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Abstract: Flexible and wearable devices are attracting more and more attention. Herein, we propose a
self-powered triboelectric nanogenerator based on the triboelectric effect of fish scales. As the pressure
on the nanogenerator increases, the output voltage of the triboelectric nanogenerator increases. The
nanogenerator can output a voltage of 7.4 V and a short-circuit current of 0.18 µA under a pressure of
50 N. The triboelectric effect of fish scales was argued to be related to the lamellar structure composed
of collagen fiber bundles. The nanogenerator prepared by fish scales can sensitively perceive human
activities such as walking, finger tapping, and elbow bending. Moreover, fish scales are a biomass
material with good biocompatibility with the body. The fish-scale nanogenerator is a kind of flexible,
wearable, and self-powered triboelectric nanogenerator showing great prospects in healthcare and
body information monitoring.
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1. Introduction

The rapidly growing demands for healthcare and body information monitoring have
spurred great interest in flexible and wearable energy devices [1]. Due to the constant
use of traditional energy sources, our environmental problems are becoming more and
more serious, and there is an urgent need for new energy sources to replace traditional
energy sources. Wind, biomass, geothermal, hydro, and ocean energy are some of the
energy sources that can replace traditional energy sources, but they are not readily available.
Thus, we should look for a new source of energy that can be used at any time. Friction
nanogenerators are a very suitable energy source due to their high power density. Among
them, flexible triboelectric nanogenerators (TENGs) play a vital role in healthcare. For
example, Chen et al. proposed a TENG with tile nanostructures for the detection of
human health with an optimal output voltage of 37.8 V, an output current of 1.8 µA, and
a transmitted charge of 14.1 nC, which can be very sensitive for the detection of human
health [2]. According to the conversion mechanism, TENGs are generally classified into
four modes, which are the vertical contact-detachment mode [3–6], horizontal sliding
mode [7–10], single-electrode mode [11–14] and independent layer mode [14–18].

Harvesting energy from the environment and converting it into electricity allow the
energy resources in the environment to be fully utilized to extend the life of batteries or
to power electronic devices. In 2006, Wang’s team converted mechanical energy from the
environment into electrical energy through the piezoelectric properties in zinc oxide, which
could power nanodevices, which Wang’s team called piezoelectric nanogenerators [19].
In 2012, Wang’s team discovered another new device through a polymer film, which
Wang’s team named a friction nanogenerator, a device that uses mechanical deformation to
achieve electrical energy output [20]. The TENG is used to power the device by collecting
ambient energy and converting it into electrical energy, or is used as a sensor. Han et al.
fabricated a TENG based on the contact separation mode by doping chitosan and carbon
nanotubes. They used the chitosan–carbon nanotube composite as the positive electrode
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material and fluorinated ethylene propylene as the negative electrode material. The optimal
performance of their TENG showed an open-circuit voltage of 85.8 V, a short-circuit current
of 8.7 µA, and a transmitted charge of 29 nC, which could be used to detect the human
body’s activities well [21]. Inspired by the fish scale structure, Ma et al. designed a TENG
based on a symmetrical arrangement of the fish scale structure, which can be used to collect
the energy due to sliding and to detect the rotational state. This design provides a new
idea for the application of the TENG. In addition, the method is very simple in terms
of device structure and also avoids the energy dispersion caused by the use of multiple
electrodes [22].

With the development of triboelectric nanogenerators, self-powered triboelectric nano-
generators have been widely used in wearable electronic devices, electronic skin, and
medical testing because of their self-powered characteristics. For example, in wearable
electronic devices, Liu et al. proposed a polymer membrane to fabricate a TENG with
a nano-wrinkled flexible braided structure, which was designed to be comparable to a
TENG with an optimal braided structure and whose output signal could last for a long time
due to its long-term stability. It works well as a wearable electronic device for collecting
human energy, human–computer interaction, and pressure sensing [23]. Chen’s team
designed a material with different hydrophilicity along the thickness direction through
electrostatic spinning/electrospray technology, which exhibited hydrophilicity on the side
close to the skin, and, thus, providing a good solution to the effects at the interface between
the e-skin and the skin. This work presents a new approach to designing electronic skin
that can also be used to detect human health [24]. Liu et al. proposed a self-powered
sensor for detecting the wear and tear of human prosthetic joints, which could be used
to detect debris from prosthetic wear and tear. This work promotes the development of
the TENG in medical detection [25]. Triboelectric effect materials include electropositive
and electronegative materials [26–29]. To meet the needs of miniaturization, along with
being portable, flexible, and wearable, with low-power consumption, more and more
self-powered nanogenerators are made based on ceramic–polymer composites and bioma-
terials. For example, a triboelectric–piezoelectric hybrid nanogenerator with a self-charging
pumping system based on BaTiO3-Nanorods/Chitosan was found to show enhanced out-
put performance [30]. The use of natural materials is preferable to the use of traditional
materials because natural materials are the most compatible with man and nature and
are generally more biocompatible, and the use of natural materials in the preparation of
TENGs makes better use of resources. Natural biomass materials, such as fish scales [31],
chitosan [32], gelatin [33], spider silk [34], onion skins [35], etc., were reported to be widely
used in nanogenerators or biosensors. Singh et al. used the scales of Rohu fish to fabricate
a TENG based on the contact separation mode. Different materials were used as cathode
materials, comparing the position of the fish scales on the friction electric series [31]. Yar
et al. proposed a chitosan/clay TENG and investigated the effect of the type of clay on the
TENG, providing more possibilities for the choice of materials for the TENG and its ability
to elicit an appropriate response at specific sites in the body [32]. Pan et al. present a fully
biodegradable triboelectric nanogenerator based on gelatin film and electrospun polylactic
acid nanofiber membrane. The TENG can be used for environmental monitoring and can
be completely dissolved without harming the human body [33]. Zhang et al. genetically
engineered recombinant spider silk protein (RSSP) to design a biocompatible triboelectric
material with programmable triboelectric properties, multiple functionalizations, large-
scale manufacturability, and extraordinary output performance [34]. Zhang et al. report
a study on the hetero-triboelectric effects (HTEs) of half-cell allium plant skins such as
leek, scallion, and onion. Single-material TENGs (SM-TENGs) have been fabricated based
on the two surfaces of these plant skins, taking advantage of their HTEs [35]. Recently,
Liu et al. proposed a TENG that can be used to monitor vital signs in the cardiovascular
system. Its miniaturization and flexibility can reduce the potential damage to cardiac tis-
sues by implantation, giving it tremendous promise for applications in minimally invasive
techniques [36]. These studies provide the effective monitoring of human physiological
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health, highlighting the importance of biocompatible materials in energy collecting [37]. It
shows that self-powered nanogenerators play a crucial role in the fields of wearable, motion
monitoring, and medical monitoring [38,39]. Chen et al. discuss sensing mechanisms for
pulse-to-electricity conversion, analytical models for calculating cardiovascular parameters,
and application scenarios for textile TENGs. Chen et al. provide a prospective on the
challenges that limit the wider application of this technology and suggest some future
research directions. In the future, textile TENGs are expected to make an impact in the
fields of wearable pulse wave monitoring and CVD diagnosis [38]. An et al. report such
a neck motion detector comprising a self-powered triboelectric sensor. This developed
neck motion detector has promising applications in neck monitoring, rehabilitation, and
control [39]. However, at present, the manufacturing process of some flexible wearable
devices is more troublesome, and some materials are polymer materials that are difficult to
be degraded [40], which will lead to the problem of e-waste in the current global pursuit
of a green environment [41]. A flexible, wearable TENG for monitoring human activities
requires that the sensing materials are flexible and biocompatible [42–45]. Therefore, we
propose a flexible, wearable, self-powered TENG based on the biological waste fish scale.
This material is used because fish scales contain a lot of collagen [46], which has been
evidenced to be an excellent triboelectric effect material [47].

The ability of fish scales as a sensing material for self-powered TENGs and the output
signals under different conditions were investigated. Our results showed that the voltage
supplied by the TENG can charge a capacitor. Since collagen is widely present in organisms,
it is biocompatible with human beings and completely biodegradable. Moreover, many
fish scales are thrown away as waste around the world every day, resulting in a huge waste
of resources. We believe that fish scales hold great prospects for large-scale applications of
flexible wearable TENG.

2. Experiment
2.1. Fish Scale Treatment

Fish scales were collected from fresh carp. The fish scale treatment was illustrated in
the upper row of Figure 1a. The scales were rinsed with deionized water and dried at 50 ◦C
for 48 h. The cleaned scales were demineralized first by immersing in 5 wt% citric acid so-
lution with a solid–liquid ratio of 1:30 for 4 h and then in 0.5 M ethylenediamine tetraacetic
acid (EDTA) solution at a solid–liquid ratio of 1:30 for 4 h. Finally, the demineralized scales
were washed with deionized water and dried for TENG fabrication.

2.2. TENG Fabrication

The TENG fabrication process was illustrated in the lower row of Figure 1a. Fish
scales were used as electropositive materials and fluorinated ethylene propylene (FEP)
as electronegative materials. The contact-separation-type TENGs were fabricated using
the decalcified fish scales and FEP film as the friction layer components. Copper foils
(2 cm× 2 cm) were implemented for conductive electrodes with each electrode linked to a
copper wire for signal collection.

2.3. Characterizations

The crystallinity of the demineralized fish scales was examined by X-ray diffraction
(XRD, Rigaku Smartlab Beijing Co., Beijing, China) with Cu Kα radiation. The functional
groups were analyzed by a Fourier microscope (Vertex 80+ Hyperon 2000, Bruker, Karlsruhe,
Germany) and a laser Raman spectrometer (Invia-refle). The surface morphology was
observed by a scanning electron microscope (SEM, Regulus 8230, Hitachi Co., Tokyo,
Japan). The dielectric and ferroelectric properties of the fish scales were measured by a
Wayne Kerr 6500B precise impedance analyzer (Wayne Kerr Electronic Instrument Co.,
Shenzhen, China) and a ferroelectric hysteresis measurement tester (MultiFerroic II, Radiant
technologies Inc., Albuquerque, NM, USA), respectively. The output voltage and current
of the fish scale TENG were measured by a Keithley 6517B electrometer (Model 6517B
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Programmable Electrometer, Keithley, Cleveland, USA). The change in mass of the fish
scale is investigated by thermogravimetric analyzers (TGA, TGA5500, TA Instruments,
New Castle, USA).
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3. Results and Discussion
3.1. Fish Scale Characterization

Figure 2a–c show the cross-section SEM images of a demineralized fish scale. It can be
clearly seen from this figure that the scale has a multi-layered structure. An enlarged view
shown in Figure 2b reveals that each layer is composed of relatively thick fibers. A further
enlarged view focusing on one layer displayed in Figure 2c shows that the thick fibers are
made up of very smaller fibers.

Figure 2d shows the XRD pattern of the demineralized fish scale. It shows two intensive
crystallization peaks located at 2θ = 8.23◦ and 21.56◦. The crystallinity of the fish scale is
about 54% deduced by the Fourier deconvolution calculation. The crystals of the fish scale
are derived from peptide chains in collagen that rely on a large number of intramolecular
and intermolecular hydrogen bonds to form ordered, dense structures. The chemical
composition of the fish scale was examined by Fourier infrared and Raman spectra and the
results were given in Figure 2e,f, respectively. It can be seen, from the infrared absorption
diagram, that there is a characteristic absorption peak at the wave number of 1539.1 cm−1.
This absorption peak is related to the triple-helix structure, indicating the existence of a
triple-helix structure in the fish scales. The obvious absorption peaks at 1336.5, 1632.6, and
3279.1 cm−1 are the C-N vibration absorption peak in the amide bond, the carbonyl C=O
vibration absorption peak in the amide band, and the N-H vibration absorption peak in the
amide band, respectively. This finding reveals that there is an amide structure (-CO-NH-)
in the fish scale. The characteristic absorption at wave number 2925.8 cm−1 is the C-H
vibration absorption peak of the characteristic group R2CH2 for glycine in amino acid. The
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Raman peaks at 938.3 and 854.1 cm−1 are caused by proline C-C stretching vibration and
hydroxyproline C-C stretching vibration, respectively. The 1246.1 cm−1 peak represents
the n-H vibration characteristics in the amide band. The Raman peak at 1450.1 cm−1 is
derived from the ethyl (CH2) vibration. The Raman peak at 1669.0 cm−1 comes from the
stretching vibration of amide carbonyl C=O. These results indicate that there is proline,
hydroxyproline, and amide structures in the demineralized fish scale. The results of the
Raman analysis are in accordance with the FTIR results. Both the FTIR and Raman spectra
demonstrate that the fish scale is composed of type I collagen with a triple-helix structure.
This type of collagen is known to be made up of three α polypeptide chains. The three
polypeptide chains have two identical α1 and a single α2. Three polypeptide chains are
combined in a triple-helix structure to form type I collagen fibrils. Each alpha chain is
arranged as follows: Gly-X-Y, with Gly being glycine, and X and Y being proline and
hydroxyproline, respectively. The internal structure of the fish scale is schematically shown
in Figure 3. The electrical effect between and within the peptide chains in the fish scale
mainly comes from the amide carbonyl group in the peptide chain and the hydroxyl group
in the hydroxyproline side chain. The arrow shows the generated spontaneous polarization.
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Based on the above results, the basic structural units of the fish scale are glycine,
proline, and hydroxyproline. The three amino acids are arranged alternately to form a
polypeptide chain. The polypeptide chain forms type I collagen fibrils in a triple-helix
structure. Collagen fibrils are bonded by hydrogen bonds to form type I collagen microfib-
rils and type I collagen fiber bundles, and, finally, form a lamellar structure. Spontaneous
polarization plays a crucial role in enhancing the surface charge density. To elucidate this
point, we test the dielectric, ferroelectric, and electrically induced strain properties of the
fish scale. As shown in Figure 2g, the fish scale shows a dielectric constant of 9 at 100 Hz,
which gradually decreases with the increase of frequency. The dielectric measurements
show that the fish scale has a certain ability to store and release charge. As shown in
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Figure 2h,i, the scale shows a relatively narrow P-E loop (Figure 2h) accompanied by an
obvious butterfly-type strain loop (Figure 2i), verifying the impressive ferroelectric behav-
ior of the fish scales. The thermal stability of the fabricated TENG device depends on the
thermal stability of the fish scale, which was tested by TGA. As shown in Figure S1, when
the temperature is increased from 20 to 80 ◦C, the weight of water in the fish scale begins to
disappear. After that, up to 250 ◦C, the weight loss of the scale is relatively low. However,
above 250 ◦C, the weight of the sample decreases sharply due to the decomposition of the
protein at high temperature. At 500 ◦C, the weight of the sample decreases to 35% of the
initial weight. This result shows that the TENG can work in a temperature range lower
than 250 ◦C.
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as indicated by an arrow.

3.2. Fish-Scale TENG Output Performance

In the case of the contact-separation TENG, the effective contact area of the friction
layer plays an important in determining its output performance [48]. Due to the different
roughness on both sides of the fish scale, as a friction material, the output performances
of both sides are also different. It is necessary to define the front and back sides. Herein,
we define the side of the scale in direct contact with the water as the front side, while the
side close to the fish’s body is called the back side. In order to test the output performance
of the fish-scale TENG, the output voltage and current were measured under constant
pressure applied by a linear motor. The results were displayed in Figure 4. It can be seen
from Figure 4a,b that both the front and back output voltages of the TENG increase with
the increase of applied stress. Figure 4c compares the front and back output voltages as
a function of the applied stress. The front output voltage of the TENG increases notably
from 2.3 to 7.4 V, while the back output voltage increases generally from 0.75 to 1.5 V, as
the pressure is increased from 10 to 50 N. The output voltage on the front side of the fish
scale increases faster than that of the back side, because the front side of the fish scale has
a larger contact area with the negative electrode material during the contact separation
process. The voltage output on the front side of the fish scale exceeds that on its back side
due to disparities in the roughness of both sides. Specifically, due to the high projection of
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the back side of the fish scale in the vertical direction, it is not able to increase the contact
area by its own deformation in the actual contact, but, instead, the contact with the FEP
is reduced in the actual contact separation process, which, in turn, leads to a decrease in
its output.
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The long-term stability of a device is crucial for its practical application. The output
voltage and current under a pressure of 50 N were repeatedly measured for eight cycles.
The results were shown in Figure 4d,e. It is found that the TENG can output a voltage
of about 7.4 V and a current of 0.18 µA stably. This fact confirms that the TENG exhibits
satisfactory repeatability. Thus, the TENG was used to charge different capacitors through
the rectifier bridge shown as an inset in Figure 4f. The TENG can charge the 2.2, 3.3, and
4.7 µF capacitors to 1.0 V in about 6.7, 11.5, and 17 s. This result indicates that the fish-scale
TENG can be used as a self-powered device to output signals. In contrast to the work of
Singh et al. [31], this work presents applications in harvesting energy from the human body.
The notable output voltages yielded by tapping the finger, bending the elbow, and walking
provide evidence that our TENG can be used to detect the movements of the human body.
Additionally, our TENG exhibits good output performance compared to the other TENGs
as highlighted in Table S1. Hence, the TENG shows potential application prospects in
healthcare and body information monitoring.

The power generation mechanism of the fish scale can be understood based on its
special structure as illustrated in Figure 5. Because the peptide bonds (-CO-NH-) formed
between amino acids and the hydroxyproline side chain form a large number of permanent
electrostatic dipoles, a large number of hydrogen bonds are formed between these dipoles
and polypeptide chains. The dipoles in the collagen form static polarization by hydrogen
bonding when unstressed. The spontaneous polarization of fish scales facilitates the
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increase of their surface charge density, which, in turn, improves the performance of the
fish-scale TENG. When the two materials are separated, an increase in the gap between
them triggers electron transfer. Once the separation distance reaches a certain extent, the
two electrodes become neutral. When the two materials are in close proximity, electrons
are transferred from the fish-scale membrane electrode to the FEP membrane electrode.
The TENG consisting of the fish scale/FEP generates current continuously. When the
two materials are in full contact, there is no potential difference and they are both in a
neutral state.
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Figure 5. Working principle diagram of the fish-scale TENG.

3.3. Applications

The pliability of fish scales enables the fish-scale TENG to function as a wearable and
flexible TENG for human activity detection. In light of this, we performed experiments
using the TENG to identify instances of walking, finger tapping, and elbow bending. The
output signal of the voltage, current, and charge are depicted in Figure 6. Figure 6a–c
demonstrate that tapping the TENG with a finger generates a consistent output voltage of
14 V, a current of 75 nA, and a charge of 7 nC. Figure 6d–f show that the TENG can generate
stable voltage, current, and charge signals of 50 V, 130 nA, and 20 nC, respectively, when
it is used to detect the elbow bending. The results depicted in Figure 6g–i suggest that
attaching the TENG to one’s foot while walking promptly elicits a steady voltage signal
with a value of approximately 100 V, a current of 200 nA, and a charge of 45 nC. During
walking, contact and separation processes occur, resulting in a potential difference between
the TENG’s two electrodes and generating a significant voltage signal. A stable voltage
output is produced when walking at a constant speed. The data indicate that the voltage
generally increases with movement amplitude. Although tapping a finger constitutes a
small movement, the TENG still recognizes it and produces the corresponding voltage.
The self-powered nanogenerator utilizing fish scales can sensitively detect the movements
of the human body for medical monitoring purposes. Once attached to the elbow, the
accompanying TENG bends and deforms, thus generating a maximum of 50 V. Therefore,
this nanogenerator is highly accurate in its movement detection and generates a significant
output signal accordingly. Our results suggest that this TENG holds great promise for
large-scale applications in healthcare and body information monitoring. In addition, in
order to verify that the TENG can power a device, we charge a 10 µF capacitor, and then use
the capacitor to power a calculator. As shown in Figure S2, the TENG charges the capacitor
to 2.3 V through the rectifier bridge, which, in turn, is used to power the calculator.
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Figure 6. The output signals of the fish-scale TENG used to detect the human activities of thumb
pressing (a–c), elbow bending (d–f), and walking (g–i).

4. Conclusions

In conclusion, we prepared a flexible, wearable, and self-powered triboelectric nano-
generator based on fish scales. The energy-harvesting ability of the TENG was investigated.
The output voltage of the TENG increases with an increase in the pressure. The TENG
can generate an output voltage of 7.4 V by collecting mechanical energy generated by a
constant pressure of 50 N. The TENG can be used to power low-power devices through a
rectifier bridge. In addition, as a wearable TENG, it can sensitively detect human activities
such as walking, finger tapping, and elbow bending. Our results reveal that the fish-scale
TENG holds promising applications in human mechanical energy collection, robot skin,
and human body monitoring.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano14050463/s1, Figure S1. Thermog—ravimetry analysis of fish scale;
Figure S2. Electronic calculator powered by the TENG through the capacitor. Table S1 Comparison of
the output properties of fish scales with other triboelectric materials. References [49–51] are cited in
the supplementary materials.
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