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Abstract: Nanodynamic therapy (NDT) exerts its anti-tumor effect by activating nanosensitizers to
generate large amounts of reactive oxygen species (ROS) in tumor cells. NDT enhances tumor-specific
targeting and selectivity by leveraging the tumor microenvironment (TME) and mechanisms that
boost anti-tumor immune responses. It also minimizes damage to surrounding healthy tissues and
enhances cytotoxicity in tumor cells, showing promise in cancer treatment, with significant potential.
This review covers the research progress in five major nanodynamic therapies: photodynamic therapy
(PDT), electrodynamic therapy (EDT), sonodynamic therapy (SDT), radiodynamic therapy (RDT),
and chemodynamic therapy (CDT), emphasizing the significant role of advanced nanotechnology in
the development of NDT for anti-tumor purposes. The mechanisms, effects, and challenges faced by
these NDTs are discussed, along with their respective solutions for enhancing anti-tumor efficacy,
such as pH response, oxygen delivery, and combined immunotherapy. Finally, this review briefly
addresses challenges in the clinical translation of NDT.
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1. Introduction

In recent decades, there has been a steady increase in the incidence of malignant
tumors, making them a leading cause of mortality worldwide. This surge in the incidence
of cancer poses a significant risk to human life and well-being [1]. In oncology, notable
disparities in the structural and physical characteristics of tumor tissues and their normal
counterparts have attracted considerable attention [2]. These disparities are largely due
to abnormal cell proliferation, metabolic activity changes, and mitochondrial dysfunction
observed in tumors, among other factors. In particular, the tumor microenvironment
(TME) exhibits distinct differences from the normal tissue environment and is characterized
by acidic pH levels, heightened hydrogen peroxide (H2O2) production, hypoxia, and
diminished catalase activity [3,4]. Such unique features not only play a crucial role in the
proliferation and dissemination of tumors, but also serve as specific targets for nanodynamic
therapy (NDT), aiming at the TME’s distinctive attributes [5].

With advancements in technology and in-depth medical research, various NDTs have
emerged in the field of cancer treatment and are distinguished by their specificity, minimal
side effects, and significant efficacy [6,7]. NDT employs nanomaterials in conjunction with
specific forms of physical energy, such as acoustic [8], light [9], electric [10], radioactive [11],
and chemical energies [12], to precisely target tumor cells. A hallmark of these therapies is
their ability to convert local energy into mechanisms that trigger reactive oxygen species
(ROS) production within the tumor, causing cell death or impairment [13]. Additionally,
these therapies stimulate or bolster the body’s immune response, effectively curbing tumor
growth, spread, and relapse [14].

Various ROS, such as H2O2 [15], singlet oxygen (1O2) [16], superoxide anions
(O2

•−) [17], hypochlorous acid (HClO−) [18], and hydroxyl radicals (•OH) [19], are crucial
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for cellular metabolism. ROS are naturally produced during cellular metabolic processes,
and high concentrations of ROS can damage biomolecules in cancer cells, such as proteins,
lipids, and DNA, thereby inducing apoptosis [20]. Several nanodynamic therapies have
been developed (Figure 1), including photodynamic therapy (PDT), electrodynamic ther-
apy (EDT), sonodynamic therapy (SDT), radiodynamic therapy (RDT), and chemotherapy
(CDT) [21]. PDT utilizes the light of specific wavelengths to activate photosensitizers
(PSs) within the tumor, generating ROS that directly eradicate tumor cells. Furthermore,
PDT induces a local inflammatory response and modulates the immune function, which
can initiate systemic anti-tumor immune reactions [22]. Through the application of an
electric field, EDT disrupts tumor cells or prompts nanomaterials to produce ROS, thereby
annihilating tumor cells. This electric field may also stimulate immune cells, augmenting
their tumor-fighting capabilities [10]. SDT employs the mechanical and thermal effects of
ultrasound to damage tumor cell structures, with the generated ROS activating the immune
system for tumor cell recognition and elimination [23]. RDT utilizes X-rays emitted by
radioactive substances to flood tumor cells with ROS, effectively promoting apoptosis [24].
Additionally, RDT can alter the TME to boost immune surveillance and tumor cell clearance.
CDT relies on Fenton or Fenton-like reactions within the tumor zone to generate lethal
substances or free radicals that directly target tumor cells for destruction [25].
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Figure 1. Schematic illustration of the therapeutic modalities of nanodynamic therapy (NDT),
including photodynamic therapy (PDT), electrodynamic therapy (EDT), sonodynamic therapy (SDT),
radiodynamic therapy (RDT), and chemodynamic therapy (CDT). By Figdraw.

Over the past few years, extensive research has been undertaken by many scholars
on nanodynamic therapies aimed at combating tumors. This study spans the spectrum
of innovative nanocarriers to optimize the TME and integrate various therapeutic strate-
gies [26]. These efforts are based on catalyzing the production of reactive ROS within
tumor cells and inducing tumor cell death. However, despite the significant promise of
ROS-centric nanodynamic approaches in oncology, several challenges remain for their
clinical application [27]. These hurdles include enhancing ROS generation, overcoming the
constraints of the TME, ensuring long-term stability, and maintaining the biocompatibility
of nanocarriers in vivo [28,29].
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This review provides an overview of the advancements made in the field of anti-
tumor mechanisms in the last five years, focusing on photodynamic, electrodynamic,
sonodynamic, radiodynamic, and chemodynamic therapies. We elaborated on the de-
sign principles of nanosensitizers (Table 1) for these five types of NDTs, their anti-tumor
effects, and biocompatibility. Within the realm of NDT literature, this review provides
an overarching perspective of the field, highlighting the interdisciplinary and distinctive
nature of current cancer research and treatment strategies. Incorporating research from
the past five years, it offers a timely and comprehensive synthesis of knowledge in the
rapidly advancing area of NDT, rendering it a valuable addition to the NDT literature
repository. Furthermore, this review not only catalogs the latest advancements in NDT but
also critically analyzes the obstacles impeding its clinical application. These challenges
encompass optimizing ROS generation, overcoming the constraints imposed by the TME,
ensuring the long-term stability of nanocarriers, and maintaining their biocompatibility
in vivo. By juxtaposing these hurdles with potential solutions identified in prior research,
this review not only sets itself apart from the existing literature but also aligns with the
cutting-edge priorities in oncological research. Through this review, we aim to provide
researchers with a comprehensive approach to enhance NDT and accelerate its clinical
translation for tumor diagnosis and treatment.

Table 1. Summary table of the therapeutic properties of various Nanosensitizers for NDT.

Nanosensitizers Nanodynamic
Therapy (NDT) Therapeutic Properties Ref.

Ce6/R848 PDT
Ce6-mediated PDT releases tumor antigens, delivers
R848-activated TLR7/8 into tumors, and enhances

anti-tumor immune responses.
[30]

NanoLuc-miniSOG PDT Gene encoding activates PDT to generate ROS for
treating deep-seated tumors. [31]

IRCB@M PDT
Reducing oxygen consumption, blocking GSH,

preventing the depletion of ROS, and enhancing the
therapeutic efficacy of PDT.

[32]

PROTAC/Ce6 PDT The ROS generated by PDT induce ICD, triggering an
anti-tumor immune response. [33]

KCCP EDT
In the presence of chlorine, the electric field activates Pt

NPs and Ca2+ to produce ROS, enhancing tumor
suppression.

[34]

Pt-Pd@DON EDT EDT combined with immunotherapy synergistically
suppresses tumor growth. [35]

PtMnIr EDT
Nanocatalysts in combination with EDT continuously

generate ROS while depleting GSH, promoting
ferroptosis and apoptosis in tumor cells.

[36]

DOX@pPt-PEG EDT

ROS produced by the combination of EDT and
chemotherapy can induce the inhibition of P-gp,

thereby synergistically suppressing
tumor growth.

[37]

Pt-Cy SDT Under US irradiation, 1O2 is generated, inducing
ferroptosis and inhibiting tumor growth.

[38]

Cu(II)NS SDT Overexpressed GSH in the TME reduces Cu2+ to Cu+,
enabling the production of ROS in SDT.

[39]

C-dots MBs SDT Following US irradiation, the generation of ROS
enhances tumor therapy. [40]

ZrO2−x@Pt SDT
With the aid of immune checkpoint blockade,

sonodynamic-thermotherapy is combined for the
treatment of tumors.

[41]

Hf-DBP-Pt RDT ROS generation via RT-RDT remodels the TME,
facilitating neutrophil-mediated tumor regression. [42]
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Table 1. Cont.

Nanosensitizers Nanodynamic
Therapy (NDT) Therapeutic Properties Ref.

AuNC@DHLA RDT

Without the need for additional scintillators or
photosensitizers, excessive ROS production under
hypoxic conditions leads to significant therapeutic

effects on solid tumors in vivo.

[43]

Hb@HP(Hf) RDT
Massive oxygen delivery effectively alleviates hypoxia

in the TME, thereby greatly enhancing the tumor
treatment efficiency of RT-RDT.

[44]

MCBR CDT
The Fenton-like reaction generates •OH, synergizing
photothermal therapy, CDT, and immunotherapy for

anti-tumor activity.
[45]

PLGA-SPIO& Vc CDT

CDT combined with SDT, where Vc decomposes into
H2O2, creates favorable conditions for the Fenton-like

reaction, enabling continuous generation of ROS,
thereby enhancing the anti-tumor effect.

[46]

NMOF ZIF-8 CDT
The precise and efficient combination of gene and CDT

significantly demonstrates tumor
eradication effects.

[47]

2. Photodynamic Therapy

PDT, an approved approach for cancer treatment, employs PSs and the light of specific
wavelengths. It works by activating a PS with light to produce ROS that target and
destroy cancer cells in the tumor region [48–50]. Photosensitizers, upon absorption of light,
transition from a ground state to an excited singlet state. Following intersystem crossing,
a more stable excited triplet state is achieved, which can interact with cellular oxygen.
This interaction predominantly results in the generation of 1O2 and other ROS, initiating a
cascade of oxidative damage within the cell. Subsequently, it impairs the tumor vascular
network by initiating the release of vasoconstrictive agents and promoting thrombus
formation [51]. Zheng et al. synthesized a highly cationic zinc phthalocyanine (Pc4)
with exceptional water solubility and non-aggregating properties, which maintained high
photodynamic activity in biological systems. Pc4 demonstrated profound in vitro cytotoxic
effects against HepG2 cancer cells and significant in vivo anti-tumor activity. In H22 tumor-
bearing mice, Pc4 demonstrated potent anti-cancer capabilities with a 98.7% tumor growth
inhibition rate and strong cytotoxicity against HepG2 cancer cells in laboratory tests [52].
These results suggest that Pc4 has promising therapeutic potential for treating cancer and
inhibiting tumor growth.

Moreover, PDT can trigger the release of damage-associated molecular patterns
(DAMPs), leading to the immunogenic death (ICD) of tumor cells. This process activates
an anti-tumor immune response that inhibits metastatic growth [53]. The production of
ROS not only facilitates the direct eradication of tumor cells but also enhances the release of
antigens, including calreticulin (CRT), heat shock proteins (HSPs), adenosine triphosphate
(ATP), and high-mobility group box 1 (HMGB1). These antigens are then recognized by the
immune system, further stimulating an immune reaction against the tumor [54–57].

Upon irradiation, PSs serve as potent inducers of ICD, specifically targeting the endo-
plasmic reticulum (ER) to initiate ER stress via ROS production and the subsequent release
of CRT. This action facilitates the binding of extracellular ATP to the dendritic cell (DC)-
specific purinergic receptors P2Y2 and P2X7, encouraging the assembly of inflammasomes
and the release of pro-inflammatory cytokines [58]. Furthermore, HSPs and HMGB1 play
vital roles as DAMPs in instigating ICD, where HMGB1 attaches to immature DCs and HSPs
interact with the toll-like receptors TLR2 and TLR4. This interaction promotes cytokine
secretion, which is crucial for the maturation of DCs and T cells, thus effectively mobilizing
the immune system against tumors [59]. Jiang et al. introduced a nanoscale coordination
polymer, Ce6/R848, which enhances PDT by activating toll-like receptor (TLR) 7/8. This
innovative approach, through the co-delivery of the PS Ce6 and cholesterol-bound R848



Nanomaterials 2024, 14, 648 5 of 27

(Chol-R848) to tumor sites, not only triggers ICD via Ce6-mediated PDT but also specifically
targets TLR7/8 within the tumor (Figure 2). This dual action synergistically boosts the
activation of antigen-presenting cells and T cells, significantly enhancing both innate and
adaptive anti-tumor immune responses [30]. In experiments with the MC38 colorectal
tumor mouse model, Ce6/R848 treatment achieved a 50% cure rate and suppressed tumor
growth by 99.4%, significantly prolonging survival while exhibiting minimal toxicity.
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from [30]. Copyright 2023, Elsevier.

Owing to the limited light penetration within tumor tissues, PDT has, to date, only
been clinically utilized for the management of skin diseases and epithelial tumors [60].
To address the challenge posed by the limited penetration of light in the treatment of
internal tumors, Elena et al. developed NanoLuc-miniSOG. This innovative gene encodes
a structure that combines both a light source and a PS, enabling the activation of deep-
tissue tumors. Demonstrated in mouse models, this “light-independent” PDT approach
shows promise in curtailing tumor growth [31]. This advancement not only validates the
concept of “light-independent” PDT for targeting deep-seated tumors, but also offers a
novel strategy to overcome the constraints of traditional PDT methods.

Extensive research has established that PDT can effectively initiate both innate and
adaptive immune responses and that the potency of these immune reactions is linked to
the oxygen levels present within tumors [61]. During PDT, the ongoing consumption of
oxygen by the tumor leads to hypoxic conditions within its microenvironment, which can
suppress immune activity [62]. Moreover, the tumor’s vascular abnormalities contribute
to an inadequate oxygen supply, and the swift growth of tumor cells escalates the oxygen
demand, markedly depleting oxygen levels in the TME compared to healthy tissues [63].
Type II PDT processes predominantly consume substantial amounts of oxygen to produce
ROS that are lethal to tumor cells [64,65]. In contrast, PSs that operate through Type I
reaction mechanisms require significantly less oxygen, thereby alleviating the hypoxic
challenges faced by tumors during PDT [66]. To circumvent hypoxia, strategies have been
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devised that focus on augmenting the oxygen concentration in the TME, diminishing
oxygen consumption during PDT, and developing PSs with minimal oxygen dependency
to boost PDT’s therapeutic impact.

For instance, Wang et al. developed an approach to potentiate anti-tumor effects by
targeting the hypoxic TME. Their strategy merged PDT with photosynthetic microalgae
(Chl), leveraging the ability of Chl under the influence of PSs to produce oxygen, thereby
counteracting hypoxia. This not only improves local therapeutic outcomes and increases
ROS generation, but also reverses the immunosuppressive conditions of the TME. This
leads to enhanced activation and maturation of DCs, which then proceed to the lymph
nodes, effectively activating CD8+ T cells. This activation generates a specific immune
response against tumor cells and significantly enhances the anti-tumor effect in vitro [67].

To amplify the anti-tumor effect, the integration of PDT with agents, such as glu-
tathione (GSH) inhibitors, immune checkpoint blockers, chemotherapy, and radiotherapy,
has been investigated. Li et al. developed an innovative nanocomposite, IRCB@M, by
employing tumor cell membrane-coating techniques to encapsulate a self-assembled PS
(IR-780), alongside a glutaminase inhibitor (CB-839). By hindering glutamine metabolism,
this method diminishes the concentration of nicotinamide adenine dinucleotide phosphate
(NADPH) and reduces GSH, consequently boosting IR-780-mediated ROS generation [32].
IRCB@M not only optimizes the TME but also augments the tumor-targeting efficiency
of therapeutic agents and ensures low biotoxicity, thus increasing PDT’s effectiveness
and significantly suppressing tumor proliferation both in vitro and in vivo. To enhance
PDT in conjunction with chemotherapy, Sun et al. introduced a nanoparticle (NP), NP-
sfb/Ce6, which simultaneously transports sorafenib and chlorin e6 (Ce6). This formulation
incorporated ROS-responsive polyethylene glycolated hyperbranched polyphosphate ester
for the co-encapsulation of a hydrophobic near-infrared PS (Ce6) and sorafenib. This
combination facilitates the concurrent liberation of sorafenib when exposed to a 660 nm
laser, intensifying the anti-tumor capabilities of PDT [68]. The strategy of the rapid re-
lease of sorafenib and low-dose PDT notably curtails tumor growth and modifies the
tumor immune environment, bolstering both localized and systemic T-cell-mediated anti-
tumor immunity. Moreover, tumor resistance to immunological defense can be modulated
by immune checkpoints, which are composed of receptors and their corresponding lig-
ands on neoplastic and immunological cells. Enhancing immune checkpoints within the
tumor milieu can augment the ability of the immune system to detect and eradicate tu-
mor cells. In addition, Wang et al. introduced a novel carrier-free NP that amalgamates
CDK4/6 PROTAC with Ce6-mediated PDT, achieving the self-assembly of both compounds
(Figure 3). This combination, with CDK4/6 PROTAC acting as a G1-S phase checkpoint
inhibitor [69], reinforces mitochondria-dependent PDT and its anti-tumor immune con-
sequences, leading to increased apoptosis and immunogenic cell death [33]. This study
offers a pioneering approach by combining PDT with immune checkpoint inhibition, re-
vealing a potent anti-tumor methodology through meticulous drug delivery and targeting
of mitochondrial functions.

Despite the significant potential of PDT in cancer treatment, its application still faces
challenges such as the selection of PSs, penetration depth of the light source, and durability
of the treatment-induced immune response. As research on the immune mechanisms of
PDT and PS light-source technology continues to advance, prospects for the application of
PDT in tumor immunotherapy are becoming increasingly broad.



Nanomaterials 2024, 14, 648 7 of 27Nanomaterials 2024, 14, x FOR PEER REVIEW 7 of 27 
 

 

 
Figure 3. Schematic illustration of synergistic anti-tumor photodynamic therapy and immunotherapy 
based on CDK4/6 Nano PROTAC. Reproduced with permission [33]. Copyright 2023, Elsevier. 

3. Electrodynamic Therapy 
EDT has emerged as a cutting-edge method for oncological treatment that exploits ex-

ternal electric fields to precisely target and dismantle tumor cells. This therapeutic approach 
ingeniously integrates electrochemistry with nanotechnology, utilizing ubiquitous water 
molecules within the body as substrates. Under the influence of an external square-wave 
alternating current, ROS are continuously generated on the surface of electroactive nano-
particles [70]. Compared with traditional electrochemotherapy, EDT is not only less inva-
sive but can also provide a uniform killing effect for larger tumors [34]. For instance, Liu et 
al. introduced an innovative application of platinum NPs (Pt NPs) energized by a square-
wave alternating current to create a Faraday cage effect under hole doping conditions. This 
interaction between chloride ions and water molecules on the surface of the Pt NPs initiates 
the production of cytotoxic •OH, which efficiently eradicates tumor cells [10]. Nanocarriers 
can be used to deliver electrochemotherapy drugs and improve drug targeting and intracel-
lular delivery efficiency. To further enhance the anti-tumor effect of EDT, Liu et al. also de-
signed a mesoporous silica nanocomposite with Pt NPs modified on the surface and loaded 
it with the anti-cancer drug doxorubicin (DOX). Silica NPs modified with Pt NPs can effec-
tively generate ROS under electric field stimulation and simultaneously release loaded 
DOX, thereby achieving a synergistic effect between EDT and chemotherapy [71]. Com-
pared with single EDT or chemotherapy treatments, the use of nanocarriers loaded with 
chemotherapy drugs can effectively destroy tumors driven by electric fields while reducing 
side effects on surrounding tissues. 

Despite the numerous advantages of EDT, the complexity of the TME poses significant 
challenges [72], particularly for ROS degradation by GSH. Chen et al. fabricated iron oxide 
NPs coated with Pt nanocrystals (Fe3O4@Pt NPs). When administered to the tumor location, 
these Pt NPs catalyzed the transformation of H2O2 into ROS under local conditions, whereas 
the liberated Fe3+ ions engaged in redox reactions to deplete GSH (Figure 4). Concurrently, 
under acidic tumor conditions, Fe3O4 NPs facilitate the release of Fe2+, which, through the 
Fenton reaction, catalyzes the conversion of H2O2 into more •OH. This mechanism impedes 
the ROS clearance capacity of tumor cells and perpetuates the generation of Fe2+ for en-
hanced •OH production [73]. By combining electrodynamics with chemodynamic therapy, 
this study exploited the distinctive attributes of Fe3O4@Pt NPs to boost ROS production and 
diminish GSH in the tumor milieu, effectively breaching the ROS defense mechanisms of 

Figure 3. Schematic illustration of synergistic anti-tumor photodynamic therapy and immunotherapy
based on CDK4/6 Nano PROTAC. Reproduced with permission [33]. Copyright 2023, Elsevier.

3. Electrodynamic Therapy

EDT has emerged as a cutting-edge method for oncological treatment that exploits
external electric fields to precisely target and dismantle tumor cells. This therapeutic
approach ingeniously integrates electrochemistry with nanotechnology, utilizing ubiquitous
water molecules within the body as substrates. Under the influence of an external square-
wave alternating current, ROS are continuously generated on the surface of electroactive
nanoparticles [70]. Compared with traditional electrochemotherapy, EDT is not only less
invasive but can also provide a uniform killing effect for larger tumors [34]. For instance,
Liu et al. introduced an innovative application of platinum NPs (Pt NPs) energized
by a square-wave alternating current to create a Faraday cage effect under hole doping
conditions. This interaction between chloride ions and water molecules on the surface of
the Pt NPs initiates the production of cytotoxic •OH, which efficiently eradicates tumor
cells [10]. Nanocarriers can be used to deliver electrochemotherapy drugs and improve
drug targeting and intracellular delivery efficiency. To further enhance the anti-tumor
effect of EDT, Liu et al. also designed a mesoporous silica nanocomposite with Pt NPs
modified on the surface and loaded it with the anti-cancer drug doxorubicin (DOX). Silica
NPs modified with Pt NPs can effectively generate ROS under electric field stimulation
and simultaneously release loaded DOX, thereby achieving a synergistic effect between
EDT and chemotherapy [71]. Compared with single EDT or chemotherapy treatments, the
use of nanocarriers loaded with chemotherapy drugs can effectively destroy tumors driven
by electric fields while reducing side effects on surrounding tissues.

Despite the numerous advantages of EDT, the complexity of the TME poses significant
challenges [72], particularly for ROS degradation by GSH. Chen et al. fabricated iron
oxide NPs coated with Pt nanocrystals (Fe3O4@Pt NPs). When administered to the tumor
location, these Pt NPs catalyzed the transformation of H2O2 into ROS under local conditions,
whereas the liberated Fe3+ ions engaged in redox reactions to deplete GSH (Figure 4).
Concurrently, under acidic tumor conditions, Fe3O4 NPs facilitate the release of Fe2+,
which, through the Fenton reaction, catalyzes the conversion of H2O2 into more •OH.
This mechanism impedes the ROS clearance capacity of tumor cells and perpetuates the
generation of Fe2+ for enhanced •OH production [73]. By combining electrodynamics with
chemodynamic therapy, this study exploited the distinctive attributes of Fe3O4@Pt NPs to
boost ROS production and diminish GSH in the tumor milieu, effectively breaching the
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ROS defense mechanisms of the tumor. Demonstrated to possess formidable anti-tumor
effectiveness in both laboratory and animal models, this strategy underscores the potential
of integrated therapeutic approaches to overcome the protective barriers of the TME.
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2021, British Medical Council.

EDT effectively induces apoptosis or necrosis in tumor cells via the application of
an electric field. The immune system recognizes antigens and death-associated signals
released from the deceased tumor cells, resulting in a targeted immune response. This in-
teraction renders the integration of EDT with immunotherapy highly promising. Chen et al.
designed a Pt-Pd@DON nanocarrier that effectively incorporates the glutamine antagonist
6-Diazo-5-oxo-L-norleucine (DON) into NPs for synergistic tumor treatment with EDT.
EDT, through the combination of platinum–palladium NPs and electrical current, generates
•OH, which directly destroys tumor cells. The concurrent administration of DON further
disrupts glutamine metabolism in tumor cells, intensifying oxidative stress and leading
to increased cell mortality. ICD triggered by EDT facilitates the release of DAMPs and
enhances DC maturation, which in turn recruits and activates cytotoxic T lymphocytes
to clear the remaining tumor cells, thereby ensuring sustained tumor growth inhibition
and fostering immune memory [35]. In experiments with 4T1 tumor-bearing mice, the
application of Pt-Pd@DON+E resulted in a notable reduction in tumor growth and ex-
tended the survival period. Expanding on the potential of EDT to activate immunotherapy,
Li et al. have crafted a multifunctional nanocatalyst termed “Spark” PtMnIr, endowed with
a spectrum of enzymatic functions such as catalase, oxidase, superoxide dismutase, per-
oxidase, and glutathione peroxidase. This catalyst excels at continuously generating ROS
while depleting GSH through the “inner catalytic cycle.” Under the influence of EDT, the
activities of Mn3+ and Ir3+ are notably enhanced, leading to GSH consumption and an in-
crease in ROS (Figure 5). This catalytic activity results in diminished glutathione peroxidase
4 protein levels, increased lipid peroxidation in cancer cells, and the initiation of ferrop-
tosis. Remarkably, the PtMnIr nanocatalyst also induces immune pathways and curtails
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distant tumor metastasis by leveraging the ICD and cGAS-STING pathways activated
by Mn2+ ions. In the B16-F10 tumor model, this nanocatalyst demonstrated efficacious
tumor suppression and immune response activation to prevent distant metastases [36].
This investigation underscores the synergistic effect of cascading enzymatic reactions, EDT,
ferroptosis, and immunotherapy, revealing a potent nanomedicine strategy for combating
malignant tumors.
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Nanotechnology integration has significantly amplified the anti-tumor potential of
EDT. An exemplary innovation involves porous platinum NPs encapsulating the chemother-
apeutic agent DOX and enveloped with polyethylene glycol (PEG), forming
DOX@pPt-PEG NPs. These NPs leverage electric fields to catalyze the production of
ROS and employ dual mechanisms to inhibit P-glycoprotein, thereby synergistically en-
hancing the effects of chemotherapy alongside EDT. The ROS generated throughout the
EDT process play a pivotal role in suppressing P-glycoprotein, facilitating a greater intra-
cellular build-up of chemotherapeutic agents, and thus enhancing the overall efficacy of
chemotherapy [37]. Based on comprehensive in vitro and in vivo studies, the synergistic
treatment strategy of DOX@pPt-PEG NPs not only demonstrated significant anti-cancer
effects in cell studies but also exhibited exceptional tumor suppression capabilities in
animal models.

The rapid proliferation of tumor cells depends heavily on ample nutritional support,
making the strategy of inducing nutritional deprivation by halting the glucose supply a
viable method to curb tumor growth. In addition, Lu et al. prepared porous platinum
nanospheres attached to glucose oxidase (GOx) enzymes (Figure 6). GOx effectively cat-
alyzes the conversion of glucose into H2O2 [74,75], while the porous platinum nanospheres,
under electric field stimulation, facilitate the decomposition of H2O2, liberating significant
amounts of O2. This oxygen release boosts glucose consumption by GOx, leading to an
induced state of tumor starvation [76]. Additionally, porous Pt nanospheres generate a
substantial amount of ROS under the drive of a square-wave alternating current, inducing
oxidative stress damage and prompting tumor cell apoptosis. In this study, a nanocom-
posite formed by combining porous Pt nanospheres with GOx achieved a 93.5% tumor
cell-killing rate in vitro and significant tumor suppression in tumor-bearing mice under a
square-wave alternating current [77]. This strategy, through the oxygen-induced starvation
effect and the synergistic action of EDT, where the generation of ROS in EDT does not
depend on the oxygen or H2O2 content in the TME, effectively achieves the ablation of
tumors in a self-promoting cycle, offering an efficient new approach for tumor treatment.
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EDT stands out as a forward-looking therapy for tumors, particularly those that are
recurrent or resistant, and offers new avenues for patient treatment. Nonetheless, achieving
this goal requires further fine-tuning of the EDT parameters and their integration with
other therapeutic strategies, including chemotherapy and radiotherapy. Additionally,
as nanotechnology continues to evolve and delve deeper into the mechanisms of tumor
immunotherapy, the potential for incorporating EDT within this domain is expected to
expand significantly.

4. Sonodynamic Therapy

SDT integrates ultrasound technology with sonosensitizers to target and destroy can-
cer cells, while promoting immune system activation and modulating the TME [78]. As
a cutting-edge tumor treatment modality, SDT primarily employs ultrasound of low fre-
quency and intensity to activate sonosensitizers. Following ultrasonic treatment, sonosen-
sitizers undergo a transition from the ground state to an excited state. Subsequently, this
excited state of the sonosensitizer can transfer energy to the surrounding molecular oxygen,
resulting in the generation of ROS that target cancer cells, with the cavitation effect identi-
fied as the principal mechanism [79–81]. This phenomenon encompasses the formation,
growth, and bursting of microbubbles (MBs), along with persistent oscillation. In addition
to cavitation, mechanisms such as thermal decomposition and sonoluminescence play a role
in activating sonosensitizers for ROS production [82]. Drawing inspiration from PDT, SDT’s
significant benefit is its deep tissue- and organ-penetration capabilities without the need for
radiation, offering lower tissue attenuation and deep tumor-tissue penetration contingent
on the ultrasound frequency used. To explore the therapeutic potential of SDT, researchers
have developed an innovative compound, platinum(II)-indocyanine (Pt-Cy), capable of
generating 1O2 upon ultrasound or light exposure, which shows effective US-induced
cytotoxicity against breast cancer 4T1 cells. Metabolomic studies further confirmed that
Pt-Cy diminishes the cellular levels of GSH and glutathione peroxidase 4, leading to the
induction of ferroptosis in 4T1 cells [38]. In vivo studies have shown that Pt-Cy effectively
inhibits tumor growth when combined with ultrasound irradiation. The synergistic effect
of SDT using Pt-Cy was found to be even more effective in reducing tumor size than using
PDT alone.

In the quiescent state, sonosensitizers are benign. However, they transform into
cytotoxic agents when activated by ultrasound, generating ROS through mechanisms such
as sonocavitation, sonoluminescence, or pyrolysis [83]. Investigations into sonosensitizers
have delved into various compounds such as porphyrins, phthalocyanines, and selected
organic dyes. Studies have aimed to identify sonosensitizers that combine efficiency,
minimal toxicity, and precise targeting to bolster the safety and effectiveness of SDT in
cancer treatment [39]. In recent years, researchers have incorporated sonosensitizers into
nanomaterials to significantly improve the targeting and cytotoxic effects of SDT on tumors.
For example, Fan et al. constructed a novel sonosensitizer based on carbon dots (C-dots)
and lipid-shell gas MBs, called C-dot MBs. In vitro experiments indicated that ROS were
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effectively produced by C-dot MBs when exposed to ultrasound at a frequency of 1 MHz.
This results in peroxidation of the cell membrane, elevated levels of intracellular ROS, and,
ultimately, cell apoptosis. When utilized in the TRAMP tumor-bearing mouse model, the
combined treatment with C-dot MBs and ultrasound increased the rate of ROS-induced
cell damage and apoptosis by factors of 3 and 2.5, respectively, compared to treatment
with C-dot MBs alone [40]. Additionally, Chen et al. developed a novel sonodynamic-
theranostic platform by merging gold NPs (Au NPs), manganese dioxide (MnO2), and
biodegradable ultrathin two-dimensional black phosphorus (BP) nanosheets to create a
Au/BP@MS composite. The attachment of Au NPs to BP nanosheets enhanced the electron-
hole pair separation efficiency by reducing BP’s bandgap, thus amplifying its sonodynamic
action. The MnO2 component catalyzes the decomposition of endogenous H2O2 in the
TME, boosting oxygen levels and depleting GSH. This action heightens oxidative stress
in tumors, significantly increases ROS production, and inhibits tumor growth [84]. In
essence, this study explored the immense potential of Au/BP as a sonosensitizer, offering a
fresh perspective on the development of tumor therapy-diagnostic nanoplatforms based on
BP nanosheets.

Moreover, SDT is known to trigger ICD, releasing DAMPs and pro-inflammatory
cytokines, which, in turn, activate mature DCs, ultimately eliciting T cell-driven immune
responses that target tumors for destruction [85]. In a novel approach, Li et al. engi-
neered 2,2′-azobis [2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) onto platinum–
zirconium oxide nanosonosensitizers, creating the ZrO2−x@Pt/AIPH (ZPA) nanocomposite.
Upon ultrasound irradiation, ZPA enhances the production of 1O2 and •OH in tumor cells,
whereas AIPH’s thermal decomposition under ultrasound irradiation generates cytotoxic
alkyl radicals (•R). This combination of ROS and thermally induced alkyl radicals leads to
irreversible degradation of tumor cells. In cellular experiments, the “ZPA + US + H2O2”
treatment resulted in the strongest green fluorescence of CRT on the membrane of 4T1
cells, the highest level of HMGB1 fluorescence attenuation, and the lowest intracellular
ATP levels, with the highest extracellular ATP content [41]. These results suggest that under
the enhanced action of SDT, ZPA induces ICD, triggering the secretion of multiple DAMPs,
which is conducive to reversing immune suppression and improving anti-tumor efficacy.

Nanocarriers can be designed to simultaneously carry sonosensitizers and immunos-
timulatory molecules, such as CpG oligodeoxynucleotides. This design aims to kill tumor
cells through SDT while activating toll-like receptor 9 with CpG, further activating DCs and
T cells to enhance the anti-tumor immune response [86]. Lin et al. developed a multifaceted
nanosonosensitizer, TiO2-Ce6-CpG, by amalgamating titanium dioxide (TiO2) NPs with
the sonosensitizer Ce6 and immune adjuvant CpG oligodeoxynucleotides. This complex
not only bolsters the effectiveness of SDT in curtailing primary tumor growth, but also
amplifies the immune response via CpG, eliciting a robust anti-tumor immune reaction [87].
In addition, metal–organic frameworks (MOFs) have been crafted as versatile platforms
for carrying immune modulators, including immune checkpoint inhibitors or molecules
that stimulate immunity, creating a combined force with SDT. Zhan et al. synthesized a
composite material, cMn-MOF@CM (Figure 7), by integrating a manganese-based MOF
(Mn-MOF) with the immune adjuvant CpG and encasing it in the cell membrane from
melanoma B16 cells expressing ovalbumin. This composition has been shown to mitigate
hypoxic conditions within tumors through its sonodynamic activity and to foster immuno-
genic cell death, thereby enhancing the immune reaction against tumor cells [88]. When
applied in conjunction with anti-PD-1 agents, it potentially has a synergistic effect on tumor
suppression and the establishment of a lasting immune memory, thus inhibiting tumor
progression and recurrence.
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Furthermore, endogenous gasotransmitters, such as nitric oxide (NO) and carbon monox-
ide (CO), act in concert with SDT to fight tumors effectively when elevated [89]. This synergy
occurs through various mechanisms, including mitochondrial and DNA damage, DNA repair
inhibition, cellular respiration suppression, and inflammation amplification [90]. Gas-assisted
therapy, when combined with SDT, has been proposed to augment the therapeutic impact.
Bai et al. employed porous molybdenum nitride (MoN) nanospheres as effective NO donors
enveloped in PEG to create MoN-Pt@PEG NPs. This nanocomplex, under ultrasound, selec-
tively releases NO in the tumor milieu, fostering the in situ formation of cytotoxic peroxynitrite
(•ONOO−), while also serving as a sonosensitizer in SDT by initiating ROS production, which
damages tumor cells (Figure 8) [91]. As demonstrated in both in vitro and in vivo studies,
this nanosystem showed superior anti-cancer efficacy and induced immune activity, directly
addressing tumor metastasis and recurrence. In addition, this nanosystem exhibited excellent
biocompatibility and metabolic characteristics in vivo.
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SDT, when integrated with nanomaterials, shows significant promise in tumor im-
munotherapy by inducing ICD and activating the immune system, facilitating therapeutic
outcomes not only in the treated area, but also systemically. Nonetheless, for SDT to
transition into clinical practice, several hurdles must be overcome. These include refining
sonosensitizers for better selectivity and therapeutic outcomes, standardizing ultrasound
parameters for uniform treatment results, and conducting extensive clinical trials to validate
their safety and effectiveness in various cancer types.



Nanomaterials 2024, 14, 648 13 of 27

5. Radiodynamic Therapy

RDT emerges as a groundbreaking approach in cancer treatment, skillfully merging ra-
diation therapy’s principles with those of PDT [92]. Upon exposure to X-ray irradiation, PS
transitions from its ground state to an excited state, during which electrons are transferred
to the surrounding substratum, resulting in the production of radical ions. Subsequently,
these radical ions can react with oxygen to generate ROS, facilitating apoptosis [93]. RDT’s
key advantage over traditional PDT lies in its superior tissue-penetration capabilities, en-
abling the effective treatment of tumors located deep within the tissues [94]. Research
on RDT’s anti-tumor actions has revealed its dual capacity to induce tumor cell death
and disrupt tumor microvasculature, while provoking a pronounced local inflammatory
response [95]. ROS generated from the interaction between PS and X-rays target tumor
cells, modify their biological behaviors toward apoptosis, and concurrently invigorate the
immune system. This activation allows immune cells to recognize and eliminate tumor
cells, thereby delivering a comprehensive approach for cancer treatment [42,96,97].

As a typical example, an intelligent nanotherapeutic system composed of hafnium
(Hf)-chelated porphyrin-modified gold radiosensitizers, PS Ce6, and folic acid (FA),
FA-Au-CH, combined with RDT, enhances the treatment of colon cancer (Figure 9). Owing
to the strong X-ray absorption properties of Au and Hf, as well as their capacity to transmit
radiation energy to Ce6, resulting in the generation of ROS [98], FA-Au-CH NPs are capable
of selectively accumulating in cancer cells via endocytosis mediated by folate receptors.
This process enhances RDT by simultaneously triggering radiosensitization and radiody-
namics. This is based on the ability of Hf4+ to transfer radiative energy to the PS, effectively
generating ROS under a single X-ray irradiation. In experiments assessing the generation of
ROS in HCT116 cells, strong green fluorescence was observed when the cells were exposed
to FA-Au-CH NPs and X-rays, indicating the significant presence of ROS. Additionally, cells
treated with FA-Au-CH and X-ray irradiation exhibited lipid peroxidation levels 2.42 times
higher than those treated with FA-Au-Hf alone [99]. These results highlight the ability of
FA-Au-CH NPs to target and induce ROS production in cancer cells, culminating in their
death. In vivo studies further confirmed the tumor-targeting efficacy of the system, with
computed tomography (CT)-imaging signal intensities at tumor sites in mice peaking at
24 h and showing a 1.24-fold increase over the control Au-CH group. These findings pro-
vide strong evidence of the effective tumor-targeting capability of FA-Au-CH, highlighting
its potential for in vivo tumor CT imaging.
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The effective deployment of RDT faces significant challenges owing to the hypoxic
conditions within the TME, which result in the reduced production of ROS, thereby di-
minishing RDT’s capability to combat tumors. To address the issue of treating deeply
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located and hypoxic tumors, Clement et al. developed PLGA-VP-PFOB NPs by incorpo-
rating verteporfin (VP) and perfluorooctyl bromide into biodegradable NPs made from
poly(lactic-co-glycolic acid) (PLGA). These NPs were specifically designed to bolster the
efficacy of RDT against cancer by boosting ROS generation in situ, even when exposed
to low-dose radiation and in the absence of oxygen [100]. In vitro experiments under
simulated hypoxic conditions demonstrated that these NPs exhibited high cytotoxicity
against the human pancreatic cancer cell line PANC-1 upon X-ray stimulation. Additionally,
dihydrolipoic acid-coated gold nanoclusters (AuNC@DHLA) have been used in RDT for
direct X-ray absorption without the need for secondary scintillators or PSs. The operation
of AuNC@DHLA relies on electron transfer mechanisms that catalyze the formation of
specific ROS types, namely O2

•− and •OH. This novel strategy facilitates the production
of a surplus of ROS, even in oxygen-deficient environments. This overcomes challenges
associated with suboptimal energy transference and hypoxic conditions prevalent within
the TME, which impede conventional RDT techniques that utilize scintillator-based ap-
proaches [43]. Similarly, to overcome hypoxia in the TME, Fan et al. developed hollow
mesoporous organosilica NPs engineered for the effective carriage and delivery of tert-
butyl hydroperoxide (TBHP) and pentacarbonyliron (Fe(CO)5). Upon X-ray exposure,
these NPs triggered the activation of peroxide bonds within TBHP, generating •OH radi-
cals in an oxygen-independent manner, while concurrently liberating CO molecules from
Fe(CO)5 [101]. Research conducted in vitro and in vivo has demonstrated that •OH and
CO produced by this method significantly inhibit tumor growth under both oxygen-rich
and oxygen-poor conditions.

In addition to developing NPs that home in on tumors under hypoxic conditions, an
alternative approach to alleviate tumor hypoxia involves the direct delivery of oxygen to
the tumor site through the use of nanomaterials. The direct application of hemoglobin (Hb),
the primary oxygen-carrying protein in red blood cells, is restricted because of potential
nephrotoxicity and immunogenicity issues. To circumvent these challenges, researchers
have developed multifaceted nanosystems that not only encapsulate Hb for oxygen de-
livery but also enhance radiation therapy as radiosensitizers. These innovative systems
preserve the oxygen transport capability of Hb while minimizing its adverse effects, thus
effectively managing tumor hypoxia [102]. For example, Zhao et al. engineered a nanosen-
sitizer utilizing a MOF, dubbed Hb@HP(Hf) (Figure 10). This pioneering nanosensitizer
incorporated Hf, which captures X-rays and emits energy in the form of visible light. This
energy emission activates the photosensitive tetrakis(4-carboxyphenyl) porphyrin, facili-
tating the production of ROS. Additionally, Hb@HP(Hf) can deliver a substantial oxygen
payload, significantly mitigating the oxygen-deficient conditions of the TME and boosting
the efficacy of RDT [44]. Further in vivo studies showed that the HP(Hf) MOF improved
the hypoxic environment within solid tumors, resulting in excellent anti-tumor effects.

After mitigating hypoxia within the TME, ROS generated by RDT trigger an extensive
immune response against tumors. This effect was significantly amplified when RDT
was combined with immune checkpoint inhibitors, facilitating the complete elimination
of both primary and metastatic tumors. Utilizing NPs such as Hb@Hf-Ce6 has been
shown to enhance RDT’s effectiveness, improve the management of the hypoxic TME, and
stimulate immune responses against tumors in synergy with PD-1 immune checkpoint
inhibitors [103]. Hf within these NPs serves as a radiosensitizer, increasing radiation
absorption, and thereby elevating ROS production, which contributes to the suppression
of primary tumor growth. Concurrently, blockade of the PD-1 pathway addresses the
challenge of insufficient immune responses, often observed with RDT alone [104]. In vivo
experiments showed that combined treatment with Hb@Hf-Ce6NPs+PD-1(+) inhibited
hypoxia-induced immunosuppressive M2 phenotype polarization effectively eliminated
regulatory T cell activity, and induced the maturation of effector T cells (CD3+ and CD8+)
in both distant and primary tumors. In a mouse model of lung metastasis, the NP+PD-1(+)
group showed delayed cancer cell metastasis without death, indicating that RDT combined
with Hb@Hf-Ce6 NPs immunotherapy effectively inhibited lung tumor cell metastasis.
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Hb@Hf-Ce6 NPs, by reactivating immune cells and releasing cytokines, maintain and
promote the proliferation of immune cells, thereby enhancing RDT immunotherapy for
both primary and distant tumors.
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In summary, RDT offers a new strategy for improving cancer treatment outcomes. In
particular, when combined with immune checkpoint blockade, this strategy can activate the
immune system to combat tumor growth and metastasis. Future research should continue
exploring the application of different PSs, optimizing RDT treatment parameters, and
evaluating synergistic effects with other treatment methods to achieve more effective and
safer tumor-treatment protocols.

6. Chemodynamic Therapy

CDT is an advanced cancer treatment that induces cell apoptosis by generating hy-
droxyl radicals within the tumor region through Fenton or Fenton-like reactions, ultimately
suppressing tumor growth [105]. The core of the Fenton reaction is the chain reaction
between iron ions (Fe2+) and H2O2, which promotes the production of hydroxyl radi-
cals. Recent studies have revealed that metal ions such as Cu+, Mn2+, Co2+, and Ti3+ can
also effectively catalyze H2O2 to produce •OH through mechanisms akin to Fenton reac-
tions [45,46,106]. Owing to varying catalytic conditions, different chemodynamic catalysts
exhibit distinct effects in cancer therapy. Amidst the rapid advancement of Fenton and
Fenton-like nanomaterials, CDT has attracted considerable interest owing to its distinctive
benefits, including elevated tumor selectivity, minimal adverse effects [107], therapeu-
tic procedures that obviate the need for external-field activation, and the capability of
modulating hypoxic conditions and the TME [108].

However, the success of CDT is constrained by several factors, including the challenge
of delivering therapeutic agents efficiently and the complexity of the TME. Firstly, a low
concentration of H2O2 within tumor cells can diminish the effectiveness of CDT [109];
secondly, there is a risk of metal ion depletion en route to cancer cells, and potential
harm to healthy cells. Thirdly, to date, only a limited selection of metal elements are
recognized as both effective and safe for CDT, leaving the potential of numerous other
metals untapped. Finally, the effectiveness of many CDT agents is often limited to acidic
conditions, presenting a challenge for their broader application in cancer therapy [110,111].
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Outside the TME, owing to mildly alkaline conditions and insufficient hydrogen, the
capability of H2O2 of catalyzing •OH is significantly lower, ensuring the safety of the
surrounding normal tissues [112]. Nonetheless, the scarcity of endogenous H2O2 poses
a significant hurdle in achieving total tumor eradication, even when employing Fenton
reactions. To address the challenge posed by inadequate endogenous H2O2, Yang et al.
introduced a synergistic strategy that merged CDT with starvation therapy to suppress
tumor growth. They synthesized a multifunctional nanocomposite, SC@G, by integrating
GOx with strontium copper silicate (SrCuSi4O10). This composite exploited GOx to convert
the glucose present within the tumors into gluconic acid, thereby generating H2O2 in situ.
This acidification of the TME accelerated the breakdown of SrCuSi4O10, resulting in the
release of Sr and Cu ions. These ions then catalyzed the conversion of H2O2 into the more
harmful •OH, forging a dual-attack mechanism against cancer through starvation therapy
and CDT [113]. Moreover, the photothermal effect generated under laser irradiation further
enhanced GOx activity, accelerating the intratumoral CDT reactivity. SC@G not only
initiates starvation therapy, but also produces H2O2 in quantities sufficient for effective
CDT. Laboratory tests using laser irradiation at 808 nm and 1064 nm demonstrated that the
viability of 4T1 cancer cells decreased by 18.7% and 16.4%, respectively. In experiments
involving a 4T1 tumor-bearing mouse model, the group treated with SC@G and a 1064 nm
laser achieved total tumor elimination, showing that the combined impact of photothermal
therapy, starvation therapy, and CDT surpasses the efficacy of any single treatment method.
Cisplatin has been shown to specifically trigger the activation of NADPH oxidase in cancer
cells. This enzyme catalyzes the transfer of electrons from NADPH to O2, producing the
superoxide anion (O2

•−), which superoxide dismutase subsequently converts into H2O2.
Building on this, Ren et al. formulated PTCG NPs incorporating epigallocatechin gallate, a
phenolate platinum(IV) prodrug, and a polyphenol-modified block copolymer to achieve
high drug-load efficiency [114]. Once released inside the cell, activated cisplatin elevates
intracellular H2O2 levels, setting off a series of reactions that leverage the Fenton reaction
to generate highly toxic ROS, thus facilitating potent CDT.

Owing to their unique properties, MOFs have shown tremendous application potential
in the field of CDT [115]. In particular, the stimuli-responsive and porous structure of
MOFs make them ideal carriers for effective drug delivery, for targeting the TME [116].
Fang et al. merged a cobalt–ferrocene MOF (Co-Fc NMOF) with GOx to create a Co-Fc@GOx
nanocomposite. This composite serves not only as an adept carrier, facilitating the targeted
delivery of GOx into the TME, but also engages in the generation of highly toxic •OH, via
the Fenton reaction (Figure 11). Within the TME, the GOx component of the Co-Fc NMOF
accelerates the conversion of glucose into gluconic acid and H2O2, thereby increasing the
intracellular acidity and H2O2 concentration. This establishes a setting for the Fenton
reaction of the Co-Fc NMOF, which ultimately enhances ROS production [117]. Unlike
Co-Fc NMOF alone, the Co-Fc@GOx variant incorporates P from the GOx molecules, adding
a novel element to its composition. Through various in vitro assessments, including CCK-8
assays, live/dead cell staining, and flow cytometry, it was established that Co-Fc@GOx
markedly suppressed the viability of 4T1 cancer cells more effectively than Co-Fc NMOF
alone, with the cell-destructive impact being amplified with increasing GOx concentrations.
In vivo studies in a 4T1 mouse tumor model revealed that Co-Fc@GOx not only significantly
curtailed tumor growth but also maintained exceptional biocompatibility and biosafety,
showing no detrimental effects on healthy tissues.
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The Fenton reaction involving Fe2+ relies on a low-pH environment, which hinders
the generation of ROS within tumors, to some extent. In a mildly acidic TME, metal ions
such as Cu+ and Mn2+ have been shown to catalyze the conversion of H2O2 into •OH
more effectively than Fe2+ [118]. Therefore, Huang et al. designed a Zn2+/Cu2+ bimetallic
MOF loaded with a rolling-circle-amplification substrate, PZCT, for precise and efficient
combined gene therapy using DNAzymes and CDT. The activation process of PZCT is
controlled by a tumor-specific bioreciprocal mechanism overexpressing miR-21, which
utilizes the catalytic action of Zn2+ to generate a large amount of DNAzymes, silencing
EGR-1 mRNA, and thereby inhibiting tumor growth (Figure 12). Simultaneously,
Cu2+ doped within PZCT reduces GSH and converts endogenous H2O2 into toxic •OH,
thereby exerting CDT effects [47]. This dual strategy of gene therapy combined with CDT
demonstrated significant tumor-eradication effects in vivo. Another study demonstrated a
pH-independent Fenton-like reaction strategy to facilitate the generation of •OH within
tumors. Chen et al. constructed ultrasmall bovine serum albumin (BSA)-modified chalcopy-
rite NPs (BSA-CuFeS2 NPs). According to the 3,3′,5,5′-tetramethylbenzidine colorimetric
assay, BSA-CuFeS2 produced •OH concentrations without significant differences under
various pH conditions, proving its ability to perform pH-independent Fenton-like reac-
tions, efficiently generating •OH within the mildly acidic TME. BSA-CuFeS2 NPs also
demonstrated a high photothermal conversion efficiency (38.8%), indicating promising
prospects for combining photothermal therapy with CDT to synergistically kill tumor cells
and inhibit tumor growth [119].
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In summary, CDT, as a non-invasive anti-tumor treatment modality, has shown broad
application prospects owing to its unique mechanism of action and therapeutic potential.
Through continuous research and optimization of nanocarriers to overcome the limitations
of the TME in CDT, as well as exploring effective combinations of CDT with other treatment
modalities (such as immunotherapy and targeted therapy), CDT is evolving into a more
effective and safer cancer-treatment option, offering renewed hope for patients with cancer.

7. Role of Nanomedicine in NDT

Amidst the ongoing development of nanotechnology within the medical sector,
nanomedicines (Table 2) constructed by researchers leveraging the unique physical, chemi-
cal, and biological properties of nanomaterials have garnered widespread attention and
research interest in tumor therapy [120]. By nanonizing drugs, nanomedicines can signifi-
cantly enhance the pharmacokinetic properties of therapeutic agents, thereby augmenting
their efficacy. This is achieved through precise delivery, sustained and controlled release,
multimodal therapy, and excellent biocompatibility. Such advancements facilitate efficient
drug delivery to tumors, optimize drug distribution within organisms, and improve thera-
peutic outcomes, while minimizing adverse effects on normal tissues [121,122]. However,
the metabolism and excretion mechanisms of nanomedicines differ markedly from those of
traditional drugs, potentially leading to accumulation within organisms and consequent
long-term toxicity issues [123]. Furthermore, the size and surface characteristics of nanopar-
ticles may influence their ability to navigate through hepatic, renal, or other excretory
pathways, affecting not only the drug clearance rate but also the overall safety and efficacy
of the therapeutic regimen [124].
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Table 2. Summary table of the chemical structures of nanomedicines.

Nanomedicines Chemical Formula Chemical Formula Ref.

Chlorin e6 C33H36N4O6
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Table 2. Cont.
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In the domain of tumor therapy, nanomedicines predominantly operate through two
major mechanisms: thermodynamics [125] and kinetics [126]. A commonality among NDT
modalities is their capability of transforming local energy into a mechanism that activates
the production of ROS within the tumor, thereby inducing cellular death or damage.
Thus, ROS play an indispensable role in the kinetic approach to tumor treatment [127].
Regrettably, NDT primarily relies on oxygen or endogenous H2O2 to generate •OH, not
only limiting the efficiency of ROS production but also potentially exacerbating the hypoxic
condition within tumor regions, which fundamentally contributes to tumor resistance
to NDT [128]. Given that NDT chiefly utilizes nanocarriers as drug delivery systems, it
achieves targeted drug delivery, controlled release, and responsive therapy for the tumor
microenvironment by regulating the kinetic behavior of drugs in vivo [129]. To expedite
the development and clinical translation of NDT, research should be directed towards
the following: (1) developing multifunctional nanoplatforms capable of simultaneous
drug delivery, NDT, and imaging, to facilitate integrated disease diagnosis and treatment;
(2) designing intelligent nanocarriers that respond to changes in the TME, such as pH,
temperature, or enzyme activity, for precise control over the release and activation of
nanomedicines; and (3) addressing tumor hypoxia in NDT through the use of nanocarriers
capable of carrying or generating oxygen to enhance the efficacy of NDT in treating deep-
seated tumors.

8. Conclusions and Outlook

This article provides an overview of new technologies for nanodynamic anti-tumor
therapy and discusses the potential of five NDTs in cancer treatment: photodynamic,
electrodynamic, sonodynamic, radiodynamic, and chemodynamic therapies. However,
because each therapy has its own shortcomings, they cannot achieve the desired effect
when used alone. Consequently, contemporary research is increasingly directed toward
integrating multiple NDT modalities and incorporating immunotherapy to devise com-
prehensive multimodal tumor treatment stratesgies that enhance therapeutic outcomes.
Despite significant progress in experimental research, only PDT has been approved as a
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first-line treatment for non-melanoma skin cancer. However, clinical translation based on
NDT faces significant challenges.

A critical barrier to the clinical adoption of NDTs is the absence of clinically validated
medical devices for their application, and most NDT-triggering mechanisms are currently
classified as experimental tools. This limitation confines NDT research to preclinical and
animal-based studies and impedes the progression of human trials. For NDTs to transition
from research laboratories to clinical practice, the development and standardization of safe
and effective medical devices tailored for NDT applications is imperative.

Additionally, NDT relies on nanomaterials with specific properties that target tumor
cells and induce therapeutic effects. However, the biocompatibility and biodegradability
of NDT nanomaterials such as nanocarriers containing PSs, sonosensitizers, and MOFs
require further investigation. The biological effects and biosafety data of nanomaterials
derived from animal experiments are insufficient to ensure the safe transformation and
use of nanomaterials from experimental animals to humans. The development of safe and
efficient nanomaterials is crucial for realizing the clinical application of NDT technology,
which requires scientific researchers to not only pay attention to the therapeutic efficacy
of nanomaterials, but also to conduct in-depth research on their safety in the human
body. Moreover, the therapeutic mechanisms of NDT are not well understood, posing
challenges in achieving multimodal treatment. Although laboratory studies have shown the
potential of multimodal NDT technology in combating tumors, further research is needed
to effectively integrate these technologies while ensuring patient safety, thereby enhancing
treatment efficacy. Addressing these key aspects is crucial for the clinical translation
of NDT.

Although NDT technologies still face multifaceted challenges in clinical applications,
they have shown tremendous potential in cancer treatment. Future research aimed at
ensuring biosafety must continually optimize the design of nanocarriers with advancements
in technology and deepen interdisciplinary collaboration. Moreover, the development
of multimodal treatment modalities in conjunction with immunotherapy is crucial for
achieving comprehensive tumor eradication. We believe that NDT can be applied to clinical
oncology treatments in the future.
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