarding descriptors on the band
gap. Overall, by integrating the machine learning algorithms and the SISSO algorithm, we
have established a model with strong interpretability and physical significance, which is a
valuable tool and methodology for materials design and development. The transparency
and comprehensibility of this approach hold broad applicative potential in the field of
materials science.

2. Methods
2.1. Dataset and Features

In our study, the experimental band gaps were taken from the work of Ya Zhuo et al. [25].
We selected 1107 binary semiconductors (356 materials with different compositions) from
their collection of experimental band gaps of 6354 inorganically stable materials. The DFT
calculated band gaps based on PBE functional [26] were from the Materials Project (MP)
database. For those with notable differences between DFT calculations and experimental
band gaps, we have included multiple sets of experimental band gap values. This enhanced
the model’s capacity to capture the compositional effects of these compounds, thereby con-
structing a machine learning model that better aligns with practical research requirements.

For the ML models, we selected 11 intrinsic features of the compound’s constituent
elements that have been considered highly relevant to the band gap, as identified in the
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previous literature [19,27]. These features include electronegativity, first ionization energy,
atomic mass, atomic number, column number, row number, period number, group number
in the periodic table, ionic radius, atomic radius, and density at 25 ◦C. Additionally, the PBE-
calculated band gap in the MP platform [13] was also used as an input feature. Therefore,
each binary semiconductor material AmBn has 23 input features: 11 intrinsic features for
each of the two elements, as well as the calculated band gap provided by the MP database.
Details of the features are shown in Table 1. The group number (period number) of non-rare
earth elements is equal to their column number (row number). For rare earth elements,
their group number is determined by adding 15 to their column number, and their period
number is determined by subtracting 2 to their row number. This ensures that each element
can be uniquely represented by a combination of period number and group number.

Table 1. Input features (descriptors) used in ML models for the purpose of predicting band gaps.

Symbol Meaning in Binary Compound AmBn Unit

AEN, BEN electronegativity of A or B eV
AIP, BIP first ionization potential of A or B eV
MA, MB atomic mass of A or B g/mol
ρA, ρB density at 25 ◦C of A or B g/cm3

AAR, BAR atomic radius of A or B Å
AIR, BIR ionic radius of A or B Å
NA, NB atomic number of A or B −
RA, RB row number of A or B −
CA, CB column number of A or B −
PA, PB period number of A or B −
GA, GB group number of A or B −

2.2. Evaluation Metrics

We employed the root-mean-square error (RMSE) and the R2 as primary metrics
to evaluate the regression model. RMSE provides a measure of the average magnitude
of errors between the predicted and actual values, while R2 indicates the proportion of
variance in the dependent variable that is predictable from the independent variables,
offering insight into the fit quality of the model. They are described as follows:

R2 = 1−
Σn

i=1(ŷi − yi)
2

Σn
i=1(yi − yi)

2

RMSE =

√
1
n∑n

i=1(ŷi − yi)
2

where yi is the experimental band gap, yi is the corresponding average, ŷi is the predicted
band gap, and n is the number of samples. In order to avoid random errors, we used the
calculated results of three-fold cross-validation methods to judge the predictive ability of
the model.

We used the permutation importance method [28] from the scikit-learn library [29] to
assess the importance of features in our models. This method is independent of the model
itself. It works by randomly shuffling the values of each feature and observing how much
this affects the model’s performance. A significant decrease in performance when a feature
is shuffled indicates that the feature is important to the performance of the model. This
approach helps us understand the impact of each feature on the model and ensures that
the selected features contribute effectively to the model’s ability to generalize to new data.

3. Results and Discussion
3.1. Screening of Predictive ML Methods

For predicting band gaps in binary semiconductors, we evaluated six supervised ML
techniques. Among them were two linear methods: LASSO, a linear regression method,
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and kernel ridge regression (KRR), which employs the kernel trick for non-linear data. We
also examined the support vector regression (SVR) method, notable for its versatility with
various kernel functions suitable for different data types. In addition, the decision trees
(DT) method was appreciated for its simplicity and ease of interpretation. Furthermore, we
considered two ensemble methods, random forests (RF) and gradient boosting decision
trees (GBDT), both known for their robustness in complex predictive tasks. The model-
ing was implemented under the Python computing environment using the scikit-learn
library [29].

Table 2 presents the performance of band gap prediction using six ML methods
measured by two different evaluation metrics: R2 and RMSE. It was observed that the SVR
model, RF model, and GBDT model showed lower RMSE values (RMSE < 0.4 eV) and
larger R2 values (R2 > 0.950) for the train and test set, indicating that their predictions were
closer to the target values. Therefore, the following analysis mainly focuses on the results
of these three ML methods.

Table 2. Evaluation metrics of six ML model on training and test sets.

ML Model
Training Set Test Set

RMSE (eV) R2 RMSE (eV) R2

LASSO 0.717 0.864 0.727 0.857
KRR 0.442 0.948 0.535 0.922
SVR 0.301 0.976 0.382 0.961
DT 0.475 0.940 0.732 0.854
RF 0.197 0.990 0.390 0.958

GBDT 0.288 0.978 0.361 0.965

Figure 1 illustrates the predictive performance of ML methods in a single-shot random
trial, utilizing a 90% training set (represented by blue dots) and a 10% test set (represented
by yellow dots). Figure 1a shows a comparison between the experimental band gaps of
materials and the PBE-calculated band gaps from MP, indicating a large deviation between
PBE calculations and actual band gaps. Comparing the predicted band gaps of the SVR,
RF, and GBDT models with the experimental values reveals a notable improvement in
prediction accuracy of the ML models over the PBE calculations. Comparing the results
of the three ML models, the RF model exhibits better fitting performance for the training
set than the SVR model, but its accuracy in the test set is slightly lower. The GBDT model
has a smaller overall deviation and provides more accurate predictions for wide band gap
materials, but it shows a higher dispersion in predicting materials with smaller band gaps
compared to the RF model.

To counter potential training inefficiencies from increased feature space complexity,
we first refined the feature space by analyzing the feature importance of the SVR, RF, and
GBDT results. This process included evaluating the impact of 23 input features for each
model and then ranking them based on their importance. We averaged five measurements
for a reliable feature importance ranking to reduce the impact of variability from multiple
training. We observed common characteristics across the models, such as a high correlation
between calculated and experimental band gaps, and significant importance weights for
elements’ electronegativity. Figure 2 shows the top 14 most significant features of SVR,
RF, and GBDT models used to form sub-training sets for the next step in searching for
interpretable physical models.
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Figure 1. (a) Comparison of experimental band gap values with PBE-calculated band gaps from the
MP materials database. (b–d) Comparison of experimental band gap values with the predicted band
gap values by SVR, RF, and GBDT ML models, respectively.

Figure 2. Feature-importance rankings and weights of the top 14 most significant features for the
(a) SVR, (b) RF, and (c) GBDT models of band gap predictions. The feature importance weights of the
models have all been normalized.
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3.2. Physical Insights from SISSO Predictions

The machine learning models mentioned above focus primarily on achieving the
highest data prediction accuracy, which often leads to a reduction in the interpretability of
the model. On the other hand, SISSO models strive to strike a balance between accuracy
and complexity, enhancing both the understanding of the problem and the precision of
predictions. As a compressed-sensing technique, SISSO is particularly adept at identify-
ing the most efficient low-dimensional descriptor from a large pool of possible options.
Utilizing the rankings of feature importance in Figure 2, we employed the SISSO method
to derive an optimized descriptor for predicting the band gaps of binary semiconductors.
Here, the input features that include the top 14 most significant features are considered for
different models. Figure 3 presents the RMSE metric curves for one-dimension (1D) and
two-dimension (2D) SISSO models, depicting how the RMSE varies with the number of
input features. Here, the dimensionality refers to the count of fitting coefficients in a linear
model, not including the intercept. For a 1D SISSO model, there is only one descriptor,
denoted as D1, while a 2D model includes two descriptors, labeled D21 and D22. As the
complexity of the features increases, the predictive ability of a SISSO model has a notice-
able improvement in the initial stage. When the number of features increases to a certain
extent, the RMSE of 1D models remains almost unchanged and those of 2D models only
slightly decreases. The RMSE of SISSO model based on the GBDT ranking (SISSO-GBDT)
becomes stable after the number of features reaches four. The RMSE of SISSO model based
on the RF ranking (SISSO-RF) stabilizes after more than seven features, and the SISSO
model based on the SVR ranking (SISSO-SVR) reaches a plateau in RMSE after exceeding
11 features. Using the top 4 features from GBDT, the top 7 from RF, and the top 11 from
SVR as inputs for the SISSO method, we developed corresponding 1D and 2D physical
models, as shown in Table 3. The correlation between the band gaps predicted by these
models and the experimental band gap values is depicted in Figure S1. To further explore
the predictive capabilities of the SISSO model, we focused on thermodynamically stable
binary semiconductors with energy above the convex hull less than 10−6 eV/atom in the
MP database [13], resulting in a dataset of 1208 distinct materials. This selection ensures
that our study targets materials with demonstrated stability and relevance for practical
applications. The prediction results of the three SISSO models on these 1208 materials are
presented in Table S2 in the Supplementary Materials.

Figure 3. The RMSE of three SISSO models as a function of the number of input features, which are
determined by the importance weight ranking results from the SVR, RF, and GBDT models: (a) 1D
models and (b) 2D models.
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Table 3. The 1D and 2D physical models using the SISSO method with the top 4 features from GBDT,
the top 7 from RF, and the top 11 from SVR as inputs for each respective model.

Model SISSO-SVR SISSO-RF SISSO-GBDT

1D

Eg = 0.057× D1 − 1.423 Eg = 1.047 × D1 + 0.134 Eg = (−0.862)× D1 + 0.332

D1 =
(
2Eg.PBE + BIP

)
× GB−NA

AAR×AEN

D1 = Eg.PBE × CA
GA

+∣∣∣∣Eg.PBE − AEN
∣∣− ∣∣Eg.MP − BEN

∣∣∣∣ D1 = AEN − BEN − Eg.PBE +
AEN−Eg.PBE

exp(GA)

2D

Eg = −0.004× D21+4.340×
D22 − 1.861 Eg = 1.020×D21− 0.047 ×D22− 0.429 Eg = 1.079 ×D21− 3.276 ×D22 + 0.453

D21 =
GB

2(AEN−BFIP−Eg.MP)
AR×AEN

D21 =
(Eg.MP×CA)+(GA×BEN)

GA×AEN
3 D21 =

Eg.PBE+BEN

GA
9

D22 =
Eg.MP

NB
+ AEN

NA |NB−|NB−GB || D22 =
A2

EN
DA |GA/AEN−MA/BEN | D22 =

∣∣∣√(AEN/BEN)− log(GA)
exp(AEN)

∣∣∣
Considering both interpretability and accuracy, we have opted for the 1D represen-

tation of the SISSO model based on RF ranking (SISSO-RF) for a focused interpretation
of its physical significance. Although this physical model incorporates a greater number
of output features compared to the SISSO model based on GBDT ranking, its simplified
version offers enhanced interpretability, making it our choice for further analysis. In this
model, when the material system does not contain rare earth elements, the parameter
CA/GA equals 1. Consequently, D1 and the corresponding Eg (SISSO-RF, 1D) should be
the following:

D1 = Eg.PBE +
∣∣∣∣Eg.PBE − AEN

∣∣− ∣∣Eg.PBE − BEN
∣∣∣∣

Eg = 1.047 × D1 + 0.134
(1)

In our study, we focused on binary semiconductors, denoted as AmBn, where ‘A’
represents a cation and ‘B’ represents an anion. It is generally observed that the element
in a compound forming the anion is more electronegative than that forming the cation.
This is because the anion needs higher electronegativity to attract electrons effectively.
When Eg.PBE < AEN or Eg.PBE > BEN, the D1 term can be simplified to Eg.PBE + (BEN − AEN),
which is defined as ∆. Figure 4a illustrates how the ∆ varies with the D1 across different
materials. It can be seen that in this case, where D1 is less than 2 eV or greater than
5 eV, that D1 and ∆ are equivalent, so this simplification is reasonable and applicable for
most materials we examined. When D1 is greater than 2 eV and less than 5 eV, i.e., in
situations where the Eg.PBE falls between AEN and BEN (AEN < Eg.PBE < BEN), D1 should
be simplified to |2Eg.PBE − BEN − AEN|. The rationale behind these simplifications is
that they reflect a specific relationship or characteristic within the semiconductor based
on the electronegativity values. Moreover, for a material with known elemental types and
band gap calculated by PBE, this approach allows for straightforward assessments and
predictions. The effectiveness of our model is further demonstrated in Figure 4b, which
shows a comparison between the band gaps predicted using our simplified formula and the
experimentally determined band gaps. This comparison validates our model, confirming
its applicability and accuracy in predicting band gap values in binary semiconductors.

Our band gap prediction model using the SISSO method, in contrast to the previous
literature that relied solely on fitting formulas based on PBE gaps [30,31], additionally
incorporates the parameter of electronegativity, making it more aligned with physical
intuition [32]. First, the band gap represents the energy required for an electron to transi-
tion from the top of the valence band to the bottom of the conduction band, determined by
the electron-attracting capacity of the bonding atoms, making the inclusion of electroneg-
ativity a logical choice for characterizing the material’s band gap. Using the descriptors
provided by the SISSO model, we can adjust the elemental composition of materials to
find semiconductors that meet specific band gap requirements. These SISSO descriptors
are not only useful for statistically predicting the range of band gap energy values but
also for assisting in understanding the mechanisms affecting the material’s band gap from
various perspectives through machine learning. Additionally, the SISSO algorithm estab-
lishes quantifiable mathematical expressions that link these elemental properties with band
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gap descriptors, greatly aiding in our search for optoelectronic materials with suitable
band gaps.

Figure 4. (a) The relationship between simplified ∆ with D1. (b) Comparison between the band gaps
predicted using our simplified formula and the experimentally determined band gaps.

4. Conclusions

In this study, we developed a physically interpretable expression for accurately pre-
dicting the band gap of binary compounds using machine learning methods. To identify
the optimal descriptors, our study adopted a segmented active learning approach. Initially,
we used six machine learning regression models—including LASSO, KRR, SVR, DT, RF,
and GBDT—to predict band gap values using PBE-calculated band gaps and 11 intrinsic
elemental features. Among the six tested supervised machine learning models, SVR, RF,
and GBDT showed superior performance. In the subsequent phase, we employed the SISSO
approach, which utilized the feature importance rankings derived from the SVR, RF, and
GBDT models. This led to the identification of specific descriptors by SISSO, which not only
enabled precise predictions of the band gaps but also illuminated the fundamental factors
influencing the band gaps in binary compounds. We then applied these descriptors to
1208 binary semiconductors in the MP database to predict the band gaps of these materials.
In the final step, we further refined the SISSO model based on RF, discovering that for
binary semiconductors without rare earth metals, the band gap prediction model only
required a few key parameters, such as PBE band gaps and elemental electronegativity.
These descriptors not only enhance our understanding of semiconductor materials but also
open up new avenues for researching and discovering more ideal semiconductor materials.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano14050445/s1, Figure S1: Comparison of experimental band gap values
with PBE-calculated band gaps and three stable SISSO 2D models; Table S1: Parameters of traditional
machine learning models; Table S2: Predicted band gap values for all stable binary semiconductors in
the Materials Project database.
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