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Abstract: Diamond/aluminum composites have attracted significant attention as novel thermal
management materials, with their interfacial bonding state and configuration playing a crucial
role in determining their thermal conductivity and mechanical properties. The present work
aims to evaluate the bending strength and thermal conductivity of CNT-modified Ti-coated
diamond/aluminum composites with multi-scale structures. The Fe catalyst was encapsulated on
the surface of Ti-coated diamond particles using the solution impregnation method, and CNTs were
grown in situ on the surface of Ti-coated diamond particles using the plasma-enhanced chemical
vapor deposition (PECVD) method. We investigated the influence of interface structure on the
thermal conductivity and mechanical properties of diamond/aluminum composites. The results
show that the CNT-modified Ti-coated diamond/aluminum composite exhibits excellent bending
strength, reaching up to 281 MPa, compared to uncoated diamond/aluminum composites and Ti-
coated diamond/aluminum composites. The selective bonding between diamond and aluminum
was improved by the interfacial reaction between Ti and diamond particles, as well as between
CNT and Al. This led to the enhanced mechanical properties of Ti-coated diamond/aluminum
composites while maintaining acceptable thermal conductivity. This work provides insights
into the interface’s configuration design and the performance optimization of diamond/metal
composites for thermal management.

Keywords: diamond/aluminum composites; CNT; interface reaction; bending strength; interface
microstructure

1. Introduction

With the continuous miniaturization and integration of lightweight modern elec-
tronic equipment, the demand for advanced thermal management materials is increas-
ing [1–3]. Diamond/aluminum composites, regarded for their unique properties such as
high thermal conductivity [4–6] and an adjustable coefficient of thermal expansion [7,8],
have found applications in thermal management materials for electronic packaging. The
diamond/aluminum interface, as a nonmetal/metal interface, is highly non-wetting
and acoustically mismatched [9,10], so the performance of the composite is determined
by the interface between diamond and aluminum. Additionally, Al4C3, a brittle and
easily hydrolyzed interfacial product, is prone to be formed in the preparation pro-
cess of diamond/aluminum composites [11–14]. The interfacial reaction promotes the
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interfacial bonding between diamond and aluminum, allowing for the fabrication of dia-
mond/aluminum composites with high thermal conductivity by controlling the content
and size of Al4C3 [10,15]. However, the requirements of thermal management materials
extend beyond high thermal conductivity and good interface bonding, the high reliability
of the composites is also essential. It is reported that when diamond/aluminum compos-
ites were immersed in water at room temperature for 115 days, the thermal conductivity
of composites decreased from 467 W/(m·K) to 347 W/(m·K), and the tensile strength
decreased from 105 MPa to 61 MPa [16].

Currently, researchers have developed numerous methods to optimize the dia-
mond/aluminum interface to address the issues mentioned above, such as introducing
an interface layer that bridges acoustic mismatch and changing the surface state of dia-
mond particles [12,17–25]. Xue et al. [26] modified the interface of diamond/aluminum
composites by coating Ti on the surface of diamond particles and adding Ti to the matrix.
It was found that when the nominal titanium content was the same, the thermal conduc-
tivity of Ti-coated diamond/aluminum composites was higher than that of diamond/Ti-
aluminum composites, with the highest reaching 475 W/(m·K). Dong et al. [27] inserted
a 20 nm SiC interface layer at the interface between diamond and aluminum, result-
ing in a thermal conductivity of 485 W/(m·K) for the composite. Compared with the
uncoated diamond/aluminum composite, the thermal conductivity of a ZrC-coated dia-
mond/aluminum composite prepared by Li et al. [28] was reduced from 709 W/(m·K)
to 572 W/(m·K), which inhibited the formation of Al4C3, a harmful interface product
prone to hydrolysis, while maintaining acceptable thermal conductivity. In addition,
Monachon et al. [20] also reported the effect of diamond terminals on the thermal con-
ductivity of the diamond/aluminum interface. Their experimental results indicate that,
compared to the H-terminal diamond/aluminum interface, the oxygen-terminal dia-
mond/aluminum interface displays higher interfacial thermal conductance. While this
study provides a new perspective for exploring interface modification [20], it did not
consider the influence of C-Al reactions on the thermal conductivity of composites.

For diamond/metal composites, interfacial in situ growth has also been applied to
enhance the thermal conductivity of composites. Xu et al. developed a diamond/copper
composite with a thermal conductivity as high as 711 W/(m·K) by employing a scal-
able monolayer-functionalized (SAM) nanointerface, where the diamond particle size
and volume fraction were 200 µm and 50%, respectively [29]. The in situ growth of
graphene between diamond and copper has also been attempted to improve the wettabil-
ity and alleviate acoustic mismatch between diamond and copper [30]. Experiments have
demonstrated that the introduction of graphene interlayers plays a positive role. How-
ever, research on in situ growth for the interfacial modification of diamond/aluminum
composites is rarely reported.

For diamond/aluminum composites, more research focuses on their thermal con-
ductivity. The mechanical properties, friction properties, and optical properties of dia-
mond/aluminum composites, which have attracted the interest of some researchers, are
less reported. Wu et al. [31] found that when the coating time of Ti on a diamond surface
via the molten salt method was 90 min, the corresponding diamond/aluminum compos-
ite obtained a high tensile strength of 76 MPa. Chen et al. [32] showed that the wear
resistance of diamond/aluminum composites prepared via solid-state cold spray additive
manufacturing technology is comparable to that of selective laser-formed Inconel625 and
17−4PH alloys. Bellucci et al. [33] reported the photoelectric application of nanostructured
diamond/aluminum composites with visible radiation spectra.

In this study, we synthesized CNTs grown in situ on the surface of Ti-coated dia-
mond particles and investigated the bending strength of CNT-modified Ti-coated dia-
mond/aluminum composites with multi-scale structures. The aim of this study is to
elucidate the interfacial structure of diamond/aluminum composites and clarify the influ-
ence of multi-scale nanomodification structures on the performance of composite.
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2. Materials and Methods
2.1. Materials

As the matrix material, 1060 bulk aluminum with a purity of 99.99 wt.% was purchased
from Northeast Light Alloy Co., Ltd., Harbin, China. Monocrystalline diamond particles
(MBD4 type, Henan Huanghe Whirlwind Co., Changge, China) with an average particle
size of 355 µm were used as reinforcements for the composites. The surface of a diamond is
composed of six square {100} planes and eight hexagonal {111} planes.

2.2. Preparation of CNT−Ti−Diamond Multiscale Architectures

The Ti coating on the diamond particles was prepared via magnetron sputtering,
with a thickness of 300 nm. Then, Fe(NO3)3·9H2O acted as a catalyst to coat the Ti-
coated diamond surface. First, the Ti-coated diamond was immersed in a 0.05 mol/L
Fe(NO3)3·9H2O solution, stirred for 4 h using a magnetic stirrer, and then soaked at room
temperature for 12 h. The solution was poured off, and the diamond particles coated with
Fe(NO3)3·9H2O were dried. Ti-coated diamond particles loaded with Fe(NO3)3·9H2O
were moved into a PECVD reaction chamber. Methane was used as a carbon source, and
hydrogen was used as a reducing gas and carrier gas. Ti-coated diamond particles coated
with Fe(NO3)3·9H2O were heated to 650 ◦C at a rate of 10 ◦C/min and held for 30 min
under the protection of H2 with a flow rate of 20 sccm, and then Fe3+ was reduced to
metallic Fe. Then, the radio frequency (RF) was set at 13.56 MHz to generate plasma
for 20 min, and carbon nanotubes were grown on the surface of diamond particles after
the methane/hydrogen mixture was introduced into the CVD reactor at a flow rate of
20/5 sccm at a total pressure of 140~160 Pa. After the reaction was completed, the RF and
heating power supply were turned off. The reactor was cooled to room temperature in a
H2 atmosphere. Finally, the multi-scale structure of CNT−Ti−diamond was prepared
and taken out.

2.3. Fabrication of Diamond/Al Composite

The CNT-modified Ti-coated diamond/Al composites with a diamond volume fraction
of 60% were prepared using the gas-assisted pressure infiltration (GPI) method. The details
are as follows: First, diamond particles were filled into a graphite mold and vibrated.
Afterward, the aluminum ingot was placed on the top of the mold containing diamond
particles, and they were placed in the furnace together. Subsequently, the mold with
diamond was preformed, and an aluminum ingot was then heated to 800 ◦C at a heating
rate of 30 ◦C/min, where it stayed for 20 min under vacuum; then, it was pressurized
until the gas pressure reached 15 MPa to complete the infiltration process. Finally, it was
cooled down to room temperature in a furnace, and diamond/aluminum composites were
obtained. Uncoated diamond/Al composites and untreated Ti-coated diamond/aluminum
composites were fabricated via the same process for comparison.

2.4. Characterization

X-ray diffraction (XRD, Philips Company, Almelo, Netherlands) with Cu-Kα radiation
was used to analyze the phase structure of diamond particles and diamond/Al composites.
A Quanta 200FEG (Hillsboro, OR, USA) field emission environmental scanning electron mi-
croscope (SEM) was employed to characterize the microstructure of the diamond particles,
as well as the fracture morphology of diamond/Al composites.

Three-point bending tests were conducted on an Instron 5569 universal electrical
tensile testing machine (Instron, Boston, MA, USA) with a span of 30 mm and a crosshead
speed of 0.5 mm/min, with rectangular samples of 3 mm × 4 mm × 36 mm. Three samples
of each type of composite were tested to avoid the influence of accidental errors. All
samples were polished with sandpaper before testing. The thermal conductivity of the
obtained diamond/Al composites was derived from the equation λ = αρc, where λ, α, ρ,
and c represent thermal conductivity, thermal diffusivity, the density of the composite,
and specific heat capacity, respectively. Thermal diffusivity (α) was measured using the
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LFA 467 Nanoflash instrument(Netzsch, GmbH, Selb, Germany) at room temperature with
disk-shaped samples of Φ12.7 mm × 3 mm. The specific heat capacity was determined by
the rule of mixture (ROM).

3. Results
3.1. Morphology of Modified Diamond Particles

The morphology of obtained Ti-coated diamond particles is shown in Figure 1. It
can be observed that the diamond exhibits a regular shape, and massive bright spherical
substances are distributed on the surface of the diamond. Both the quadrilateral {100}
and hexagonal {111} crystal planes of the diamond particles are coated with a Ti layer.
EDS spectrum analyses of the micro-region containing the spherical substances show two
elements, Ti and C. The low magnetron sputtering temperature is not sufficient to make
the diamond react with Ti, indicating that the spherical material is titanium, and this is
caused by the solidification and aggregation of Ti in the process of magnetron sputtering.
The Ti-coated diamond particles were ball-milled to break the Ti coatings, and then the
thickness of the Ti coatings was determined to be about 300 nm according to Figure 1e.
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CNT-modified Ti-coated multi-scale modified diamond reinforcements were pre-
pared to enhance the mechanical properties of Ti-coated diamond/aluminum composites.
Figure 2 shows the microstructure and phase analysis of in situ CNT growth on the
surface of Ti-coated diamond particles by PECVD. It can be seen that CNTs are formed
on all crystal faces of the diamond particles. From the enlarged Figure 2b, it can be seen
that high-density CNTs are distributed on the diamond surface, and some CNTs exhibit
bending and entanglement phenomena.
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The thickness of CNT generated in situ on the surface of Ti-coated diamond is approx-
imately 1 µm (Figure 2e). Based on the thickness of Ti coatings on the diamond surface and
the observed length of CNT, we estimated the volume fractions of CNT, Ti, and diamond
in CNT-modified Ti-coated diamond to be 1.53%, 0.45%, and 98.02%, respectively. For
CNT-modified Ti-coated diamond particles, the XRD pattern in Figure 2f reveals extremely
strong diamond diffraction peaks. While CNTs were also detected, their diffraction peaks
were weak due to their low content. Fe(NO3)3, serving as the precursor of the catalyst, was
reduced to Fe to realize the growth of CNT on the surface of Ti-coated diamonds. Previous
reports suggest that the growth of CNT on the Ti surface via the CVD method follows the
top growth mode, the catalytic particles are coated by C atoms in the CNT, and finally, the
CNT is precipitated from the bottom of the catalyst [34]. Consequently, some Fe remains,
and the grown CNT accounts for 1.53 vol.% of the CNT-modified Ti-coated diamond and
0.92 vol% of the CNT-modified Ti-coated diamond/aluminum composite. As a result, the
corresponding Fe content is even lower, making it difficult to detect.

3.2. Microstructure of Diamond/Al Composites

CNT-modified Ti-coated diamond/aluminum composites were prepared via gas-
assisted pressure infiltration, and Ti-coated and uncoated diamond/aluminum com-
posites were also fabricated using the same process for comparison (denoted as CNT-
modified Ti-coated diamond/Al composites, Ti-coated diamond/Al composites, and
uncoated diamond/Al composites, respectively). Figure 3 shows the XRD patterns of the
above three diamond/aluminum composites. In addition to the basic Al and diamond
diffraction peaks (shown in Figure 3a), it can be seen in Figure 3b that TiC and Al3Ti are
generated in CNT-modified Ti-coated diamond/aluminum composites and Ti-coated di-
amond/aluminum composites. The TiC diffraction peak of the CNT-modified Ti-coated
diamond/aluminum composite shows a higher peak intensity, which means that the
higher content of TiC is attributed to the extra formation of TiC in the process of in situ
growth of CNTs. In addition, the diffraction peak of Al4C3 was detected in the uncoated
diamond/aluminum composite and the CNT-modified Ti-coated diamond/aluminum
composite, and the generation of Al4C3 was attributed to different reactions. In uncoated
diamond/aluminum composites, Al4C3 is formed via the interfacial reaction of molten
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aluminum with diamonds. However, for CNT-modified Ti-coated diamond/aluminum
composites, Al4C3 is formed via the reaction of molten aluminum with CNTs formed in
situ on the surface of Ti-coated diamond.
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Figure 4 shows the microstructure of the prepared diamond/aluminum composite.
It can be seen in Figure 4a–c that the diamond is uniformly distributed in the aluminum
matrix, which is similar to the results reported in Refs. [15,35]. Since the diamond is
hexoctahedral rather than spherical, only a small part of the diamond particles is exposed
to the surface. According to the EDS mapping analysis, Ti elements are aggregated at the
interface of CNT-modified Ti-coated diamond/aluminum composites.
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Figure 4. Surface morphology of diamond/aluminum composite: (a) uncoated diamond/aluminum
composite; (b) Ti-coated diamond/aluminum composite; (c) CNT-modified Ti-coated dia-
mond/aluminum composite; (d–f) EDS mapping analysis of (c).

Then, hydrochloric acid is used to corrode the Al matrix in the diamond/aluminum
composite, thereby extracting the diamond from the composite for further analysis. Figure 5
depicts the surface morphology of diamond particles extracted from several diamond/
aluminum composites, showing significant differences.
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Figure 5. Surface morphology of diamond particles extracted from diamond/aluminum composites:
(a,d) uncoated diamond/aluminum composite; (b,e) Ti-coated diamond/aluminum composite;
(c,f) CNT-modified Ti-coated diamond/aluminum composite.

The surface of diamond particles extracted from uncoated diamond/aluminum com-
posites shows a large number of conical corrosion pits. A similar pyramid-shaped corrosion
pit was also observed in Kleiner’s research on diamond/aluminum composites [36], and
combined with TEM, it was confirmed that the corrosion pit originated from the formation
of Al4C3 at the interface. Due to the hydrolysis of Al4C3 during the corrosion process,
no Al4C3 remains on the surface of the extracted diamond particles, and according to the
morphology of the diamond surface, it can be seen that Al4C3 is generated by the contact
reaction between molten aluminum and diamond and grows in the direction embedding
inside the diamond. A jagged structure is formed at the interface between diamond and
aluminum, which enhances the interfacial bonding by increasing the contact area between
diamond and aluminum and the bridging effect of Al4C3 on diamond and aluminum.

The retained interfacial products were observed on the surface of diamond particles
extracted from untreated Ti-coated diamond/aluminum composites. Combined with the
XRD analysis of Figure 3, it was confirmed that the discontinuous layered phase distributed
on the surface of diamond particles was TiC. However, the diamond surface extracted from
the CNT-modified Ti-coated diamond/aluminum composite was completely covered by
layered interface products, and no exposed diamond surface was observed, indicating that
the TiC formed in this condition is more complete and uniform.

3.3. Mechanical and Thermal Properties

Table 1 shows the bending strength and thermal conductivity of three kinds of dia-
mond/aluminum composites. The in situ formation of CNTs on the surface of Ti-coated
diamond particles improves the bending strength of the composite. As a thermal manage-
ment material, thermal conductivity is also an important performance indicator. Therefore,
we also evaluated the thermal conductivity of diamond/aluminum composites. Among
the three kinds of composites, uncoated diamond/aluminum composites show the best
thermal conductivity. With the introduction of the Ti coating, the thermal conductivity
and bending strength of composites were obviously reduced. The CNT-modified Ti-coated
diamond/aluminum composite possesses the highest bending strength despite sacrificing
part of the thermal conductivity.
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Table 1. Performance of diamond/aluminum composites.

Material Thermal Conductivity
(W·m−1·K−1)

Bending Strength
(MPa)

Uncoated diamond/Al 726 252 ± 9
Ti-coated diamond/Al 650 217 ± 14

CNT-modified Ti-coated diamond/Al 577 275 ± 6

Figure 6 illustrates the fracture morphology of the diamond/aluminum composite.
The phenomenon of the selective combination of different planes of diamond with alu-
minum appears in the uncoated diamond/aluminum composite, as shown in Figure 6a.
The diamond {111} plane is exposed and debonded from the aluminum matrix, while
the diamond {100} plane adheres to the aluminum. This is attributed to the difference in
interface properties between diamond {100} and {111} planes and aluminum. The interface
bonding between diamond {100} crystal planes and aluminum is stronger, and it also has a
stronger tendency to form Al-C bonds [37].
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The pulling-out phenomenon of diamond particles can be observed in the fracture
structure of Ti-coated diamond/aluminum composites. The diamond {111} plane is well
bonded with aluminum, while the interface bonding with aluminum on the diamond {100}
plane is either interfacial debonding or broken between the interface layer and aluminum.
After the in situ growth of CNTs on the surface of Ti-coated diamond particles, the fracture
surface of the resulting composite showed excellent interfacial bonding. All diamond
planes adhered to aluminum, and the selective bonding of different diamond planes with
aluminum was improved.

The detailed characterization of the fracture morphology of uncoated diamond/
aluminum composite is shown in Figure 7. As can be seen from the red arrow in Figure 7a,
there is an area of diamond and aluminum interface debonding at the uncoated dia-
mond/aluminum interface. Although no obvious fracture was observed, discontinuous
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cracks were located at the interface between some diamond edges and aluminum, as shown
by the blue dotted line indicated by the blue arrow. Figure 7b shows that the brittle phase
exists at the fracture area of diamond and aluminum, and the brittle phase breaks during
the bending strength test. The formation of brittle phase Al4C3 transforms the mechani-
cal bonding between diamond and aluminum into chemical bonding so that the fracture
surface of the composite also shows a certain dimple morphology.
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For Ti-coated diamond/aluminum composites, as shown in Figure 8a, massive dimples
can be observed, with block-like precipitates distributed in the dimples. EDS spectroscopy
analysis was performed on the blocky phase in Figure 8b, and the results showed that
it was mainly composed of Al and Ti elements, with an atomic ratio of approximately
3:1. Combined with XRD analysis, it was confirmed that the precipitated phase was the
intermetallic compound Al3Ti, attributed to the reaction between molten aluminum and
Ti during the infiltration process. Meanwhile, an interface layer existed at the interface
between diamond and aluminum, as shown in Figure 8e. The EDS mapping analysis of
composites surface in Figure 8e shows that Ti elements gather at the interface Combined
with XRD, the interface layer is confirmed as TiC generated by the reaction between
diamond and Ti. Additionally, Al and Ti elements are also clustered in the red box in
Figure 8e, and they are identified as Al3Ti.

Therefore, in the untreated Ti-diamond/aluminum composite, on the one hand, Ti
reacts with diamond to form TiC. On the other hand, the TiC layer acts as the interme-
diate layer between Ti and C, slowing down the diffusion reaction between the two. At
this time, Ti, which is in contact with molten aluminum, preferentially reacts with it to
form Al3Ti, resulting in the interface structure depicted in Figure 8. In the Ti-coated dia-
mond/aluminum composite, the dominant interface structure is diamond/TiC/Al. For
diamond {111}/TiC/Al, the fracture occurs at the aluminum matrix, with numerous dimple
morphologies, indicating a significant improvement in bonding between the diamond
{111} plane and aluminum. Interestingly, for diamond {100}/TiC/Al, more fractures occur
between TiC and aluminum, which may be related to the difference in the reaction rates
between different crystal planes of diamond and Ti. Generally, the more active diamond
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{100} plane tends to have a higher reaction rate with Ti, which will be investigated in our
future work.
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In the CNT-modified Ti-coated diamond/aluminum composite shown in Figure 9,
a flaky precipitated phase was also observed to be distributed in the Al matrix, with a
smaller size than that generated in the Ti-coated diamond/aluminum composite (Figure 9f).
According to the analysis of EDS elements, the marked position contains Al, C, and Ti,
which is similar to that in Figure 8b, and combined with XRD, it is considered Al3Ti.
During the in situ formation of CNTs via the surface treatment of Ti-coated diamonds,
diamond particles reacted with Ti to form TiC. In the subsequent infiltration process,
TiC continued to form, so the amount of content of residual Ti reacting with molten Al
decreased, and the size and quantity of the Al3Ti formed were also reduced. In addition,
in Figure 9a, a large number of polyhedral interface products appeared at the position
marked by a red cross, where elemental analysis showed only two elements, Al and C. It
was attributed to the reaction between molten aluminum and CNT during the infiltration
process. Meanwhile, the phenomenon of Al adhering to the {100} surface of the diamond
was also observed, suggesting that the generated Al4C3 played a certain role in bonding
diamond and aluminum.

Figure 10 depicts the schematic diagram of the interface structure of different dia-
mond/aluminum composites. The Al-C interface reaction occurs at the interface of the
uncoated diamond/aluminum composite. According to Figure 5d, the interface product
Al4C3 is embedded into the diamond particle’s surface, showing a zigzag distribution.
The interface is closely connected through the interface reaction between diamond and
aluminum, forming Al4C3. A discontinuous interface layer TiC is formed at the interface of
the Ti-coated diamond/aluminum composite, with large-sized Al3Ti also distributed in the
aluminum matrix. Since Al3Ti is a brittle phase, its smaller size can bear loads and hinder
dislocation movement; however, excessively large sizes can bring adverse effects. TiC is
generated in situ from diamond and Ti, so compared with TiC and Al, the TiC/diamond in-
terface bonding is stronger, and some TiC and aluminum interface debonding occurs in the
fracture. For CNT-modified Ti-coated diamond/aluminum composites, on the one hand,
Ti reacts with diamond to form TiC; on the other hand, the pre-formed CNT reacts with
aluminum to form a small amount of Al4C3, and diamond and aluminum are bridged by
various products, which enhances the bending strength of Ti-coated diamond/aluminum
composites and improves the selective bonding between diamond and aluminum.
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The thermal conductivity of composites is controlled by the synergistic effect of the
interface bonding strength and interface structure. Generally, the higher the interfacial
bonding strength of composites, the better the thermal conductivity of the corresponding
composites. When the interface is well combined, the interface structure will play a leading
role in the thermal conductivity of the composite, which is mainly related to the composition
(acoustic performance matching) and content of the interface phase.

In this study, according to the results, it is observed that the vibration matching of
interfacial phonons is more influential than interfacial bonding. This is attributed to the fact
that although the bending strength of diamond/aluminum composites shows differences,
the composites produced by the gas pressure infiltration method do not present obvious
defects and voids, while noticeable differences are observed in the interface structure of the
composites. For uncoated diamond/aluminum composites, Al reacts with C at the interface
to form Al4C3. Indeed, high-thermal-conductivity diamond/aluminum composites can
be achieved through the formation of an appropriate amount of Al4C3. Monje et al. [10]
improved the thermal conductivity of diamond/aluminum materials from 390 W/(m·K) to
670 W/(m·K) by adjusting the preparation process of gas pressure infiltration. However,
the author did not evaluate the difference in the bending strength of the composites.
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The introduction of the Ti interface modification layer can suppress the generation of
Al4C3, but it also increases the number of interfaces and introduces additional interface
thermal resistance. The final interface composition in the Ti-coated diamond/aluminum
composite is TiC and large-sized Al3Ti (up to 5 µm). The formation of Al3Ti in the Al matrix
results in extra phonon scattering, leading to a decrease in the thermal conductivity of
Ti-coated diamond/aluminum composites compared with uncoated diamond/aluminum
composites. A similar phenomenon has also been reported in Ref. [24]. Ma et al. inserted
Mo2C into the diamond/aluminum interface, resulting in a decrease in the thermal conduc-
tivity of the composites from 553 W/(m·K) to 218 W/(m·K) [24]. The authors attributed
the decrease in thermal conductivity to the intermetallic compound Al12Mo.

As for the CNT-modified Ti-coated diamond/aluminum composite, although the
bending strength of the composite is improved through the multi-interface reaction be-
tween diamond and Ti, CNTs, and Al, some thermal conductivity is also sacrificed. First,
compared with Ti-coated diamond/aluminum composites, CNT-modified Ti-coated
diamond/aluminum composites produce more TiC, corresponding to the stronger
TiC diffraction peak in Figure 3a. Theoretical calculations carried out by Tan et al.
show that an increase in coating thickness will lead to a decrease in the thermal con-
ductivity of diamond/aluminum composites [38]. In addition, in the CNT-modified
Ti-coated diamond/aluminum composite, CNT reacts with aluminum during infiltra-
tion to produce Al4C3, which makes the composite exhibit the interfacial structure of
diamond/TiC/Al4C3/Al, further increasing the interface’s thermal resistance, so thermal
conductivity is the lowest.

4. Conclusions

Uncoated, Ti-coated, and CNT-modified Ti-coated diamond/aluminum composites
were prepared using the gas pressure infiltration method. The interface structure of the
composites was characterized, and the mechanical properties and thermal conductivity of
the composites were investigated. The main conclusions are summarized as follows:

(1) CNTs have been successfully grown on the surface of Ti-coated diamond particles
using the PECVD method, with a length of approximately 1 µm.

(2) The CNT-modified Ti-coated diamond/aluminum composite achieves an increase in
the bending strength through the interfacial reaction during the infiltration process,
which makes the diamond and aluminum closely connected through TiC and Al4C3.
The bending strength of the CNT-modified Ti-coated diamond aluminum composite is
increased by about 9% compared with the uncoated diamond/aluminum composite.

(3) The thermal conductivity of composites is not only contributed by interface bond-
ing, but it is also closely related to the interfacial structure. The thermal conduc-
tivity of Ti-coated diamond/aluminum composites and CNT-modified Ti-coated
diamond/aluminum composites is lower than that of uncoated diamond/aluminum
composites, and this is attributed to the formation of large-sized Al3Ti and the genera-
tion of thicker interface phases, respectively.

(4) CNT-modified Ti-coated diamond/aluminum composites achieve a balance between
improved mechanical properties and acceptable thermal conductivity. This study
provides a promising strategy for the design and preparation of high-performance
diamond/metal using the interface configuration design method.
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