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Abstract: Polyamide 11 (PA11) and copolyester (TPC-E) were compounded through melt extrusion
with low levels (below 10%) of expanded graphite (EG), aiming at the manufacturing of a thermally
and electrically conductive composite resistant to friction and with acceptable mechanical properties.
Thermal characterisation showed that the EG presence had no influence on the onset degradation
temperature or melting temperature. While the specific density of the produced composite materials
increased linearly with increasing levels of EG, the tensile modulus and flexural modulus showed
a significant increase already at the introduction of 1 wt% EG. However, the elongation at break
decreased significantly for higher loadings, which is typical for composite materials. We observed
the increase in the dielectric and thermal conductivity, and the dissipated power displayed a much
larger increase where high frequencies (e.g., 10 GHz) were taken into account. The tribological results
showed significant changes at 4 wt% for the PA11 composite and 6 wt% for the TPC-E composite.
Morphological analysis of the wear surfaces indicated that the main wear mechanism changed from
abrasive wear to adhesive wear, which contributes to the enhanced wear resistance of the developed
materials. Overall, we manufactured new composite materials with enhanced dielectric properties
and superior wear resistance while maintaining good processability, specifically upon using 4–6 wt%
of EG.

Keywords: polymer composites; expanded graphite; dielectric properties; tribology; material
characterisation
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1. Introduction

Polymer materials find a wide range of applications because of their specific material
properties, e.g., lower stiffness and ease of manufacturing [1]. However, the application
of virgin (unmodified) polymers in electronics demanding, for example, electromagnetic
interference (EMI) control, electrical conductivity (EC) and thermal conductivity (TC), is
limited, since polymer materials are generally regarded as insulators [2,3].

Polymer-based composites [2,4,5] have offered solutions in many cases, including
microelectronics, as the properties of the virgin polymer matrix can be altered according
to the desired application [6]. Much research has been conducted using different kinds
of fibres, fillers and additives including carbon fibres [7,8] or aramid fibres [9], and glass
fibres [10]. Fillers previously investigated include organic fillers, e.g., starches, and metal
fillers [11], particularly with alumina [12] or beryllium oxide [13] to increase the EC and TC
of the polymer-based composite for microelectronic applications. Additives have also been
employed to alter the properties of polymer matrix materials, e.g., as lubricants, plasticizers,
stabilizers, anti-shock agents, and pigments [6]. However, if the filler content is above 10%,
the processability of the polymer-based composite may be changed too much compared to
the virgin polymer material, requiring adjustment of the processing conditions and limiting
the manufacturing of complex shapes [14]. Consequently, it remains challenging to manu-
facture a polymer-based composite material with valuable properties for microelectronic
applications while keeping its processability within conventional condition limits.

To alter/increase the EMI, EC, TC or mechanical properties of composites, carbon-
based fillers [15] have been of increasing interest due to their high intrinsic EC and TC,
stability, light weight and low cost [16,17]. Many allotropic forms of carbon, e.g., graphene,
carbon nanotubes (CNTs), graphene oxide (GO) and expanded graphite (EG) [18], have been
studied within the scope of material property modifications [19,20]. Graphene is a single
sheet of carbon atoms, while GO is prepared by treating graphite flakes with oxidizing
agents, introducing polar groups onto the graphite surface [19]. CNTs are commonly
referred to as rolled-up graphene sheets which can be further divided into single-walled
carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs), depending
on the number of graphene sheets [18]. EG consists of stacks of nanosheets, which form
a worm-like accordion which generally shows a good affinity with polymer materials.
For the latter reason, the influence of the addition of EG has been investigated by many
groups [21–26].

The wide range of molecular and morphological properties of the fillers was reviewed
by Wieme et al. [2]. These authors considered variations in filler types and shapes, the
dispersion quality of the filler, the mixing of matrix and filler material, and the processing
method. It is specifically stated that the aspect ratio (AR), i.e., the ratio of the length of the
filler to the cross-sectional diameter, is an important property, as fillers with a large AR
can form more easily an endlessly interconnected filler network with lower percentages
of filler present. This interconnected network acts as a thermal/electrical conductive
network within the polymer matrix and leads to a significant increase in EC and TC [27,28],
although the EC and TC properties are anisotropic and should be considered and measured
as such. The dispersion quality of the filler is of high importance for forming the latter
network, as poor dispersion (e.g., aggregation) will lead to gaps in the network and limit the
EC/TC potential.

Furthermore, Wieme et al. [2] mentioned that the main methods which can ensure a ho-
mogeneous dispersion of the filler are (i) in situ polymerization, (ii) solution compounding
and (iii) melt mixing [19], with the latter showing the most relevance for industrial applica-
tions [2] due to its wide applicability in industry, cost efficiency and low environmental
impact. The production of composites through a conventional melt blending, however,
establishes the percolation threshold (PT), i.e., the filler content at which the interconnected
network is formed [29,30], only at marginally higher loading levels compared to the other
blending techniques, as the dispersion of the filler is determined by the shear stress applied
to the material during processing. Hence, it is worthwhile to explore if one can attain the



Nanomaterials 2024, 14, 606 3 of 16

PT at very low filler-loading levels via an optimized melt-mixing processing method, while
keeping processing conditions similar to the conditions for the virgin polymer material.

Supported by literature data dealing with already lower and higher amounts of
fillers [1,21,23,24,31–35], it seems most interesting to focus on the better implementation
of EG into a polymer matrix. Gupta et al. [1], for instance, observed the electrical PT
between 1 and 2 wt% EG, within a polycarbonate matrix by solution compounding. Zheng
et al. [32] in turn prepared poly(methyl methacrylate) (PMMA)–EG composites through
direct solution blending, and found that the PT was already attained at 1 wt% of EG.
Zheng et al. [23], in turn, found the PT for the electrical conductivity of high-density
polyethylene (HDPE)-EG composites, prepared via melt blending, at 3 wt%, whilst the PT
for untreated graphite was only found at 5 wt%. In the latter investigation, the authors
also observed an increase in mechanical properties due to the addition of EG to the HDPE
matrix. In addition, Goyal et al. [34] investigated the effects of increasing EG content in a
polystyrene (PS) matrix on the thermogravimetric analysis (TGA), dynamic mechanical
analysis (DMA) and dielectric results by solution blending the composites. The PT for the
electrical properties was found at 2.5 vol% EG, although the dielectric constant decreased
significantly at higher frequencies. The study by Sever et al. [36], for example, found a PT
for the electrical conductivity of HDPE-EG composites around 5 wt%, whilst also noting a
more rapid increase in the Young’s modulus E in cases where loading levels were above
10 wt%. Simultaneously, significant increases in storage modulus (E′) were found for
loading levels up to 40 wt%. The study of Debelak et al. [37] reported similar increases for
the flexural modulus (Eflex), for EC and TC for filler amounts between 0 and 20 wt%, stating
that higher loading levels would become too difficult to process via solution blending.
Other studies [38,39] also reported significant increases in E′ with the addition of EG
to a polymer matrix. Yousefzade et al. [38], for instance, found the PT for EC around
6–8 wt% in an ethylene-vinyl acetate (EVA) matrix processed through melt compounding,
while E′ increased significantly between 6 and 15 wt%. Zhang et al. [39] found, by melt
processing of polyethylene terephthalate (PET) and EG, the PT for EC at around 3 vol%,
while significantly more rapid increases for E′ were found at 9 vol%.

It should be noted that moving electronic components may be subjected to friction,
which affects the wear of the part and limits the lifetime, and thus more than the conven-
tional mechanical properties should be considered [40]. Several studies [41–45] have thus
looked into the effect of graphite or CNTs on the tribological properties of the polymer-
composites. Kumar et al. [41], particularly, showed a lubricating effect of graphite on the
polyamide 6 (PA6) matrix, whilst also showing a decreasing trend in the specific wear rate
(K) with the addition of graphite. Jia et al. [46] reported that the coefficient of friction (COF)
and K of polyimide-based composites dropped significantly with the addition of 5 wt%
of EG. Jin et al. [47] compared the effect of natural graphite (NG) and EG on frictional
properties of composites and noticed a better lubrication performance of EG compared
to NG. Furthermore, the K of EG composites decreased significantly. Depending on the
application area, the decrease in COF might be desired, in combination with controlled TC
and EC properties, e.g., in the electronics of devices such as robotic gripper arms.

In the present work, we investigate the possibility of increasing the composite TC and
dielectric properties, i.e., the dielectric constant and dissipated power, without significantly
altering the other properties such as the mechanical stiffness/flexibility. For that, we aim
at the addition of low, i.e., below 10%, amounts of EG to also keep the processability of
the material within a typical processing window. We also aim at decreasing the coefficient
of friction and reducing the wear of the material. We also investigate the increase of di-
electric properties at much higher frequencies than previously reported [27,31,34,48] (up to
10 GHz) to push the limit of the composite material application. As the polymer matrix, we
selected PA11, based on the studies of Kumar et al. [41], and thermoplastic co-polyester-
elastomer (TPC-E) Arnitel® EL 740 (DSM Engineering Materials, Heerlen, The Netherlands).
Both materials are intended for high-performance applications, e.g., electronics and high
thermally stable components, and thus the introduction of thermo-conductive properties
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can be beneficial. Furthermore, both materials are often processed via injection mould-
ing which is the method we selected in this contribution. Furthermore, EG in PA and
TPE polymers exhibit favourable interfacial interactions due to their surface free energies:
53.6 mJ·m−2, 34 mJ·m−2, and ca. 40 mJ·m−2, respectively.

We include a detailed overview of the effect of low-weight percentages of the filler on
both the tribological, mechanical and thermal properties, combining in a single contribution
a wide spectrum of property analyses, including tribological.

2. Materials and Methods
2.1. Materials

As matrix materials, we used Polyamide 11 (PA11) Rilsan® BMNO by Arkema
(Colombes, France) and thermoplastic co-polyester-elastomer (TPC-E) Arnitel® EL 740
by DSM Engineering Materials (Heerlen, The Netherlands). Both materials are injection
moulding grades. The technical datasheets state a tensile modulus of 1280 and 800 MPa,
respectively. Furthermore, the density values (25 ◦C) mentioned are 1030 kg·m−3 for PA11
and 1290 kg·m−3 for TPC-E.

The expanded graphite (EG) used was SIGRATHERM GFG75, by SGL Carbon GmbH
(Wiesbaden, Germany). The median particle diameter (50th percentile of the cumulative
size distribution), as stated in the technical datasheet, is 75 µm and the powder density is
120 kg·m−3.

2.2. Manufacturing

The described matrix materials and EG were used to produce composites with 1, 2, 4
and 6 weight percentage (wt%) of filler via melt mixing in a co-rotating twin screw extruder
(APV MP19TC-40 Baker, Peterborough, UK). The produced filament was directly cooled in
a water bath at room temperature and shredded into pellets for injection moulding (IM).
Pellets were dried overnight at 60 ◦C prior to the injection moulding step. The IM machine
used to produce all relevant samples is an Engel ES 330/80 HL Injection Moulding machine
(Engel, Schwertberg, Austria).

General IM processing conditions for both matrix materials are shown in Table 1.
The same processing parameters are used as the corresponding virgin matrix material. A
temperature design, as seen in Table 1, was used for both extrusion and injection moulding
of the compounds.

Table 1. Processing conditions for compounds with matrix materials: (left) Rilsan BMNO, Arkema
(PA11) and (right) Arnitel EL 740, DSM (TPC-E).

Rilsan BMNO (PA11) Arnitel EL 740 (TPC-E)

Temperature Profile [◦C] 240—240—225—210 245—230—215—205
Mold Temperature [◦C] 40 50

Injection Speed [mm·s−1] 60 60
Clamping force [kN] 800 800

Holding Pressure [bar] 24 52
Dosing Speed [%] 70 60

Dosing pressure [bar] 10 4

2.3. Characterisation

The specific heat capacity (Cp) was measured using differential scanning calorimetry
(DSC) on a Netzsch DSC 214 (Selb, Bayern, Germany), according to the ASTM E1269
standard, after drying the specimens overnight at 60 ◦C. All measurements were performed
under a nitrogen (N2) atmosphere with a flow rate of 40 mL·min−1, over the range of 5 to
60 ◦C, with a heating rate of 20 ◦C·min−1. The Cp value at 20 ◦C was used for the anisotropic
TC measurements.

Thermal properties of the produced compounds were analysed via thermogravimetric
analysis (TGA) on a Netsch STA 449 F3 (Selb, Bayern, Germany) and by DSC measurements
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on a Netzsch DSC 214 (Selb, Bayern, Germany), according to the ISO 11 358-1 and ISO 11
357-1, respectively. All measurements were performed at a heating rate (β) of 10 ◦C·min−1

under a nitrogen atmosphere with a flow rate of 50 mL·min−1 for TGA and 40 mL·min−1

for DSC. The temperature interval used for TGA measurements was [50, 600] ◦C, while a
temperature interval of [50, 240] ◦C was used for DSC measurements.

Microscopy images were taken on a Keyence (Osaka, Japan) VHX-7000 microscope
with a VH-Z20R lens. Three-dimensional stitches (5 × 5) were taken of the pin samples
after tribological tests with the Keyence (Osaka, Japan) VHX-7000, at a magnification
of 200. Image stitches of 5 × 5 images were made to fully analyse the morphology of
the tested samples. The arithmetic average surface roughness (Ra) was measured on the
3D microscopy images, utilizing the short (λs) and long (λc) cut-off filters of 2.5 µm and
0.8 mm, respectively. The line roughness of each sample was measured at least 3 times,
perpendicular to the abrasive-wear grooves, and 2–7 sampling lengths were available for
every measurement.

The matrix–filler interface was investigated via scanning electron microscopy (SEM)
images performed on a Phenom Pro (Thermofisher, Waltham, MA, USA) electron micro-
scope. Produced samples were first submerged in liquid nitrogen for at least 2 min, after
which they were cryogenically fractured. The fracture surfaces were then further investi-
gated through SEM imaging. Cryogenic fractures are utilized so as to reduce the possibility
of changing the surface morphology, due to the imposed shear during fracturing.

Melt flow index (MFI) measurements were performed on the virgin materials on a
Tinius Olsen MP1200 (Horsham, PA, USA) machine with a nominal load of 2.16 kg at
200 ◦C for Rilsan BMNO (PA11) and 230 ◦C for Arnitel EL740 (TPC-E). The melt density,
melt flow rate (MFR) and melt volume flow rate (MVR) values were recorded, together
with the melt density, according to the standard ISO 1133.

Density measurements were performed according to ISO 1183-1, following the Archi-
medes method, on a Precisa (Dietikon, Switzerland) laboratory balance 205SM-DR. The
liquid used for the measurements was ethanol, with a measured density of 0.795 g·cm−3.
The density of at least 8 different specimens of every compound was determined, after
which the average and standard deviation were calculated.

Dielectric properties were measured by placing a sample with a thickness of 3 mm
on top of a known substrate (RO4003C) (Advanced Connectivity Solutions, Chandler, AZ,
USA) with copper coplanar waveguides (CPW). This allowed us to measure the influence
of the material on the propagation properties of the electromagnetic wave through CPW.
The dielectric constant was calculated by de-embedding the known substrate from the
combined measurement. The measurements were performed with a Keysight (Santa Rosa,
CA, USA) PNA-X over a frequency range from 10 MHz to 25 GHz, while only results up to
10 GHz are reported in the current work.

In order to find the dielectric constant of the polymer from the aggregated dielectric
constant containing the influence of air, substrate and polymer, the filling factor (FF) needed
to be determined. This FF defines the weighted average of the influence of all the materials
on the aggregated dielectric constant. The filling factor for a CPW, GCPW or microstrip
structure with an effective dielectric constant εeff and physically composed of a substrate
with dielectric constant εsub and further surrounded by air (ε = 1), is given by

FF =
εe f f − 1
εsub − 1

(1)

Thermal conductivity (TC) was measured on a Hot Disk TPS 2500S (Hot Disk, Göte-
borg, Sweden). All measurements were repeated 6 times at different locations of samples,
with a sample thickness of 3 mm. The TC of the virgin polymer materials was measured
according to the isotropic module, while the materials compounded with EG were mea-
sured according to the anisotropic module, following the ISO 22007 standard. A Hot
Disk 7577 sensor (Hot Disk, Götenborg, Sweden) with Teflon insulation was used for all
measurements. All samples were conditioned in a room at 23 ◦C ± 1 ◦C and 50 ± 10%
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relative humidity for at least 48 h prior to testing. Samples were tested under the same
conditions after they had been conditioned.

Tensile tests were performed according to the ISO 527-1, on an Instron 5565 (Norwoord,
MA, USA), with specimen type 1A, and the software program Bluehill 2 was used to analyse
the data. An extension rate of 1 mm·min−1 was used up to an elongation of 0.40% for
determination of the tensile modulus between 0.05 and 0.25% extension, after which the
secondary extension strain rate was 10 mm·min−1 until failure of the sample. An Instron
extensometer was used up until an elongation of 1.4% was attained.

Flexural tests were performed according to the ISO 178 on an Instron (Norwood, MA,
USA) 4464 machine, with a strain rate of 2 mm·min−1. The end-of-test strain rate was set to
15 mm. Analysis of flexural tests was carried out using the same Bluehill 2 software seen
with the tensile tests.

Tribological tests were performed on a Wazau (Berlin, Germany) TRM 1000 pin-on-disc
tribometer, with a normal load of 46 N and a sliding speed of 1 m·s−1, which corresponds to
a constant pv value (pressure multiplied by velocity value) of 0.92 (MPa·m)·s−1. The total
sliding distance considered was 3000 m. Raw data were processed by means of a moving
average, with a window size of 0.333% for the data points. The coefficient of friction (COF)
was taken at a sliding distance of 2500 m, as every sample showed a steady state at this
point. Counter surfaces were produced out of C45U (1.1730) tool steel, with an arithmetic
average roughness (Ra) value of 1.8 ± 0.1 µm, and maximal height of profile (Rz1max) and
total height of profile (Rt) values of 13.7 ± 1.0 and 14.5 ± 1.0 µm, respectively. All samples
were produced via injection moulding and had a diameter of 8 mm and height of 8 mm.
The mass of the samples was recorded prior to and after testing in a conditioned state
(23 ◦C ± 1 ◦C and 50 ± 10% relative humidity), so as to calculate the specific wear rate (K),
according to Equation (2):

K =
∆V
W·L =

∆m
W·L·ρ (2)

in which ∆V is volume loss, ∆m is the mass loss, ρ is the density, W is the applied normal
load and L is the sliding distance.

3. Results and Discussion
3.1. Molecular Properties

To ensure the optimal distribution of the filler in the matrix, we first studied the
thermal (DSC, TGA) and morphological (SEM) properties. It should be noted that such
optimal distribution forms the foundation for the processing of the composite material and
the realization of enhanced material properties, e.g., TC or resistance to wear.

Figure 1a displays the TGA measurement results for the virgin polymer matrix materi-
als (full lines) and the compounds with 6 wt% of EG (dashed lines). For both PA11 (black)
and TPC-E (red), no significant change in the degradation onset temperature (Tdeg,onset) is
visible. The values for the virgin matrix material were 409 ◦C and 381 ◦C, respectively,
while the degradation onset temperatures where EG was added was measured as 412 ◦C
for the PA11 compound and 380 ◦C for the compound with TPC-E as a matrix material.
The TGA tests were terminated after degradation of the polymer matrix, resulting in only
the remaining EG as the final mass. The final masses recorded during TGA measure-
ments showed wt% EG of 6.9% for PA11 and 5.3% for TPC-E, thus confirming that the
composites produced had a correct loading level of EG, taking into account reasonable
experimental error.

Similarly to the TGA results, the DSC results, as seen in Figure 1b, do not show
significant changes in the melting temperature (Tm). The crystallization peak temperature
(Tcryst), on the other hand, shows a slight shift to a higher temperature with EG added.
This could be expected, as heterogenous crystallization will occur more easily, compared
to homogeneous crystallization in a virgin polymer. This indicates that the added EG
will serve as crystallization surfaces, for heterogenous crystallization, within the polymer
matrix. The melting enthalpy of each polymer matrix increased slightly due to the addition
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of 6 wt% EG. The melting enthalpy during the second heating run increased slightly (ca.
10%) for both matrix materials, due to the addition of 6 wt% EG; more specifically, from
36.14 J·g−1 to 40.10 J·g−1 for PA11 and 34.10 J·g−1 to 37.33 J·g−1 for TPC-E, indicating
that there is a small increase in the percentage of crystallinity. The latter result can again
be linked to EG facilitating crystallization, as heterogenous crystallization will occur at a
higher temperature as the number of crystal lattices increases.
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Overall, it follows that the processability of the produced compounds will be similar
to the processability of the virgin matrix materials, as the onset degradation temperature
and the melting temperature do not change significantly.

The SEM images are included in Figure 2 and relate to imaging for cryogenically
broken samples to evaluate the morphology and matrix-filler interactions. In more detail,
Figure 2a,b show images of the PA11 composite with 6 wt% of EG. In both images, no
defined interface can be observed between EG and matrix, indicating efficient matrix–filler
interactions. Figure 2c,d show, in turn, images of the TPC-E composite with 6 wt% of EG.
Similarly to the images for PA11, it can be seen that the matrix materials seem to embed EG
very nicely. Furthermore, no voids can be seen for any of the matrix materials used. Some
agglomerations of fillers, however, are visible in Figure 2, indicating that the dispersion
of filler was not optimal, which will influence the change in properties as well, as stated
by Wieme et al. [2]. It should be noticed that the dispersion of the filler is influenced not
only by interactions with the matrix, which are favourable in our case, but also by the shear
during processing.

From Figure 2, it is further visible that no EG particles are found with a perpendicular
orientation to the other particles. This shows that there was a high influence of the process-
ing method on the final orientation of the EG particles within the polymer matrix and all
(or as good as all) the EG particles are aligned parallel to the flow pattern. Linking this to
the work of Wieme et al. [2], this indicates a non-uniform TC control.

Figure 3 shows the specific density measurement results for the composites with
increasing weight percentage (wt%) EG. An increasing trend in specific density with
increasing wt% EG is observed using both matrices. This seems to contradict the EG
datasheet, but it should be remembered that this datasheet states the bulk density of the
powder. The density of the EG powder stated is expected to be much lower than the specific
density of the powder itself. The overall higher specific density of the TPC-E material is as
expected, as the specific density stated in the datasheet of the virgin TPC-E has a value of
1290 kg·m−3 compared to a value of 1030 kg·m−3 for the virgin PA11 material.
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3.2. Thermal Conductivity and Dielectric Characterisation in View of Microelectronic Applications

As the EG fillers are oriented due to the manufacturing process [2,13], as was observed
via SEM (Figure 2), thermal conductivity measurements were performed in several direc-
tions to evaluate the thermal properties of the composites. Prior to the TC measurements,
the specific heat capacity (Cp) values were measured. Figure 4a shows that no difference in
Cp can be noticed, due to the addition of EG. Furthermore, the Cp-value of PA11 is generally
higher than the value for TPC-E, highlighting a strong difference and noting the lower
specific densities in Figure 3 for PA11.
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plane (solid lines) and in-plane (dashed lines) thermal conductivity (TC) results for PA11 (black)
and TPC-E (red). B-spline trendlines were added to indicate the trend taken from the current
measurement results.

In Figure 4b, both the through-plane (solid line) and in-plane (dashed line) TC measure-
ment results are presented and compared to the state-of-the art relatively high TC values
found at 6 wt% EG. While the measurement results for PA11 (black) show a significant
difference in through-plane and in-plane TC values, the difference is not so pronounced
for the TPC-E (red) matrix composites. In the latter case, a difference between both values
can only be noticed for the 6 wt% EG samples, highlighting the relevance of this amount.
The difference in through-plane and in-plane TC can be explained due to the processing
method [2]. As explained above, due to the injection moulding process used to produce
the samples, the orientation of most EG particles is aligned in the direction of the material
melt flow, which is along the part [2], as we also observed via SEM (Figure 2). This leads
to a more optimal thermal conductive network being formed in-plane, compared to the
perpendicular direction.

The difference between both composites for the relative importance of both TC values
can be related to basic rheological analysis. The MFR results for both materials are not
significantly different, as 19.7 ± 2.4 g·(10 min)−1 and 21.6 ± 1.5 g·(10 min)−1 were the results
for TPC-E and PA11, respectively. Melt volume flow-rate (MVR) results, however, did
indicate that PA11 is significantly less viscous, as MVR values of 17.8 ± 1.6 cm3·(10 min)−1

and 24.0 ± 0.7 cm3·(10 min)−1 were found for TPC-E and PA11, respectively. This is related
to a lower melt density for the virgin PA11 material (0.9 ± 0.1 g·cm−3) compared to TPC-E
(1.1 ± 0.1 g·cm−3). Consequently, during processing, PA11 flows more easily, creating
more easily the orientation of the filler. The latter enhances the in-plane TC for the PA11-
based composite.

Intriguingly, no clear PT is visible in Figure 4b, indicating that this threshold has
not yet been reached with 6 wt% of EG. Li et al. [49] showed in their study that a further
increase in TC can be attained with a much larger wt% of EG, while Sever et al. [36] showed
that the mechanical properties showed even more significant change up to a loading level
of 40 wt% EG. The current study aims to keep the processability and mechanical properties
of the composite materials similar to those of the virgin polymer matrix materials. Low
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loading levels of EG (up to 6 wt%) were therefore used, as the research by Sever et al. [36]
indicated that mechanical properties changed significantly, starting from 10 wt%.

Similar to the TC data, an increasing trend can be noticed for the dielectric constant
(εr) measurements, as seen in Figure 5a, in cases where the loading level of EG increases.
Furthermore, similar to the study of Xie et al. [48], a decrease in εr is visible with increasing
frequency. The frequencies in the study of Xie et al. were, however, limited to the range of
1 to 106 Hz, which explains why much higher dielectric constants (e.g., as high as 180 at
50 Hz) were achieved within their research. Goyal et al. [34] stated that the interfacial
dipoles do not have enough time to orient themselves at higher frequencies, which explains
the large differences in dielectric constant between previously reported values for low
frequencies and the values achieved in the current research. The decrease in dielectric
constant with increasing frequency was also noted by Lecoublet et al. [50], and was allocated
to the limitation of dipole mobility as the frequency increased.
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In Figure 5b, the dissipated power is presented as a function of the filler content
amount. Only a small increase with increasing loading levels of EG at lower frequencies,
i.e., 100 MHz (solid line) and 2.45 GHz (dashed line), is observed. In contrast, the dissipated
power at a frequency of 10 GHz (dotted line) nearly doubled upon comparing the virgin
polymer and the compounds with 6 wt% EG. This makes these 6%-based composites
promising materials for EMI shielding applications [51], as 8.3–12.4 GHz is commonly used
within communication applications [52]. The large rise in EMI shielding effectiveness was
also noticed in the study of Sankaran et al. [53], in which 7 wt% of graphene was added
within a PVDF matrix.

Overall, it follows that no clear PT can be noticed for the TC and that the dielectric
values are rather low for low EG loadings, but still an increase in both properties re-
sulted. The increase in dissipated power especially, obtained for very high frequencies (i.e.,
10 GHz), is very interesting. The dissipated power is expected, however, to lead to a high
increase in temperature of the polymer matrix and, as the TC did not yet show a PT, the
increase in dissipated power could lead to a non-acceptable increase in temperature of the
polymer material. Hence, it could be that a slight increase in the EG amount is needed for
use at higher frequencies.

3.3. Mechanical and Tribological Characterisation in View of Durabillity and Wear Resistance

The results for tensile and flexural modulus measurements can be seen in Figure 6a.
Both the tensile modulus (E) (full line) and flexural modulus (Eflex) (dashed line) show a
significant increase after the initial introduction of EG (1 wt%), which is similar to the effect
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observed by Potts et al. [54]. The increasing trend in elastic modulus (E) (Figure 6a) is,
however, opposite to the trend in the research by Difallah et al. [42] with graphite powder,
but, in any case, the decreasing trend for the elongation at break (Figure 6b) is similar;
Difallah et al. [34] noted a drop in elongation at break starting at the initial introduction of
graphite powder in an acrylonitrile butadiene styrene (ABS) matrix.

Nanomaterials 2024, 14, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 6. (a) Tensile modulus (full lines) and flexural modulus (dashed lines) of compounds with 
increasing wt% EG, using PA11 (black) and TPC-E (red) as a matrix material. (b) Tensile elongation 
at break, as measured for compounds with increasing wt% EG, using PA11 (black) and TPC-E (red) 
as a matrix material. (c) Example tensile test curves of the virgin material (dashed line) and the 1 
wt% EG compounds (full line), for matrix materials PA11 (black) and TPC-E (red). B-spline trend-
lines were added to indicate the trend taken from the current measurement results. 

An increase in EG loading levels leads to a general increasing trend in the modulus 
values, making the material stiffer. This is also supported by the tensile test graphs in 
Figure 6c and the elongation-at-break results in Figure 6b. This differs slightly from the 
results found by Zheng et al. [23], as they found in their study that the modulus only 
increased slightly, due to a poor matrix–filler interface for the HDPE-EG composite. In 
that study, the increase in modulus, despite the fact that a poor matrix–filler interface was 
present, was allocated by the authors to the higher tensile properties of the expanded 
graphite. However, in the current study, a more significant increase in tensile modulus 
was found due to the high stiffness of the EG and a good matrix–filler interface (Figure 2). 

A more detailed analysis in Figure 6 reveals that the virgin polymer materials 
(dashed line) show a very ductile behaviour if a tensile load is applied. The elongation at 
break for virgin matrix materials, as can be seen in Figure 6b, was 281 ± 20% for virgin 
PA11 and 302 ± 19 for virgin TPC-E. These values decreased to 22 ± 3% and 30 ± 5%, re-
spectively, at the initial introduction of 1 wt% of EG. It further follows from Figure 6c that 
the virgin polymer materials showed strain hardening near the end of the tensile tests, 
with PA11 also showing some signs of necking. The composites, on the other hand, did 
not show this ductile behaviour, as fillers within the polymer matrix acted as stress con-
centrators, therefore raising the localized stresses before failure occurred [20]. The intro-
duction of filler thus clearly induces a ductile–brittle transition. Similarly, Zheng et al. [20] 
reported an increase in tensile modulus and a significant decrease in elongation at break 
where HDPE was reinforced with 3 wt% of EG. Furthermore, the results are in line with 
the results found by Liu et al. [55], as their results indicated a strong improvement in elas-
tic modulus through the addition of 1 wt% of GO in a polyimide matrix. 

Figure 6. (a) Tensile modulus (full lines) and flexural modulus (dashed lines) of compounds with
increasing wt% EG, using PA11 (black) and TPC-E (red) as a matrix material. (b) Tensile elongation at
break, as measured for compounds with increasing wt% EG, using PA11 (black) and TPC-E (red) as a
matrix material. (c) Example tensile test curves of the virgin material (dashed line) and the 1 wt% EG
compounds (full line), for matrix materials PA11 (black) and TPC-E (red). B-spline trendlines were
added to indicate the trend taken from the current measurement results.

An increase in EG loading levels leads to a general increasing trend in the modulus
values, making the material stiffer. This is also supported by the tensile test graphs in
Figure 6c and the elongation-at-break results in Figure 6b. This differs slightly from the
results found by Zheng et al. [23], as they found in their study that the modulus only
increased slightly, due to a poor matrix–filler interface for the HDPE-EG composite. In
that study, the increase in modulus, despite the fact that a poor matrix–filler interface
was present, was allocated by the authors to the higher tensile properties of the expanded
graphite. However, in the current study, a more significant increase in tensile modulus was
found due to the high stiffness of the EG and a good matrix–filler interface (Figure 2).

A more detailed analysis in Figure 6 reveals that the virgin polymer materials (dashed
line) show a very ductile behaviour if a tensile load is applied. The elongation at break for
virgin matrix materials, as can be seen in Figure 6b, was 281 ± 20% for virgin PA11 and
302 ± 19 for virgin TPC-E. These values decreased to 22 ± 3% and 30 ± 5%, respectively,
at the initial introduction of 1 wt% of EG. It further follows from Figure 6c that the virgin
polymer materials showed strain hardening near the end of the tensile tests, with PA11
also showing some signs of necking. The composites, on the other hand, did not show
this ductile behaviour, as fillers within the polymer matrix acted as stress concentrators,
therefore raising the localized stresses before failure occurred [20]. The introduction of
filler thus clearly induces a ductile–brittle transition. Similarly, Zheng et al. [20] reported
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an increase in tensile modulus and a significant decrease in elongation at break where
HDPE was reinforced with 3 wt% of EG. Furthermore, the results are in line with the results
found by Liu et al. [55], as their results indicated a strong improvement in elastic modulus
through the addition of 1 wt% of GO in a polyimide matrix.

Figure 7a shows the coefficient of friction (COF) as measured during pin-on-disc tests.
Statistical analysis (one-sided t-test) showed that for the COF of PA11 significant differences
could only be noted starting from 4 wt% of EG, while the decrease in COF is only significant
at 6 wt% in the case of the TPC-E. For PA11, the COF decreased from 0.47 to 0.21 between
the virgin polymer material and the 6 wt% composite, while the COF for TPC-E material
was 0.40 for the virgin polymer material and 0.33 for the 6 wt% EG composite material.
Via the introduction of EG, we were thus able to improve the tribological properties of the
composites. These results are in line with the results of the study by Sathees et al. [41],
noting a reduction in COF for polyamide 6 (PA6) composites with a loading level of 5 wt%
of graphite. The observed reduction in their study continued with increasing percentages
of graphite (up to 40 wt%).
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Figure 7b indicates that the specific wear rate (K), as calculated via Equation (2),
reduces for PA11 once the COF reduces, while for TPC-E K slightly increases. It should
be noted that during the measurements the end-of-test contact temperature was between
80 and 120 ◦C and that on the countersurface a transfer layer was formed. This is also
supported by the microscopic images of the tested samples, as seen in Figure 8. Figure 8a,c
show tribological samples of the virgin PA11 and virgin TPC-E, respectively, whereas
Figures 8b and 8d show the samples of the composites with 6 wt% EG, with matrix
materials PA11 and TPC-E, respectively.

From Figure 8a it can be seen that the main wear mechanism for the virgin PA11
material is abrasive wear [56]. This can be seen, as the grooves visible are created by
ploughing and micro-cutting, and by the asperities of the rough C45U countersurfaces
during testing. Furthermore, small traces of adhesive wear are visible on the tested surface
of the counter surfaces. Despite the fact that Figure 8c shows very similar results for the
virgin TPC-E material, fewer deep cuts can be seen and a larger number of traces produced
by adhesive wear are visible. This is supported by the COF results in Figure 7a, as a smaller
COF resulted after 2500 m of sliding. This leads to the conclusion that a better and more
significant self-lubricating transfer layer could be formed by the virgin TPC-E material,
compared to the virgin PA11 material.



Nanomaterials 2024, 14, 606 13 of 16Nanomaterials 2024, 14, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 8. Microscopic images made of pin samples after pin-on-disc test at a magnification of 200 of 
(a) virgin PA11—mainly abrasive wear; (b) PA11—6 wt% EG—much higher amount of adhesive 
wear, with signs of abrasive wear; (c) Virgin TPC-E—mainly abrasive wear, with signs of adhesive 
wear; (d) TPC-E—6 wt%—much higher amount of adhesive wear, with signs of abrasive wear. 

From Figure 8a it can be seen that the main wear mechanism for the virgin PA11 
material is abrasive wear [56]. This can be seen, as the grooves visible are created by 
ploughing and micro-cutting, and by the asperities of the rough C45U countersurfaces 
during testing. Furthermore, small traces of adhesive wear are visible on the tested surface 
of the counter surfaces. Despite the fact that Figure 8c shows very similar results for the 
virgin TPC-E material, fewer deep cuts can be seen and a larger number of traces pro-
duced by adhesive wear are visible. This is supported by the COF results in Figure 7a, as 
a smaller COF resulted after 2500 m of sliding. This leads to the conclusion that a better 
and more significant self-lubricating transfer layer could be formed by the virgin TPC-E 
material, compared to the virgin PA11 material. 

Upon focusing only on the 6 wt% EG composites, as visible in Figure 8b,d, the traces 
of abrasive wear are still present, although to a smaller extent. Furthermore, it can be no-
ticed for both compounds that the morphology of the samples indicates a larger amount 
of adhesive wear. Combining the latter results with the results from Figure 7a allows to 
postulate that the addition of EG increased the amount of adhesive wear and improved 
the creation of a transfer layer and that the anti-frictional properties of EG led to a decrease 
in COF for both matrix materials. The transfer layer has been found to have self-lubricat-
ing [46] effects, leading to a lower COF, which could be even more significant in cases 
where a much larger wt% of EG is added and can be of interest for the continued devel-
opment of triboelectric generators [40]. 

Ra values, as measured for the virgin samples after pin-on-disc tests, were found to 
be 1.5 ± 0.2 µm for both PA11 and TPC. Measurements for the 6 wt% composite materials 
showed Ra values of 1.0 ± 0.1 µm and 1.2 ± 0.2 µm for PA11 and TPC composites, respec-
tively. These values indicate that adhesive wear results in a more uniform wear of the 
complete pin-sample surface, compared to the wear present as a result of abrasive wear. 

  

Figure 8. Microscopic images made of pin samples after pin-on-disc test at a magnification of 200
of (a) virgin PA11—mainly abrasive wear; (b) PA11—6 wt% EG—much higher amount of adhesive
wear, with signs of abrasive wear; (c) Virgin TPC-E—mainly abrasive wear, with signs of adhesive
wear; (d) TPC-E—6 wt%—much higher amount of adhesive wear, with signs of abrasive wear.

Upon focusing only on the 6 wt% EG composites, as visible in Figure 8b,d, the traces of
abrasive wear are still present, although to a smaller extent. Furthermore, it can be noticed
for both compounds that the morphology of the samples indicates a larger amount of adhe-
sive wear. Combining the latter results with the results from Figure 7a allows to postulate
that the addition of EG increased the amount of adhesive wear and improved the creation
of a transfer layer and that the anti-frictional properties of EG led to a decrease in COF for
both matrix materials. The transfer layer has been found to have self-lubricating [46] effects,
leading to a lower COF, which could be even more significant in cases where a much larger
wt% of EG is added and can be of interest for the continued development of triboelectric
generators [40].

Ra values, as measured for the virgin samples after pin-on-disc tests, were found to
be 1.5 ± 0.2 µm for both PA11 and TPC. Measurements for the 6 wt% composite materials
showed Ra values of 1.0 ± 0.1 µm and 1.2 ± 0.2 µm for PA11 and TPC composites, respec-
tively. These values indicate that adhesive wear results in a more uniform wear of the
complete pin-sample surface, compared to the wear present as a result of abrasive wear.

4. Conclusions

In this study, polyamide 11 (PA11) and thermoplastic co-polyester (TPC-E) were
filled with low weight percentages (wt%) of expanded graphite (EG) via melt mixing,
aiming at the manufacturing of a composite material with enhanced thermal and electric
conductivity while maintaining similar settings from the virgin processing and controlling
the mechanical and tribological properties.

It was shown that the thermal conductive and dielectric properties of both polymer
matrices can be enhanced with low weight percentages of EG, while keeping the process-
ability similar to the virgin polymer matrix processability. This was carried out via the most
industry-relevant processing technique, allowing the development of new use cases with
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polymer composite materials, combining beneficial properties of the polymer matrix, e.g.,
flexibility, and the enhanced properties obtained through low loading levels of EG fillers.

Thermal analysis via TGA and DSC measurements showed no differences in onset
degradation temperature and melting temperature, while the crystallization temperature
shifted to slightly higher (ca. 6 ◦C for PA11 and 16 ◦C for TPC-E) temperatures. Slightly
higher percentages (ca. 10%) of melting enthalpy were found, as the addition EG within
the matrix materials allowed for heterogeneous crystallization, also explaining the increase
in crystallization temperature. Morphological analysis of cryogenically broken samples
showed a good matrix–filler interface and flow-induced orientation of the filler.

Dielectric and thermal conductive properties were enhanced as well, through the
addition of EG, although the percolation threshold could not be attained. A difference in
in-plane and through-plane thermal conductivity was visible for both materials, albeit at
different loading levels of EG. MFR measurements indicated that the les-viscous matrix
material, i.e., PA11, showed a higher tendency to orient the filler particles during processing,
explaining the difference in the in-plane and through-plane thermal conductive network
that could be formed at 1 wt% EG. The dielectric constant remained rather low, compared to
previous studies, due to the high frequencies that were considered. However, the dissipated
power showed a much larger increase at high frequencies.

Furthermore, the tensile and flexural modulus showed an increase, starting from a
very low filler content of EG. The elongation at break showed a significant decrease at the
initial introduction of 1 wt% of EG within both matrix materials.

In addition, the coefficient of friction of the produced composite materials only showed
a significant decrease at 4 and 6 wt% EG, for PA11 and TPC-E, respectively. The specific
wear rate, on the other hand, showed a reduction at 6 wt% for the PA11-composites, while
the specific wear rate of TPC composites showed a significant increase. Morphological
investigation of the tested surfaces showed that the main wear mechanism changed from
abrasive to adhesive wear. The decrease in coefficient of friction and the change in main
wear mechanism were attributed to the addition of EG, as EG promotes the creation of a
transfer layer and is known to be a solid lubricant.

Hence, to optimize all properties studied, one needs to compromise by either slightly
lowering the EG content versus the 6% loading case or increase this content in cases where
TC strong increases need to be achieved.
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