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Abstract: In this study, poly (ethylene terephthalate) (PETG) was combined with Antimony-doped
Tin Oxide (ATO) to create five different composites (2.0–10.0 wt.% ATO). The PETG/ATO filaments
were extruded and supplied to a material extrusion (MEX) 3D printer to fabricate the specimens
following international standards. Various tests were conducted on thermal, rheological, mechani-
cal, and morphological properties. The mechanical performance of the prepared nanocomposites
was evaluated using flexural, tensile, microhardness, and Charpy impact tests. The dielectric and
electrical properties of the prepared composites were evaluated over a broad frequency range. The
dimensional accuracy and porosity of the 3D printed structure were assessed using micro-computed
tomography. Other investigations include scanning electron microscopy and energy-dispersive X-ray
spectroscopy, which were performed to investigate the structures and morphologies of the samples.
The PETG/6.0 wt.% ATO composite presented the highest mechanical performance (21% increase
over the pure polymer in tensile strength). The results show the potential of such nanocomposites
when enhanced mechanical performance is required in MEX 3D printing applications, in which PETG
is the most commonly used polymer.

Keywords: polyethylene terephthalate glycol (PETG); Antimony Tin Oxide (ATO); material extrusion
(MEX); 3D printing; nanocomposites; materials characterization

1. Introduction

Additive manufacturing (AM), widely termed as 3D printing, is a novel and rapidly
expanding manufacturing technology that is suitable for a variety of applications that re-
quire complex geometries for manufactured products and has transformed manufacturing
processes [1]. Three-dimensional printing technology is an AM technique that provides
the fabrication of various shaped items in a short period of time while maintaining a low
cost [2] when compared with conventional manufacturing techniques and processes. The
usefulness of 3D printed parts for engineering purposes depends strongly on the detailed
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knowledge of their mechanical properties. All 3D printed parts made using the material
extrusion (MEX) method were fabricated by feeding a filament into a 3D printer nozzle,
out of which the material was extruded. During extrusion, the material flows in a viscous
condition after being heated at temperatures close to and above its melting temperature, Tm,
and is then deposited into a layer-by-layer structure while it is immediately hardened [3,4]
as it cools off at temperatures below Tm. Via the process described above, various three-
dimensional (3D) parts derived from models designed using computer-aided design (CAD)
data [5] are manufactured and can be utilized in several applications in major industries
such as defense, aerospace [6–11], aircraft [12], engineering [13], energy [14], electronics [15],
medicine [16–21], food [22], and automobiles [7,8,23,24]. Seven groups of different AM
methods have been described by the American Society for Testing and Materials (ASTM),
including material extrusion [25], which was employed in this study. As mentioned pre-
viously, significant efforts have been made to improve the mechanical characteristics of
various fabricated 3D-P parts [26,27]. Therefore, it is important to optimize the 3D printing
parameters [28] to achieve the latter. The most vital printing parameters are printing speed,
temperature, layer thickness, infill density, and air gaps [29,30]. Additionally, according to
the literature, nozzle temperature can influence the fluidity and solidification characteristics
of extruded filaments [31].

Poly(ethylene terephthalate) (PETG) is an amorphous linear polymeric material suit-
able for extrusion, thermoforming, injection, and blow molding [32,33]. PETG is highly
transparent [34] because of its low crystalline-phase content. It has adequate mechanical
properties, chemical resistance [35,36], high ductility [37], and heat resistance, and is an
inexpensive and versatile biomaterial [38]. It is derived from Polyethylene Terephthalete
(PET) polymer, filled with glycol [39], and amongst other characteristics, it exhibits good
chemical alkali resistance, high shrinkage, transparency, gloss, low haze, and good print-
ability [40]. There are various applications in the medical field, such as tissue engineering,
dentistry, optometry, vascular health, cardiology, orthopedics, neurology, gynecology, and
surgery [38] in which it is used, as its properties fit many of the requirements for various
applications in the fields mentioned above. The mechanical performance of MEX 3D print-
ing has been reported for different types of tests [2,41–44]. It has also been used as a matrix
for the development of composites with carbon-based fillers [45–48]. Much research has
been conducted on the sustainability of polymers owing to their very good response when
recycled [40,49,50].

Ceramics are known for their exceptional properties, such as high strength and resis-
tance to wear [51]. Owing to these properties, they are common materials in demanding
applications such as coatings [52,53], cutting tools [54,55], armor, and ballistic applica-
tions [56,57]. They are often used as fillers in polymeric matrices to improve perfor-
mance [58–61]. Lately, their use and the research on their performance as fillers in MEX 3D
printing. Ceramics, such as silicon nitride [62,63], boron carbide [64], titanium carbide [65],
titanium nitride [66], and tungsten carbide [67], have been tested on different polymeric
matrices. Antimony Tin Oxide (ATO) is a ceramic filler that is widely used in electrical
applications owing to its electrical conductivity [68–70]. Therefore, it has mostly been
investigated as a filler with the aim of examining the dielectric properties and control of its
conductivity when incorporated into various polymeric matrices [71–73]. It is also charac-
terized by a variety of other properties, including low resistivity, good optical transmission,
high surface composition, and catalytic activity, which vary according to the applied tech-
nique of nanoparticle preparation [74–76] when ATO is prepared as nanoparticles. ATO is
also considered a transparent conductive oxide characterized by high transparency in the
visible range and considerable electrical conductivity [77–81]. ATO is useful in applications
such as flat-panel displays, solar cells, and electromagnetic interference shielding [78,82–84].
Their optical properties make them suitable for use in films [85,86].

In this work, various composites were created by combining PETG as the matrix
material with ATO as the filler in an effort to examine their performance via a variety of tests.
The effect of ATO nanoparticles as reinforcement agents for the PETG thermoplastic was
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evaluated. The aim was to improve the mechanical performance of the PETG thermoplastic
in MEX 3D printing, following a process that can be easily industrialized. Thus, the
robustness of parts in applications in which PETG thermoplastic is the suitable polymer
to use will be improved, and the potential for expanding its use can be enabled. Popular
applications that 3D printed PETG composites can be applied to are in the aeronautical,
automotive, and food safety sectors [87]. PETG/ATO nanocomposites, to the authors’
best knowledge, have not been investigated in the literature so far for their mechanical
properties, let alone in the AM or MEX 3D printing technologies, and by considering the
ease of industrialization of the process, as mentioned above.

Mixtures of five different filler percentages were produced: PETG/ATO 2.0, 4.0, 6.0,
8.0, and 10.0 wt.%, respectively. First, the materials were thoroughly mixed before being
converted into filaments. The extruded filaments were then supplied to a 3D printer to
manufacture specimens. The same procedure was followed for the production of the
corresponding pure PETG samples for utilization as reference points to compare the results
derived from the conducted tests. The mechanical properties were examined using tensile
and flexural microhardness and toughness tests, respectively. Their thermal characteris-
tics were determined using thermogravimetric analysis (TGA) and differential scanning
calorimetry (DSC). Raman analysis was conducted to determine their structural characteris-
tics. The electrical/dielectric properties were investigated over a broad frequency range, as
it was expected that ATO conductive nanoparticles would modify the electrical properties
of the nanocomposites, according to existing reports in the literature. Scanning electron
microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to examine the
morphological and structural characteristics of the samples. Micro-computed tomography
(µ-CT) was employed to examine the dimensional accuracy and internal structure (to locate
defects, voids, etc.) of the samples. The developed nanocomposites showed that ATO
has potential because its mechanical properties were improved by the nanocomposite,
with 6 wt.% loading being the most efficient. However, the electrical conductivity did not
improve significantly. The main objectives of this study were as follows:

• Reveal the efficiency of ATO as a reinforcement agent in the PETG polymer.
• Investigate the ability of ATO to modify the electrical properties of the PETG polymer.
• Propose PETG/ATO nanocomposites for the MEX 3D printing process with enhanced

performance. To improve the efficiency of applications, the PETG polymer is used
overall, further expanding its use.

2. Materials and Methods

To conduct this investigation, a series of initial assessments were performed on the raw
materials, filaments, specimens, and tests of the samples. Figure 1A,B show the preparation
procedure of the raw materials in proper quantities for the tests, followed by drying in
an oven. Figure 1C–F depict the extrusion of the filaments and their drying, respectively,
before quality control and testing of their mechanical properties. Figure 1G,H show the
MEX 3D-P and quality inspection of the specimens, respectively, while Figure 1I–L show
the mechanical testing, evaluation, rheological, and morphological characterization of the
specimens, respectively.

2.1. Materials

The employed Polyethylene Terephthalate Glycol (PETG) was purchased from Felfil
Srl (Torino, Italy) in pellets. The ATO spherical nanoparticles (NPs) (7–11% Sb2O5 to SnO2)
were supplied by Sigma-Aldrich (St. Louis, MO, USA). According to the manufacturer, the
particle size is <50 nm and the surface area is 47 m2/g.

2.2. Preparation of the PETG and PETG/ATO Filaments and 3D Printing of the Specimens

First, appropriate quantities of starting materials were prepared and mixed using
a mechanical homogenizer (500 W, 30 min, 4000 rpm, no solvents or binding agents
were used), which created five (5) different mixtures of 2.0, 4.0, 6.0, 8.0, and 10.0 wt.%
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filler quantities. The mixtures were then left in an oven overnight (8 h) at 80 ◦C to dry
before executing the filament extrusion procedure using a single-screw 3D Evo Composer
450 extruder (3devo B.V., NL). This extruder features a filament–diameter sensor that
operates during filament production. It then proceeds to micro-adjust the extrusion speed,
if needed, to maintain a steady diameter filament. The 3devo Composer Extruder also
comes with a specifically engineered screw design crafted to efficiently blend materials and
nano additives, as per the manufacturer’s specifications.Nanomaterials 2024, 14, x FOR PEER REVIEW 4 of 27 
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drying, inspection of quality and mechanical properties test, (G,H) manufacturing of the 3D-P
specimens via MEX and inspection of their quality, (I,J) mechanical testing and evaluation of the
specimens, as well as (K,L) their rheology and morphological characterization.

The range of filler percentages was determined by gradually increasing the filler
content and testing the corresponding samples. When the mechanical properties started to
decline, the filler loading did not further increase, indicating the saturation of the filler in
the matrix. The optimum extrusion parameters were set according to information provided
in the literature [40]. All the fabricated filaments measured a diameter between 1.65 mm
and 1.85 mm, which was adequate for 3D printing. Prior to the 3D printing procedure, the
filament underwent quality control and was oven-dried overnight at 80 ◦C. An FFF 3D
printer, Intamsys Funmat HT 3D from Intamsys Technology Co., Ltd. (Shanghai, China),
was used for the fabrication of pure PETG and PETG/ATO specimens. The design for all
3D-P specimens intended for mechanical testing was created using 3D Autodesk® Fusion
360™ (Autodesk®, Inc., San Francisco, CA, USA) software before exporting the design into
files of standard tessellation language (STL) form.

2.3. SEM and EDS Analysis of ATO and the Nanocomposites’ Specimens

An electron microscope (Jeol JSM-IT700HR field-emission SEM, Jeol, Tokyo, Japan)
was used to obtain scanning electron microscopy (SEM) images. Images were captured
from both the sides and fracture surfaces of the pure PETG and PETG/ATO nanocomposite
specimens. EDS was used to investigate the chemical composition of the samples and was
conducted using the same device as that used for SEM. The ATO material was subjected to
these tests to validate its specifications. To conduct the above analyses, a high-vacuum mode
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and an acceleration voltage of 5 kV were used while the samples were gold-sputtered. SEM
and EDS mapping images from the ATO nanoparticles are available in the Supplementary
Materials of the study.

2.4. Micro-Computed Tomography (µ-CT)

For the investigation of the porosity as well as the dimensional deviation of the fabri-
cated samples, microcomputed tomography (µ-CT) scanning was employed and conducted
by a Tomoscope HV Compact 225 kV Micro Focus CT-scanner (Werth Messtechnik GmbH,
Giessen, Germany) of a 1024 × 1024-pixel sensor. VG Studio MAX 2.2 software (Volume
Graphics GmbH, Heidelberg, Germany) was used to process the derived data. These
investigations were aimed at evaluating the effects of the additives on the 3D-P structure.
The dimensional accuracy was examined with a 75 L setup (72.58 µm resolution on the
X-axis and 72.65 µm resolution on the Y-axis). The porosity was examined with a 16 L
setup (15.46 µm resolution on the X-axis and 15.49 µm resolution on the Y-axis). In both
cases, 1600 sections were acquired per revolution.

2.5. Mechanical Characterization

Tensile, flexural, Charpy impact, and microhardness (M-H) tests were performed to
investigate the mechanical performance of the specimens. ASTM D638-02a for V-type
tensile specimens (3.2 mm thick) was followed for the manufacturing and tensile tests.
A tension/flexure test apparatus in tensile mode, Imada MX2 (Imada Inc., Northbrook,
IL, USA), with standardized grips, was used for tensile testing. For the flexural 3-point
bending testing, ASTM D790-10 (3-point bending test with a 52.0 mm support span) was
considered, while the machine utilized was the same as for the tensile test, but in the
flexural mode setup, in accordance with the corresponding standard. Impact testing was
based on ASTM D6110-04 and conducted using a Terco MT 220 (Terco, Kungens Kurva,
Sweden) Charpy impact device. For microhardness testing, the measurements were taken
in accordance with ASTM E384-17, using an Innova Test 300 Vickers device from Innovatest
Europe BV, Maastricht, The Netherlands, on a fully polished surface of the specimens. A
force of 100 gF was applied, and an indentation duration of 10 s was set.

Figure 2 presents the values of the parameters set during the 3D-P of the specimens.
The nozzle temperature was 240 ◦C, the bed temperature was 80 ◦C, the layer thickness
was 0.2 mm, and the print speed was 40 mm/s. Figure 2 shows some samples from the
3D-P tensile, flexural, and impact specimens, as well as the dimensions based on which the
3D specimens were fabricated.Nanomaterials 2024, 14, x FOR PEER REVIEW 6 of 27 
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2.6. Raman Spectroscopy Analysis and Fourier Transform Infrared (FTIR) Spectroscopy

The produced samples were analyzed via Raman spectroscopy using a HORIBA
Scientific confocal LabRAM HR Raman Spectrometer (Kyoto, Japan). The main 532 nm
laser line of the spectrometer was used at a power of 90 mW. To reduce laser power on the
sample in an effort to eliminate possible alterations caused on the sample by an intense
focused laser beam, a 5% Neutral Density filter was used inside the optical path. The
objective lens used for sample excitation and imaging was a 50× Olympus microscope
objective lens (LMPlanFL N) with a numerical aperture (NA) of 0.5- and 10.6 mm working
distance. The microscope settings for the data acquisition were as follows:

• Acquisition spectral range from 50 up to 3900 cm−1;
• Spectrometer grating 600 grooves/mm, resulting in 2 cm−1 spectral resolution;
• Sample exposure time is 10 s at each measurement point;
• We acquired a total of five accumulations at each point for statistical purposes and to

improve the signal-to-noise ratio, which in turn would yield high-quality Raman spectra;
• Imaging resolution was 1.7 µm lateral and 2 µm axial.

At the sample’s surface, the measured laser power was 2 mW.
Following the data acquisition, the measured areas were visually inspected using a

microscope to ensure the absence of discoloration or degradation due to laser irradiation.
Raman's raw data were then processed using the LabSpec v. 6 software (HORIBA,

Kyoto, Japan). Each spectrum acquired was processed with the same methodology:
(a) Cosmic rays were removed; (b) signal denoise with 5-point kernels; (c) background

removal using a 6th-grade polynomial; (d) spectra were recalibrated by the maximum peak;
(e) data normalization by a unit vector; (f) from each spectrum, the PETG Pure spectrum
was subtracted.

The ATR/FT-IR measurements, which determined absorbance, were conducted us-
ing a Bruker Vertex 70v FT-IR (Bruker, Billerica, MA, USA) vacuum spectrometer. This
spectrometer was equipped with a single reflection diamond crystal A225/Q Platinum
ATR unit, and the samples were analyzed via total reflection measurements in the spectral
range of 7500–350 cm−1. Interferograms were recorded at a resolution of 4 cm−1 (8 scans)
and were apodized with a Blackman–Harris function. Fourier transformation was then
performed with two levels of zero filling to obtain spectra encoded at 2 cm−1 intervals.
The measurements were noise-corrected via automatic subtraction of a diamond crystal
background signal. To ensure accuracy, the samples were carefully placed under the ATR
press, and after each measurement, the sample area and the tip of the A225/Q ATR unit
were cleaned with pure ethanol (Et-OH; Sigma-Aldrich, Munich, Germany) and left to dry
for several minutes.

2.7. Rheometric Performance Examination

A DHR-20 Discovery Hybrid Rotational Rheometer (TA Instruments, New Castle, DE,
USA) was used for rheometric measurements according to ASTM D1238-13 for the melt
flow rate (MFR). The device consists of an Environmental Test Chamber with a parallel-
plate setup for temperature regulation. The acquisition time was 10 s at each measurement
point to prevent excessive heating and decomposition. The flow rates of the materials at
certain temperatures and previously determined pressures were assessed using the melt
flow rate (MFR) and rotational rheometric tests.

2.8. Thermal Properties Examination

Thermogravimetric analysis (TGA) was performed along with differential scanning
calorimetry (DSC) to obtain information on the thermal properties of the pure and nanocom-
posite samples. A Diamond Perkin Elmer device (Waltham, MA, USA) was employed for
TGA analysis (40–550 ◦C temperature cycle, 10 ◦C/min temperature increase rate). DSC
analysis was conducted using a Discovery Series DSC-25 DSC calorimeter (TA Instruments,
New Castle, DE, USA). The device is equipped with an RSC-90 Refrigerated Cooling System
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(TA Instruments, New Castle, DE, USA). During both the TGA and DSC experiments, an
inert environment and high-purity N2 (nitrogen gas) were present.

2.9. Broadband Dielectric Spectroscopy (BDS) Measurements

BDS measurements of the PETG/ATO composites in the frequency range of 10−2 Hz
to 4 MHz were conducted using an Alpha-ANB high-resolution dielectric analyzer in
conjunction with a ZGS Alpha Active sample holder and a BDS 1100 module (Novocontrol
Technologies GmbH & Co., Montabaur, Germany). The two-electrode configuration of
the sandwich-structured capacitor was implemented on disk-shaped specimens (diameter:
40 mm, thickness: 4 mm) prepared by thermal pressing. The conductive paste was applied
to both sides of the specimen to guarantee effective electrical contact with the gold-plated
electrodes of the sample holder. An AC voltage with a root-mean-square (Vrms) value of
1 V was applied, and the measurements were conducted at ambient temperature. Control
and data acquisition were performed using WinDeta v. 5.8 software (Novocontrol Tech-
nologies GmbH & Co., Montabaur, Germany). The dielectric properties are represented as
complex functions of the dielectric permittivity (ε*(ω)), dissipation factor (tan(δ)), and AC
conductivity (σ*(ω)), as expressed by the following equations:

ε*(ω) = ε′ − iε′′ =
C(ω)

εoπr2/d
− i

1
ωR(ω)εoπr2/d

(1)

tan(δ) =
ε′′

ε′
(2)

and
σ*(ω) = σ′ − iσ′′ = iωεo(ε

*(ω)− 1) = ωεoε′′ − iωεo
(
ε′ − 1

)
(3)

where the resistance R(ω) and the capacitance C(ω) are the measured quantities of the
dielectric analyzer, d is the specimen thickness, r is its radius, ω = 2πf is the angular
frequency, and εo is the permittivity of the vacuum. The above functions are widely used in
the dielectric characterization of materials because the real part of the complex permittivity
(ε′) measures the energy storage in the material under the effect of an electric field, whereas
the dissipation factor (tan(δ)) ε′′ is related to the energy loss within the material.

3. Results
3.1. Raman Spectroscopy Characterization

Figure 3a shows the Raman spectra of the pure PETG/ATO composites (2.0, 4.0, 6.0, 8.0,
and 10.0 wt.%), while Figure 3b shows the curves from subtracting pure PETG from all the
composites. The Raman peaks corresponding to the pure PETG sample were obtained from
the literature and are listed in Table 1. As shown, as the concentration of ATO increased in
the PETG, the related Raman lines of pure PETG lost their signal intensity. Furthermore,
the broad photoluminescence appeared to increase as the ATO concentration increased
from 800 to 1800 cm−1. The addition of ATO to PETG resulted in a decrease in some Raman
lines, probably owing to the photoluminescence of ATO. The Raman lines that decreased in
intensity are listed in Table 2.

Table 1. The significant Raman peaks, along with their related assignments regarding PP pure.

Wavenumber (cm−1) Intensity Raman Peak Assignment

631 Strong phenyl ring vibration [88,89]
703 Medium C–H out-of-plane bending [88]
772 Small O–C(O)–O stretching [89]
793 Medium
855 Strong γ(C–OH)ring [90,91]

1115 Strong Skeletal vibrations, C–O–C bonds [92]
1172 Strong Skeletal vibrations, C–O–C bonds [88,92]



Nanomaterials 2024, 14, 761 8 of 26

Table 1. Cont.

Wavenumber (cm−1) Intensity Raman Peak Assignment

1283 Strong Skeletal vibrations, C–O–C bonds [88,92]
1369 Small C–C–H, C–O–H, and O–C–H [92]
1409 Medium C-H3 deformation [93]

1440–1464 Medium
C–H3 deformation [88,93]; C–H2

deformation [88,93]; C–H3 symmetric
bending [89,93,94];

1613 Very Strong Phenyl ring stretch [89]
1724 Very Strong
2857 Medium C–H2 symmetric stretching [92]
2890 Medium CH2 symmetric stretching [92,95]
2955 Strong CH2 asymmetric stretching [92]
3081 Strong C-H stretching [93]Nanomaterials 2024, 14, x FOR PEER REVIEW 9 of 26 
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Figure 3. (a) Raman spectra of pure PETG, PETG/2.0 wt.% ATO, PETG/4.0 wt.% ATO, PETG/
6.0 wt.% ATO, PETG/8.0 wt.% ATO, and PETG/10.0 wt.% ATO; (b) results after subtracting pure
PETG from all the PETG/ATO composites.

Table 2. Significant Raman peak differences in PETG/ATO samples from PETG/pure.

631 Gradual drop Significant decrease
863 Gradual drop Small decrease

1104 Gradual drop Small decrease
1283 Gradual drop Significant decrease
1613 Gradual drop Significant decrease
1724 Gradual drop Significant decrease
2955 Gradual drop Significant decrease
3081 Gradual drop Significant decrease

In Figure 4, we can observe the clear ATR/FTIR spectra from the pure material PETG.
The related ATR/FTIR peaks were identified and are shown in the next Table 3 together
with their validation by the literature. The addition of ATO in PETG presented three ranges
with a gradual increase in absorption. Particularly, the ranges were 592–720 cm−1 with a
peak at 668 cm−1; 1137–1301 cm−1 with a peak at 1213 cm−1; and 1648–1738 cm−1 with
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a peak at 1699 cm−1. To the contrary, the bands at 733, 2850, and 2923 cm−1 presented a
gradual drop. All those differences are shown in the next Table 4.
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Figure 4. (a) ATR/FTIR spectra from pure PETG, PETG/ATO 2 wt.%, PETG/ATO 4 wt.%, PETG/ATO
6 wt.%, PETG/ATO 8 wt.%, and PETG/ATO 10 wt.%, (b) ATR/FTIR spectral differences in
PETG/ATO 2 wt.%, PETG/ATO 4 wt.%, PETG/ATO 6 wt.%, PETG/ATO 8 wt.%, and PETG/ATO
10 wt.% from PETG/pure.

Table 3. Significant absorption peaks and their related assignments from PETG.

Wavenumber (cm−1) Intensity ATR/FTIR Peak Assignment

725 Strong CH vibration [96]
792 Weak Unidentified
872 Medium CH vibration [96]
956 Medium C–C stretching [97]

1016 Strong CH3 rocking [98]; C–O–C asymmetric stretching [99]
1043 Weak C–O stretching [97,99]
1093 Strong C–O stretching [97]
1114 Strong C–O–C–O–C symmetric vibration [98]
1173 Weak CH2 and CH3 rocking [98]
1240 Strong CH3 rocking [98]; C–O stretching [96,99]
1340 Weak CH2 wagging vibration [97]
1371 Weak CH2 wagging vibration [100]
1408 Medium C–H bending [100]
1450 Medium CH2 bending [97,100]
1504 Weak CH vibration [96]
1578 Weak C–N stretching [101]
1713 Strong C=O vibration [96,98–100,102]
2850 Medium CH symmetric stretching [97]
2923 Medium CH asymmetric stretching [97]
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Table 4. Significant ATR/FTIR peak differences in PETG/ATO samples from PETG/Pure.

Wavenumber (cm−1) Change Importance

668 (592–720) Gradual increase Significant
733 Gradual drop Significant

1066 Gradual increase Significant
1213 (1137–1301) Gradual increase Significant
1699 (1648–1738) Gradual increase Significant

2850 Gradual drop Medium
2923 Gradual drop Medium

3.2. Thermal Properties Characterization via TGA and DSC

The results of the investigation of the thermal properties of the samples are shown
in Figure 5a,b using the TGA and DSC curves of pure PETG and PETG/ATO 2.0, 4.0, 6.0,
8.0, and 10.0 wt.%. The performance of the composite samples did not exhibit any major
differences. The inset graph in Figure 5a indicates the residual weight with respect to the
filler percentage of the composites, showing that the higher the filler percentage, the higher
the residual weight. The TGA graphs also verified that the extrusion temperatures used
throughout the study did not cause any degradation effects on the tested samples, which
might have affected their performance. Figure 5b shows the heat flow as a temperature DSC
graph of neat PETG and all PETG/ATO composites, along with an inset graph showing the
glass transition temperatures (Tg) of all the composites. It can be observed that only the
PETG/2.0 wt.% ATO, the glass transition temperature presents an importantly increased
value in relation to pure PETG, while the Tg value of PETG/10.0 wt.% ATO is the only one
much lower than that of pure PETG.Nanomaterials 2024, 14, x FOR PEER REVIEW 11 of 27 
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Figure 5. Results from the thermal properties investigation of neat PETG and PETG/ATO (2.0, 4.0,
6.0, 8.0, and 10.0 wt.%) composites by (a) TGA and (b) DSC graphs.

3.3. Viscosity and Melt Flow Rate Results

Viscosity and stress versus shear rate graphs for pure PETG and PETG/ATO 2.0, 4.0,
6.0, 8.0, 10.0 wt.%, at 240 ◦C are presented in Figure 6a. Figure 6b shows the MFR results for
pure PETG and all PETG/ATO composites at 250 ◦C. The viscosity results indicated that, as
the stress increased, the viscosity decreased, showing that the material has a shear thinning
behavior sourced from the phenomenon that as the shear rate increases, the polymer’s
chains tend to disentangle and thus result in a lower resistance to move which in this case
is translated in lower viscosity values. Also, as the filler percentage increased, the viscosity
and stress decreased because of the slippage phenomena appearing due to the incorporation
of the hard filler in the polymer matrix, resulting in a reduction in chain strength against
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applied shear stresses. Also, the MFR measurements increased with the filler percentage,
and the maximum value was found at the PETG/10.0 wt.% ATO concentration.
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Figure 6. Results regarding neat PETG and the PETG/ATO (2.0, 4.0, 6.0, 8.0, and 10.0 wt.%) composites
when tested for (a) viscosity and stress, as well as (b) MFR.

3.4. Filament Inspection and Quality Control

Figure 7 shows the results of the quality inspection of the prepared filaments. Figure 7a,b
show images of the fabricated pure PETG and PETG/4.0 wt.% ATO filaments, respectively, as
well as the results from the recording of their diameter during their fabrication. Both filaments
were characterized by smooth surfaces, while their diameters were kept steady between
1.65 mm and 1.85 mm. Figure 7c,d show, respectively, the values of the tensile strength and
tensile modulus of elasticity of the pure PETG/ATO filament samples, respectively. It can be
seen that the PETG/6.0 wt.% ATO presented the highest value of both tensile strength (16.7%
above pure PETG) and tensile modulus of elasticity (10.6% above pure PETG).
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3.5. Characterization of Specimens’ Mechanical Performance

The tensile properties of the pure PETG and PETG/ATO 2.0, 4.0, 6.0, 8.0, and 10.0 wt.%
are presented in Figure 8. Figure 8a shows the tensile stress on the strain graph and the two
images taken before and after testing a randomly chosen specimen. Figure 8b,c present the
tensile strength and tensile modulus of elasticity results, respectively, where the highest values
above those of pure PETG are found in PETG/6.0 wt.% ATO, 21.0%, and 15.5%, respectively.
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(a) tensile stress to strain graphs, (b) tensile strength, and (c) tensile modulus of elasticity.

The flexural properties of pure PETG/xwt%ATO were x = 2.0, 4.0, 6.0, 8.0 and
10.0 wt.%, are shown in Figure 9. Figure 9a shows the flexural stress on the strain graph,
accompanied by two images taken before and during the testing of a randomly chosen
specimen. Figure 9b shows the flexural strength values for all composites; the highest
value was observed in the case of PETG/6.0 wt.% ATO (14.4% increase with respect to pure
PETG). The highest flexural modulus of elasticity was detected at PETG/6.0 wt.% ATO
(15.2% increase with respect to pure PETG).
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Figure 9. PETG pure, PETG/2.0 wt.% ATO, PETG/4.0 wt.% ATO, PETG/6.0 wt.% ATO, PETG/
8.0 wt.% ATO and PETG/10.0 wt.% ATO results from the flexural properties testing of the samples
namely (a) flexural stress to strain graphs, (b) flexural strength, and (c) flexural modulus of elasticity.

Figure 10 shows the tensile toughness (Figure 10a), Charpy impact (Figure 10b), and
microhardness (Figure 10c) of the pure PETG and PETG/ATO 2.0, 4.0, 6.0, 8.0, 10.0 wt.%
composites. PETG/6.0 wt.% ATO presented the greatest value regarding tensile toughness,
which was found to be 14.9% above pure PETG. The greatest Charpy impact was at
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PETG/8.0 wt.% ATO, 18.8% above pure PETG, while PETG/10.0 wt.% ATO presented the
highest value of microhardness, 25.1% above PETG pure.
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(a) tensile toughness, (b) Charpy impact strength, and (c) M-H.

3.6. Electrical/Dielectric Characterization of PETG/ATO Composites’ Samples

The real part of dielectric permittivity (ε’), the dissipation factor tan(δ), and the real
part of ac-conductivity (σ’) in the measured frequency range of pure PETG and PETG/ATO
nanocomposites at various filler contents (0–10% wt.) are shown in Figure 11a–c. The
dielectric permittivity of pure PETG demonstrates minimal frequency dispersion across
the measured frequency spectrum, i.e., ε’ increases gradually from 2.8 at 4 MHz to 3.3
at low frequencies, in agreement with previously reported values [103]. With increasing
ATO content up to 10% wt., no significant spectral changes were observed over the entire
frequency range, whereas ε∞ did not show any considerable change, varying from 2.8
to 3.4, as depicted in Figure 11d. This observation implies that the dielectric behavior of
PETG/ATO composites is mainly determined by the properties of the polymer matrix.
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Figure 11. (a) The real part of dielectric permittivity (ε’), (b) the dissipation factor tan(δ), and
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The dissipation factor of pure PETG showed low dielectric loss values (<0.04) over a
broad range of frequencies up to 4 kHz, while two distinct broad relaxation peaks centered
around 2 Hz and 10 kHz were clearly observed. The high-f mechanism remains unaffected
by the addition of conductive nanoparticles and is related to the relaxation polarization
of the polymer matrix [104]. The low-f feature is affected by filler addition and should be
attributed to the interfacial polarization caused by the interaction between the polymer
matrix and conductive filler particles.

The conductivity spectra of pure PETG and PETG/ATO nanocomposites show the
characteristic behavior of insulating materials such as polymers, that is, AC conductivity
scales with ω at high frequencies. In the low-frequency range, a direct current (DC) plateau
begins to develop, corresponding to dc-conductivity values of the composites varying by
one order of magnitude around the value of 10−15 S/cm. The fluctuating behavior of the
conductivity values measured at 1 Hz for various filler contents is shown in Figure 11d.

Based on the above findings, we may conclude that the influence of ATO nanoparticles
on the overall electrical/dielectric behavior of PETG/ATO composites is negligible in the
studied filler content, that is, up to 10 wt.%. The variation in either DC-conductivity or
dielectric constant with increasing ATO content does not appear to show any particular
trend and is rather determined by the random distribution and/or segregation of filler
nanoparticles to the polymer matrix. The latter also contributes to weak changes in the
interfacial polarization that takes place between the ATO nanoparticles and the matrix.

3.7. Micro-Computed Tomography of the Specimens

In Figure 12, the µ-CT scanning results for pure PETG and PETG/ATO 2.0, 4.0, 6.0,
8.0, 10.0 wt.% are presented. An attempt was made to determine the relationship between
dimensional variation and nominal dimensions using a computer-aided design (CAD) file.
A comparison between the dimensional deviations and the 3D fabricated pure PETG and
all PETG/ATO composite specimens is presented via a statistical analysis in Figure 12a.
The illustration of the PETG/6.0 wt.% ATO specimen, via color-coding, shows the results
after comparing the structural deviations and the CAD data (Figure 12b,c).

In Figure 12d, the values of the A2N at a 95%-dimensional deviation of pure PETG
and all the PETG/ATO samples are shown. The lowest value, below that of the pure
PETG, was observed at PETG/6.0 wt.% (44.0% lower). Only PETG/10.0 wt.% ATO presents
a higher value than that of pure PETG. The addition of the filler to the matrix material
improved the dimensional deviation of the rest of the composites in relation to that of pure
PETG, indicating a positive influence. At the same time, the composite with the highest
dimensional accuracy also showed the highest overall mechanical performance among
the materials tested, suggesting a possible connection between 3D printing quality and
mechanical performance.

The porosity results of the 3D fabricated specimens of pure PETG, PETG/2.0 wt.% ATO,
PETG/4.0 wt.% ATO, PETG/6.0 wt.% ATO, PETG/8.0 wt.% ATO and PETG/
10.0 wt.% ATO is presented in Figure 13. The void compactness and void sphericity
of the void diameter graphs are shown in Figure 13a, whereas Figure 13b,c present the
void distribution and respective volumes of the PETG/6.0 wt.% ATO. Figure 13d shows
the values of the pure PETG and PETG/x wt.% ATO with x = 2.0, 4.0, 6.0, 8.0, 10.0 wt.%
composites’ samples regarding the porosity percentage. It can be observed that the filler
addition caused a decrease in the porosity of all the composites, especially in the case of
PETG/6.0 wt.% ATO, where there was a 66.5% decrease in relation to pure PETG. Similar
to the dimensional accuracy, the nanocomposite with a better internal 3D printing structure
(6 wt.%) showed the highest mechanical performance.



Nanomaterials 2024, 14, 761 15 of 26

Nanomaterials 2024, 14, x FOR PEER REVIEW 15 of 27 
 

 

Figure 11. (a) The real part of dielectric permittivity (ε’), (b) the dissipation factor tan(δ), and (c) the 
real part of ac-conductivity (σ’) as a function of the frequency of pure PETG and PETG/ATO 
composites at various ATO filler contents (0–10% wt.). The variation in dc-conductivity, σdc 
(measured at 1 Hz), and dielectric permittivity, 𝜀   (measured at 1 MHz) as a function of ATO 
content is shown in (d). 

3.7. Micro-Computed Tomography of the Specimens 
In Figure 12, the µ-CT scanning results for pure PETG and PETG/ATO 2.0, 4.0, 6.0, 

8.0, 10.0 wt.% are presented. An attempt was made to determine the relationship between 
dimensional variation and nominal dimensions using a computer-aided design (CAD) 
file. A comparison between the dimensional deviations and the 3D fabricated pure PETG 
and all PETG/ATO composite specimens is presented via a statistical analysis in Figure 
12a. The illustration of the PETG/6.0 wt.% ATO specimen, via color-coding, shows the 
results after comparing the structural deviations and the CAD data (Figure 12b,c). 

In Figure 12d, the values of the A2N at a 95%-dimensional deviation of pure PETG 
and all the PETG/ATO samples are shown. The lowest value, below that of the pure PETG, 
was observed at PETG/6.0 wt.% (44.0% lower). Only PETG/10.0 wt.% ATO presents a 
higher value than that of pure PETG. The addition of the filler to the matrix material 
improved the dimensional deviation of the rest of the composites in relation to that of 
pure PETG, indicating a positive influence. At the same time, the composite with the 
highest dimensional accuracy also showed the highest overall mechanical performance 
among the materials tested, suggesting a possible connection between 3D printing quality 
and mechanical performance. 

 
Figure 12. (a) Micro-computed tomography results regarding the dimensional deviation of pure 
PETG, PETG/2.0 wt.% ATO, PETG/4.0 wt.% ATO, PETG/6.0 wt.% ATO, PETG/8.0 wt.% ATO and 
PETG/10.0 wt.% ATO; (b,c) structural deviation of a PETG/6.0 wt.% ATO tensile specimen by color-
coded mapping; (d) A2N dimensional deviation at 95% of pure PETG and all the PETG/ATO 
composites. 
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Figure 13. (a) Void graphs from the microcomputed tomography analysis of pure PETG and all the
PETG/ATO composites, (b,c) visual representation of the PETG/6.0 wt.% ATO specimens’ porosity
by color-coding mapping, and (d) porosity percentage of pure PETG and the PETG/x wt.% ATO,
x = 2.0, 4.0, 6.0, 8.0, 10.0 wt.% composites.
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3.8. SEM and EDS Mapping of the 3D-P Specimens

Figures 14 and 15 show the images obtained from SEM analysis of the sides and
fracture surfaces of the fabricated 3D specimens. Figure 14a,d,g show the side surface
images of the pure PETG/4.0 wt.% ATO and PETG/8.0 wt.% ATO, respectively, at 150×
magnification. It can be seen that there are no defects, pores, or voids, and the fusion is well
distributed. Figure 14b,e,h present the fracture surface images of the pure PETG/4.0 wt.%
ATO and PETG/8.0 wt.% ATO, respectively, at 30× magnification. Figure 14c,f,i present
the fracture surface images of pure PETG, PETG/4.0 wt.% ATO, and PETG/8.0 wt.% ATO,
respectively, at 1000× magnification. The interlayer appeared to be smooth in pure PETG
and PETG/4.0 wt.% ATO, while PETG/8.0 wt.% ATO presents a more brittle behavior. The
pure PETG and PETG/4.0 wt.% ATO nanocomposite show a brittle fracture surface with
minimum deviation. In most cases, a brittle behavior is presented in the SEM images, as no
high deformation can be observed in the fracture surface at the low magnification levels
or in the microscale. As the filler percentage in the composites increased to 8 wt.%, the
fracture surface appeared to be more ductile with visible deformation at both magnification
levels presented. Additionally, internal voids were visible, which can be attributed to
the failure of the part. Figure 15 shows SEM images of the PETG/6.0 wt.% ATO, which
showed the best mechanical response among the nanocomposites tested. As shown, the
layer fusion and quality are excellent (Figure 15a). The fracture surface (Figure 15b,c)
shows minimum deformation, indicating a brittle failure. The deformation is even less
than the PETG/6.0 wt.% ATO, as shown in Figure 14. At the same time, a more solid 3D
printing structure is presented in the PETG/6.0 wt.% ATO specimen, compared to the
PETG/4.0 wt.% ATO one, with less internal voids. These features should have contributed
to the superior mechanical performance of the specific nanocomposites (PETG/6.0 wt.%
ATO) among the ones tested.
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Figure 14. (a–c) Pure PETG SEM images of the side surface magnified at 150×, fracture surface
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150×, fracture surface magnified at 30× and 1000×, and (g–i) PETG/8.0 wt.% ATO SEM images of
the side surface magnified at 150×, fracture surface magnified at 30× and 1000×.
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Figure 15. PETG/6.0 wt.% ATO SEM images (a) side surface magnified at 150×, (b) fracture surface
magnified at 30×, and (c) fracture surface magnified at 150×.

Figure 16a,b present the SEM images of PETG/10.0 wt.% ATO side surface at 30×
and 150× magnifications, respectively, where it can be observed that there are no voids
and pores. Figure 16c shows an EDS mapping image of the antimony (Sb) element. The
distribution of the elements in the observation area was not completely uniform, indicating
possible particle clustering in this higher-filled nanocomposite. No particle clustering was
observed with SEM or EDS at lower filler concentrations. Figure 16d–f show the SEM
images captured from PETG/10.0 wt.% ATO fracture surface at 30×, 1000×, and 30,000×
magnifications, correspondingly, where the revealed surfaces presented only a few defects.
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Figure 16. (a,b) Side surface images of PETG/10.0 wt.% ATO at 30× and 150× magnifications, respec-
tively, (c) EDS mapping image from a chosen sample, (d–f) fracture surface images of PETG/10.0 wt.%
ATO at 30× and 1000× and 30,000× magnifications, correspondingly.

4. Discussion

Five different PETG/x wt.% ATO were synthesized using five different filler percent-
ages of x = 2.0, 4.0, 6.0, 8.0, and 10.0 wt.%. The mixtures were subsequently fed into an
extruder to produce filaments that supplied the MEX 3D-P of the corresponding speci-
mens. The thermal, rheological, mechanical, morphological, and electrical properties of
the fabricated samples were studied. The mechanical performance of the specimens was
investigated via tensile, flexural, Charpy impact strength, and M-H tests. SEM analysis was
conducted on the side and fracture surfaces of the samples while they were dielectrically
tested. Moreover, micro-computed tomography was conducted with the aim of comparing
the initially designed models with the fabricated specimens.
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Overall, the mechanical properties of the specimens showed a significant improve-
ment in relation to the performance of pure PETG with respect to all the different filler
percentage composites, as shown in Figure 17 by observing the spider graph of the me-
chanical property values. In particular, for the case of PETG/6.0 wt.% ATO, almost all of
the mechanical properties examined, except for the impact strength, were found to be at
much higher levels than those of pure PETG, as also shown in the summarization board
of Figure 17, where all the mechanical properties are matched with the composites that
had the most improved values. The improvement in the mechanical properties of the
nanocomposites up to 6.0 wt.% ATO content can be attributed to the mechanism behind
enhancing the mechanical properties of polymeric matrices by incorporating nanoparticles.
This mechanism revolves around the interactions between the nanoparticles and the matrix,
as well as the restriction of polymer chain mobility due to the nanoparticles filling the voids
between them [105–113]. At higher ATO loadings, the reduced mechanical properties of
the nanocomposites can be attributed to the saturation of the ATO additive in the PETG
matrix. The saturation of a filler in the matrix can have such an effect on the mechanical
properties of the composites [108,114,115].
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Regarding the electrical/dielectric behavior of the composites, no correlation is ob-
served with respect to their mechanical performance with increasing the ATO filler content.
In the range of ATO content used in the present study, no significant changes in either alter-
nating current (AC)-electrical conductivity or dielectric permittivity were observed, and the
observed variations are rather random, probably influenced by the randomly distributed
ATO nanoparticles in the polymer matrix. A study on electrical properties of PMMA/ATO
composites fabricated by compression molding at 170 ◦C [116] reported a considerable
increase in electrical conductivity at very low ATO content, attributed to the segregated
distribution of ATO nanoparticles along the edges of the transformed PMMA microspheres.
This measured electrical percolation was achieved at 1% wt. ATO when monosize PMMA
was used (90–106 µm) and at 1.5% wt. ATO, in the case of polydisperse PMMA with particle
size in the range of 10–100 µm. In both cases, ATO particle size was 20–40 nm, similar to
that used in the present case. However, in our case, the mechanical mixing of PETG pellets
with ATO nanopowder and the subsequent extrusion procedure at 240 ◦C cannot result in
such a uniform conductive network, and the percolation threshold may appear at higher
filler concentrations. This discrepancy between mechanical performance and electrical
enhancement of polymer nanocomposites has also been reported in the case of HDPE/Cu
composites [117].
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It should be noted that the SEM images presented very well-fabricated surfaces and
well-distributed layering of the materials, even after the addition of the fillers. Very few
voids were observed, and the defects were small. The addition of the ATO nanoparticles
affected the rheological response of the PETG polymer. The overall viscosity decreased, and
the MFR slightly increased. This showed no significant differences in the 3D printing quality,
as the layer fusion, as presented in the images of the lateral surfaces, seemed to be rather
intact even at higher-loaded nanocomposites. The layers also had a uniform thickness. By
inspecting the 3D-printed internal structure on the µ-CT, the aforementioned assumption
was verified. The addition of ATO improved the dimensional accuracy of the samples (only
the highest-loaded nanocomposite showed inferior dimensional accuracy compared with
the pure PETG sample) and reduced the number of voids. The nanocomposite that achieved
the most improved mechanical performance had, at the same time, the lowest number of
voids and better dimensional accuracy. This can safely lead to the assumption that better
mechanical performance was achieved by the samples with better 3D printing quality. The
addition of ATO made the samples more brittle because they failed at a lower strain than
the pure PETG samples. However, when observing the fracture surfaces with SEM, it is
shown that at the microscale, the higher loaded nanocomposites develop deformation
before their failure, and the fracture surface seems to be collapsed when compared to the
pure PETG and the nanocomposites with lower ATO content, in which a brittle fracture
surface is presented in the SEM images.

An investigation of the thermal properties revealed that the addition of ATO negligibly
affected the response of the PETG polymer at high temperatures. Simultaneously, it was
verified that the temperatures used were safe for the nanocomposites and did not cause
thermal degradation. SEM and EDS were also used to locate particle clustering in the
fracture surfaces of the samples. Only the EDS of the higher-loaded composite revealed
a non-uniform distribution of Sb, which is an indication of possible ATO nanoparticle
clustering. This was not the case for nanocomposites with lower filler content, and it
agrees with the reduced mechanical performance of the highest-loaded samples, which is
attributed to the saturation of the ATO filler in the matrix. Even the highest-loaded samples
showed slightly higher mechanical performance than pure PETG. The exact saturation
threshold was not determined, as it was outside the scope of this research.

The distribution of the particles was examined in the high-magnification SEM images
taken. The objective of these images was to detect any potential agglomerates within the
materials and assess the dispersion quality of the nanofillers. Upon analyzing the fracture
surface of the samples using SEM, it was observed that agglomerations were inevitable
within the structure at the highest filler concentration in the nanocompound, as mentioned
above. This observation was further supported by EDS analysis conducted in various
regions of the fracture surfaces. Additionally, mechanical tests indicated that the deviation
in results remained within acceptable limits, suggesting a consistent composition of the
nanocompounds across all the samples examined. These findings and by considering
the process followed for the mixing of the raw materials and the, specially designed
for materials and additives mixing, extruder used, it can be safely assumed that a good
distribution of the nanoparticles in the matrix was achieved.

The compatibility between the matrices and the additives in the literature can be
estimated by correlating different properties derived during the characterization pro-
cess [118,119]. Following the instructions of the literature, we can assume a good com-
patibility between PETG and ATO by considering the correlating different aspects of the
study. The thermal properties of PETG were not significantly affected by the introduction
of the ATO nanoparticles. Microscopy images on the outer surface of the filament revealed
a smooth, defect-free surface; SEM images on the fracture surface of the samples did not
present particle clustering for all of the filler concentrations tested except the highest one,
in which SEM images and EDS mapping revealed particles aggregates in the samples. We
have presented images up to 30,000×. Higher magnifications were not possible. The PETG
was burned during the process at higher magnifications. At these magnifications, the
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nanoparticles are visible in the images, and they seem to be well dispersed and integrated
with the matrix. Finally, if the additive is not compatible, it will make the composite
weak [120], which is not the case here. The tensile strength was increased by 21%, and
overall, the mechanical properties were improved. Additionally, the nanocomposites were
prepared with a thermomechanical method, in which chemical interactions between the
nanoparticles and the matrix are expected only in the contact area between them. Fur-
thermore, it is not worth commenting on processability issues that were faced during the
extrusion of the filaments and the 3D printing of the specimens.

Another aspect that is of great importance to the scientific community is the envi-
ronmental implications of introducing nanocomposites in 3D printing. The release of
nanoparticles during the preparation of the nanocomposites, during 3D printing, or the
disposal of the samples is possible. This can lead to enhanced toxicity in the environment
that can affect the ecosystem, especially in large amounts of nanoparticles since they then
enter biological systems [121–125].

In a similar study [126], where polypropylene (PP) was combined with four concen-
trations of ATO (0.5–4.0 wt.%) and the fabricated samples underwent the same tests, a
similar behavior was observed. Specifically, the addition of ATO as a filler improved the
mechanical properties of pure PP, as also happened in the study herein. In the PP matrix,
the addition of 0.5 wt.% ATO nanoparticles achieved the best mechanical performance
in the tensile test, with an increase of about 7% compared to the unfilled PP. Herein, the
maximum tensile strength value was achieved with higher ATO concentrations on the
nanocomposites (6 wt.%), and the improvement was also significantly higher at 21%, com-
pared to the unfilled PETG. In this [4] study, PETG was reinforced with carbon and aramid
fibers to maximize its mechanical performance. The aim was to optimize the 3D printing
parameters, and it is indicated that the 3D printing temperature is the most valuable pa-
rameter for optimizing the results. The 3D printing settings tested were similar to those of
the current study in terms of layer height and nozzle temperature. The printing speed was
higher in the current study than [4]. Comparing the results of the pure PETG between the
two studies, the flexural strength found in the current study was about 25% higher than
the [4] study, while the flexural modulus of elasticity was about 100% higher herein. On the
other hand, the addition of CF in the [4] study improved the flexural strength by almost
100%, much higher than the 14.4% achieved by the addition of the ATO nanoparticles
herein in the flexural strength. This higher improvement in the mechanical strength of
the PETG polymer by the addition of carbon fibers is somehow expected, as carbon fibers
usually impressively improve the performance of the matrices they are introduced. PETG
has also been used with carbon to create composites, which are investigated in this [48]
study for their mechanical properties. The results of the tensile test of the 3D-P PETG/CF
samples showed a 23% improvement in yield strength. The 15.5% reported herein is a
close value; still, the results it is not safe to be directly correlated as in this [48] study, the
tests were carried out on prismatic specimens with different structural designs and not on
standard specimens in accordance with the corresponding international standards. Overall,
the results presented herein agree with the literature on PETG or ATO composites with
similar reported response and reinforcement effects, while no research has presented the
same composites to directly correlate the results.

5. Conclusions

In the present work, PETG was utilized and mixed with various weight percentages
of ATO to create five different mixtures of composites, namely PETG/2.0 wt.% ATO,
PETG/4.0 wt.% ATO, PETG/6.0 wt.% ATO, PETG/8.0 wt.% ATO and PETG/10.0 wt.%
ATO, respectively. Subsequently, various filaments were produced and used to fabricate 3D-
P specimens suitable for conducting mechanical tests. The tensile and flexural properties,
Charpy impact strength, and microhardness of the samples were also examined. Overall,
PETG/6.0 wt.% ATO showed the most improved mechanical performance of all different
composites. Therefore, 6.0 wt.% ATO can be considered the optimum filler loading among
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the concentrations tested. This refers to the specific matrix material, that is, PETG, and for
nanocomposites prepared using the approach followed herein and for 3D printed parts
made with the MEX 3D printing method. Additionally, they underwent µ-CT and SEM
analyses, and their broadband electric/dielectric behaviors were measured. The addition of
ATO appears to have a negligible effect on the electrical properties of the nanocomposites,
at least in the range of filler contents used in the present study. These results are related to
those obtained from the respective tests conducted on pure PETG samples. Future studies
could investigate PETG/ATO samples 3D printed under different settings, conditions, and
3D printing parameters, which could affect the final results, as shown in similar studies; in
this study, the 3D printing parameters were optimized for the unfilled PETG polymer and
used in the nanocomposites as well for comparison purposes. Therefore, the reinforcement
achieved herein has margins for improvement. At the same time, the industrialization of
the process can be investigated, considering additional aspects, such as the cost-efficiency
of the process.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano14090761/s1. Figure S1. (A–C) SEM images of ATO at
10,000×, 50,000×, and 100,000× magnifications, respectively, (D) EDS mapping image of ATO and
(E) EDS analysis of ATO revealing its chemical composition.
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