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Abstract: A mixed metal oxide W-TiO2 nanopowder photocatalyst was prepared by using the sol–gel
method with a broad range of elemental compositions x = CW/(CW + CTi), including TiO2 and
WO3. The material was structurally characterized and evaluated in adsorption and photocatalytic
processes by testing its removal capacity of a representative pollutant methylene blue (MB) in
aqueous solutions and under UV-A and sunlight illuminations. The nanopowders appeared to be
more effective adsorbents than pure TiO2 and WO3 materials, showing a maximum at 15 mol% W,
which was set as the tungsten solubility limit in anatase titania. At the same time, the photocatalytic
decomposition of MB peaked at 2 mol% W. The examination of different compositions showed that
the most effective MB removal took place at 15 mol% W, which was attributed to the combined
action of adsorption and heterogeneous photocatalysis. Moreover, MB decomposition under sunlight
was stronger than under UV-A, suggesting photocatalyst activation by visible light. The pollutant
removal efficiency of the material with 15 mol% W was enhanced by a factor of ~10 compared to pure
TiO2 at the beginning of the process, which shows its high potential for use in depollution processes
in emergency cases of a great pollutant leak. As a result, a Wx=0.15-TiO2 catalyst could be of high
interest for wastewater purification in industrial plants.

Keywords: W-TiO2 nanopowder; adsorption; photocatalysis; UV-A; sunlight; synergy between
processes

1. Introduction

The research on TiO2 photocatalysts is steadily increasing since the discovery of UV-
light assisted electrochemical water splitting [1]. The extensive research has shed light on
the relevant mechanisms and reaction pathways [2–4]. As a result, more than four million
tons of TiO2 per year are nowadays produced to satisfy the growing research and industrial
demand in environmental and energy-related fields [5,6].

A TiO2 photocatalyst is an attractive material because of its physical and chemical sta-
bility, safety, resistance to photocorrosion, low cost, non-toxicity, large specific surface area
and oxidation strength [7–19]. However, its insignificant activity under visible light requires
improvements. Furthermore, the limiting adsorption of TiO2 sets restrictions on its use in
emergency cases of a great pollutant leak. There have been many attempts made to im-
prove the photocatalytic activity of TiO2 by changing the size of the particles, modifying the
band gap energy, postponing the recombination of electrons and holes, combining it with
adsorbents (e.g., activated carbon [20]), etc. As a method to improve its activity, the mixing
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of TiO2 with other metal oxides, such as CuO, V2O5, ZrO2, Co3O4, Fe2O3, ZnO, MnO2 and
WO3, has been undertaken [21–30]. These inorganic materials are reuseable and highly sus-
tainable. Among them, transition metal oxide tungsten trioxide WO3 is one of the potential
attractive materials because of its relatively narrow band gap (2.4–2.8 eV) and deep valence
band (+3.1 eV) energies, but also due to its low cost, photocorrosion stability in aqueous
solutions, non-toxicity, electrical conductivity, and reversibility of transformation between
W(VI) and W(V) [31,32]. It has been studied in different applications such as photocatalysis,
electrochromic and field emission devices, smart windows, thermal control of satellites
and gas sensors [33,34]. The admixing of WO3 is considered effective in improving the
photocatalytic activity of TiO2, since W(VI) conversion to W(V) functioning as an electron
acceptor increases the efficiency of photoinduced charge (e−/h+) separation [35]. The spa-
tial separation of photoinduced charges reduces their recombination rate, thus enhancing
photocatalytic activity [36]. Furthermore, according to Lewis and Bronsted, acidic W6+ read-
ily adsorbs OH− and/or H2O and is considered effective in producing OH• radicals that
destroy organic contaminants [28]. Because of the lower band gap energy (Eg = 2.4–2.8 eV)
compared to anatase TiO2 (3.2 eV), WO3 absorbs visible light [37,38] and can extend the
activity spectral range of the sunlight. The mixed metals oxide W-TiO2 has already been
considered for anti-fogging surfaces, self-cleaning glasses, self-cleaning superhydrophylic
surfaces [39], photocatalysis [21,28,29,35,36,38,40–54], charge storage [55], solar energy
conversion [44], ethylene sensors [56], air treatment [57], anti-corrosion purposes [58], hy-
drogen production [19,59,60], smart glass industry [61], wastewater treatment [62], energy
storage [63–65], humidity sensors [66] and photo-electrochemistry [67]. The applications
of W-TiO2 photocatalysts for pollutant removal in aqueous solutions are summarized in
Table 1.

Table 1. Preparation method and photocatalytic activity of W-TiO2 nanomaterials.

Method
Optimal

W Loading
mol%

Illumination Enhancement Pollutant (1) Reference

Sol–gel 3 UV-A 2.1 Formic acid [35]
Hydrothermal 1 Sunlight ~3 Rhodamine B [52]

Sol–gel 2 Sunlight 2.1 Malathion
pesticide [38]

Physical
mixing 10–15 UV-A/visible 2.0 Methylene blue

and orange G [50]

Sol–gel 1 UV-A 2.5 Formic acid [36]
Sol–gel 0.02–1 UV-A 2.3 Cr2O7

2− [21]
Ultrasound-

assisted 5.4 Visible 3.9 Methylene blue [28]

PLD - (2) Visible - Methylene blue [43]
(1) Aqueous solutions. (2) Multilayer WO3/TiO2 structure; optimum 5% WO3 in layers thickness.

W-TiO2 composites have been prepared via several methods including physical
mixing [68], sol–gel [7,19,21,29,35–38,48,69–74], solution combustion [50], hydrothermal
[52,55,75–77], ultrasound-assisted [28], electrospinning [47,78], impregnation [42], wet
chemical [63] and incipient wetting [21,51]. Among these methods, the sol–gel technique
is proven to be highly attractive for synthesis because of its uncomplicated, low-cost pro-
cedure and flexible synthetic routes and the possibility of attaining highly homogeneous
compositions [37,79]. At the same time, the variation in adsorption in the mixed metal
oxide remains underexplored. An available study [80] has applied an addition of W to TiO2
Degussa P25 powder, which did not allow for the formation of perfectly homogeneous
compounds at the nanoscale. A competition between an increase in the specific surface area
and a decrease in the activity per adsorption site has been also confirmed in the compounds
with W content ≤ 6 mol% [81]. However, the elemental composition can greatly affect the
specific surface area of these materials, as it has been shown in an example of ZrxTi1−xO2
nanopowders [23]. This offers an opportunity to control adsorption and photocatalysis
processes in the same material. The full range of elemental W/Ti compositions has not been
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explored in previous studies with respect to the adsorption and heterogeneous reactions’
effectiveness, covering UV-A (most suitable for pure titania) and sunlight illuminations for
the photocatalyst activation.

In this work, we report on a simplified preparation procedure of mixed metal oxide
W-TiO2 nanopowders via the sol–gel method with a broad range of elemental compositions.
The adsorption and photocatalytic activity of the prepared materials were tested with UV-A
lamp and natural sunlight illuminations based on the removal of a methylene blue (MB)
pollutant in aqueous solutions. The influence of the material composition on the process
effectiveness was inspected.

2. Materials and Methods
2.1. Synthesis Procedure

All chemicals used in this study were analytical grade. Titanium isopropoxide (TTIP,
TiO4C12H32, >98% purity) and tungsten (VI) chloride (WCl6, >99.9% purity) were bought
from Acros Organics (Geel, Belgium). 2-propanol of HPLC grade (≥99.9% purity) and
MB were purchased from Sigma-Aldrich (manufactured by Merck KGaA, Darmstadt,
Germany).

W-TiO2 nanopowders were synthesized via the sol–gel method. A schematic diagram
of the W-TiO2 nanopowder preparation procedure is depicted in Figure 1. The synthesis was
conducted at the total precursor concentration of CTi + CW = 0.3 mol/L with a hydrolysis
ratio h = CH2O/(CTi + CW) = 1.25, where CH2O, CTi and CW are molar concentrations of
water, TTIP and tungsten (VI) chloride. The pure TiO2 powder was prepared by dissolving
TTIP in 2-propanol under stirring at 500 rpm for 15 min to obtain solution A. Then, the
required amount of water was mixed with 2-propanol under stirring for 15 min to obtain
solution B, which was slowly dropped into solution A under intense stirring, which
triggered the nucleation of titanium oxo-alkoxy (TOA) nanoparticles [82]. The obtained
colloidal solution was dried in a fume hood at room temperature for 5 days to obtain
white amorphous powders, which were further dried in an oven at 85 ◦C for 2 days and
afterwards calcined in a Nabertherm furnace (Lilienthal, Germany) at 450, 500, 550 and
600 ◦C for 4 h. The pure WO3 powder was prepared by dissolving an appropriate amount
of WCl6 in 2-propanol under stirring for 15 min to obtain solution A. Solution B was
prepared by adding the required volume of water to 2-propanol and then stirring for
15 min. After that, solution B was slowly dropped into solution A under stirring for 15 min.
The mixed solution was dried, evaporated and calcined in the same way as the pure TiO2.
The mixed metal oxide W-TiO2 nanopowders were prepared with different compositions
x = CW/(CW + CTi) = 0.0025, 0.01, 0.02, 0.04, 0.06, 0.08, 0.15, 0.30 and 0.50. Solution A was
prepared by following the preparation procedure of pure TiO2. For solution B, the required
amount of WCl6 was dissolved in 2-propanol under stirring for 5 min, and then water was
added under stirring for 10 min. Solution B was then slowly dropped into solution A under
stirring, then dried, evaporated and calcined in a furnace at 450, 500, 550 and 600 ◦C for
four hours. Equal volumes of the solutions A and B were used in all synthesis procedures.
The total volume of 150 mL was used for compositions x = 0, 0.0025, 0.01, 0.02, 0.04, 0.06
and 0.08, 100 mL for compositions x = 0.15 and 0.30, 50 mL for x = 0.50, and 20 mL for x = 1.
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Figure 1. Procedure for synthesis of W-TiO2 nanopowders. A and B are isopropanol solutions of
TTIP and WCl6, respectively.

2.2. Characterization Techniques

The X-ray diffraction (XRD) patterns were collected with a Co-Kα, INEL EQUINOX
1000 apparatus. The specific surface area of samples was measured by N2 physisorption
at 77 K using a BELSORP-MAX apparatus from Microtrac (Haan, Germany). The specific
surface area was obtained over the relative pressure range (0.05–0.25) using the Brunauer,
Emmet and Teller (BET) equation. Before analysis, samples were degassed under primary
vacuum (<150 mPa) at 393 K for 12 h using a BELREP VAC module from Microtrac. The
Raman spectra were measured with a high-resolution micro-Raman spectrometer HR800
HORIBA Jobin Yvon (Palaiseau, France) operating at a wavelength of 473 nm, with spectral
and spatial resolutions, respectively, of 0.25 cm−1 and 5 µm. The scattered light was
collected in a backscattering configuration and recorded on a Peltier-cooled CCD camera.
EDX measurements were performed with a Hitachi TM3000 TableTop Scanning Electron
Microscope (Tokyo, Japan) equipped with a Swift ED3000 module for elemental analysis.

The time-resolved microwave conductivity (TRMC) measurements were conducted at
the experimental installation described in Ref. [83]. The method allows for the monitoring
relaxation of the photoinduced charges by monitoring changes in the microwave power
reflected by a semiconductor surface after light illumination, which induces electrical
conductivity. In these experiments, the samples were irradiated with 360 nm light pulses of
8 ns duration and 1.5 mJ energy delivered by a cw OPO Nd:Yag laser (EKSPLA) operating at
a 10 Hz repetition rate. The area of samples with a 5 mm diameter was illuminated and the
recorded TRMC decay curves were accumulated over 200 laser pulses. The measurements
were performed at room temperature and in an ambient atmosphere.

The adsorption capacity of 0.025 g of W-TiO2 nanoparticles was measured in aqueous
solutions of 100 mL volume with 10 ppm MB. The solution was stirred at 500 rpm in
the dark and then 5 mL of the solution was taken every 15 min into a centrifuge tube.
This sample was centrifuged at 4300 rpm for 15 min using the CompactStar CS4 setup to
precipitate the powders, and the concentration of the remaining MB in the clear solution
was calculated after measurements of light absorption at λ = 664 nm using a UV–visible
spectrophotometer HS 3300 (Humas, Daejeon, Korea).

The photocatalytic activity was measured through the decomposition of 10 ppm MB
in aqueous solutions of 200 mL volume, with 0.025 g of W-TiO2 nanoparticles. The catalyst
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powder was added to the MB solution under stirring at 500 rpm in the dark until adsorption
equilibrium was reached and the solution was then illuminated with a UV-A lamp VL-6.LC
(λ = 365 nm, 24 W; VWR International, Rosny-sous-Bois, France) at a distance of 10 cm.
The photocatalytic activity under sunlight illumination was tested between 9 and 12 am in
Phnom Penh city (Cambodia) with the same nanoparticle concentration of 0.125 g/L. In these
experiments, the full series of W-TiO2 photocatalysts with different elemental compositions
(or W content, equal to 100× in mol%) was placed in an identic aqueous solution of MB
pollutant and simultaneously exposed to sunlight or a UV-A lamp. Samples of 5 mL of
the solution were taken every 15 min and centrifuged at 4300 rpm for 15 min in order to
separate catalyst particles, and absorption at λ = 664 nm was measured by the UV/visible
spectrophotometer to evaluate the remaining MB concentration. The first-order rate constants
of MB decomposition were measured for a comparison of the material activities.

3. Results and Discussion
3.1. Structural Properties

Before discussing the functional properties of the prepared materials, some comments
will be given on their structural properties. We notice that nanopowders prepared according
to the described method are expected to consist of the smallest nanoparticles—nuclei.
Indeed, this fact has been previously evidenced in TOA nanoparticles formed at low
hydrolysis ratios h ≤ 1.5 [80,81]. These TOA nuclei have the size of 2R = 3.2 nm and
agglomerate into larger particles while keeping their individual characteristics [84]. The
nucleation growth process of tungsten–titanium oxo-alkoxy (WTOA) nanoparticles in the
sol–gel synthesis procedure has not been yet documented. However, the WCl6 precursor
is known to readily hydrolyze. Keeping in mind the stronger Pauling electronegativity
of W (2.36) compared to Ti (1.54), one can expect a faster hydrolysis rate compared to the
polycondensation of tungsten species, similar to vanadium species. The last point argues for
a similar tendency in the formation of composite WTOA nanoparticles to that of vanadium–
titanium oxo-alkoxy (VTOA) nanoparticles [85]. Although perfect micromixing conditions
were not controlled in the simplified synthesis procedure, an extremely low hydrolysis ratio
well below that required for the complete nucleation slowed down the reaction kinetics,
making quasi-perfect elemental dispersion possible at the nanoscale, probably forming
single-shell and core–shell WTOA nanoparticles depending on the colloid composition.
Future studies will clarify this issue. We also confirmed the elemental compositions x of
W-TiO2 nanopowders after the synthesis procedure by performing EDX measurements
(Table S1 and Figure S1 of Supplementary Materials).

XRD patterns of the calcined W-TiO2 nanopowders showed evidence of a general
tendency to stabilize the metastable anatase phase. The most intense peaks of the anatase
(2θ = 25.28◦) and rutile (2θ = 27.44◦) phases can serve as a guide to follow the phase
transformation. As Figure 2a shows, the stable rutile phase appeared in pure TiO2 after
calcination at temperatures above 500 ◦C, which is in agreement with previous studies [86].

In contrast, no traces of rutile were observed in W-doped nanopowders even at
600 ◦C (Figure 2b). Besides the stabilizing interaction, this indicated a very homogeneous
elemental mixing of W and Ti elements at the nanoscale, which led to no pure titania
domains transforming to the rutile phase.

Furthermore, the anatase TiO2 crystalline phase was preserved with W insertion up to
15 mol%, as evidenced Figure 3. In contrast, with a greater W loading, WO3 crystallized in
the monoclinic phase [87], as shown in the growing peaks at 23.5◦ and 33.5◦. This behavior
was common to all prepared powders, and the fraction of the WO3 phase increased with an
increase in the temperature from 500 ◦C to 600 ◦C. It has been earlier shown that additives
(Li+, K+, Cu2+ and Al3+) inducing vacancy in the anion sublattice promote the anatase–rutile
phase transition, while additives (S5+, P5+ and Nb5+) reducing the number of vacancies
inhibit the phase transition [88]. This effect has also been observed in 1–4 mol% W-doped
TiO2 [89]. Our experimental findings support these observations in a larger domain of the
material compositions.
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Changes in the nanopowder morphology accompanied the particles’ crystallization.
In particular, a clear decreasing trend in crystallite size was observed with an increase in W
content, as Figure 4 shows based on the Scherrer equation. The decrease in the crystallite
size of Ti0.8W0.2O2 compared to pure titania has been previously reported and attributed to
the incorporation of W into the TiO2 lattice [90].

Two particularities of the prepared materials can be observed from the Raman analysis
in Figure 5. The first one is that the low-energy Eg mode in the range of ~150 cm−1 shifts
to higher frequencies upon W insertion, which has been previously attributed to the unit
cell expansion [91]. However, (in disagreement with this last study) no linear shift in this
Raman mode with the increase in the W content, saturating at 15 mol% W, was observed
in our work. In contrast, the shift appeared to be significant between 1 and 6 mol% W,
with no subsequent evolution upon greater W insertion. The second particularity concerns
the blue shift in the low-frequency A1g/B1g and high-energy Eg modes with an increase
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in W content above 6 mol%. This may be an indication of the cell deformation toward
rutile geometry. In agreement with the XRD analysis, the Raman spectra (broad bands
at 260, 320 and 690 cm−1, marked by (*) in Figure 5) confirm the material segregation
above 15 mol% W, resulting in anatase TiO2/monoclinic WO3 [92] polymorph powders.
In contrast, the dissolution of W into te anatase TiO2 matrix is complete for the lower W
contents. Because of that, we tentatively ascribed 15 mol% to the solubility limit of tungsten
in anatase titania.
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3.2. Adsorption Capacity

The MB adsorption by W-TiO2 nanopowders of different compositions calcined at
550 ◦C is shown in Figure 6 in terms of C/C0, where C and C0 are, respectively, the
remaining and initial MB concentrations in the solution. It can be seen that W-TiO2 materials
possess a stronger MB adsorption capacity than pure TiO2. The strongest adsorption was
observed in the material with 15 mol% W, which was about 50 times above that of pure
TiO2. This adsorption enhancement is significantly higher than that previously reported in
W-TiO2 powders prepared through ammonium metatungstate liquid deposition onto TiO2
Degussa P25 powder, where an eightfold increase in MB adsorption has been reported in a
6.5 mol% W material [80]. This difference in both optimal composition and enhancement
factor can be clearly attributed to the more homogeneous W distribution in the material
in our synthesis conditions, where W species interact with much smaller reactive TOA
nuclei of 3.2 nm size [84] compared to tens of nanometers of TiO2 Degussa P25 [93]. The
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highest adsorption capacity of W-TiO2 nanopowder was 32 mg/g of MB, attained after
15 min of the experiment. This corresponds to the adsorption capacity of the coal-based
activated carbon in treating high-salt printing and dyeing wastewater [94], which, however,
showed significantly slower kinetics. This shows good potential of the prepared materials
in environmental processes.
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Figure 6. MB adsorption kinetics of W-TiO2 nanopowders calcined at 550 ◦C (Ccatalyst = 0.25 g/L).

The adsorption abilities of W-TiO2 nanopowders calcined at different temperatures
of 450, 500, 550 and 600 ◦C were further compared. The equilibrium absorbance Nads/N0
according to the Lagergren model [95] and Langmuir isotherm correction of the photo-
catalysts’ mass (equal to 0.125 g/L, as that used in the photocatalytic MB decomposition
experiments) is plotted in Figure 7. As one can see, the adsorption capacity of the prepared
W-TiO2 nanopowders increased with an increase in W content up to 15 mol% and then
reduced with the greater W loadings. The maximum adsorption capacity of 0.25 mM/g
is 2.5 times larger compared to that previously reported [80]. At the same time, we no-
ticed that the adsorption of the prepared materials was not significantly affected by the
calcination temperature.
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Figure 7. Equilibrium absorbance (Lagergren model) of W-TiO2 nanopowders with different compo-
sitions calcined at 450, 500, 550 and 600 ◦C (Ccatalyst = 0.125 g/L).
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We noticed that the specific surface area (σ) of the prepared materials measured by us-
ing the BET method (Figure S2 of Supplementary Materials) confirmed the tendency in their
MB adsorption capacity: σ = 50 ± 3 m²/g in nanopowders with
0 ≤ CW/(CW + CTi) ≤ 4 mol% calcined at 550 ◦C, while it sharply increased to 171 m²/g
in nanopowders with 15 mol% W. Following the decreasing tendency in crystallite size
(Figure 4), these measurements showed the important modifications in the porosity of the
material with the composition Wx=0.15-TiO2, which has already been reported in mixed
oxide materials [96]. Otherwise, the peak of the porosity correlates with the presumed
solubility limit of W in the TiO2 matrix (see the XRD measurements) and may be connected
to the phase separation phenomena at the component segregation point. This issue needs
further investigation.

3.3. Photocatalytic Activity

After completing the adsorption measurements, the photocatalytic activity of the W-
TiO2 nanopowders was investigated. These measurements were performed with the light
source “on” after attaining the equilibrium of adsorption kinetics (Section 3.2). The results
of MB removal using photocatalysts annealed at 550 ◦C with UV-A lamp illumination are
shown in Figure 8a. The MB degradation kinetics followed first-order reaction kinetics
ln(C/C0) = −kt, where C0, C, k and t are, respectively, the initial and remaining pollutant
concentrations, the rate constant and the process time (see Figure S3 of Supplementary
Materials). The obtained rate constants were used as a measure of the photocatalysts’
activities, which are shown in Figure 8b versus the composition x of the synthetized
compounds. The materials’ activity exhibits two maxima, at low and high tungsten contents.
While the strongest one observed at 2 mol% W has already been reported [80,91], the second
maximum at 15 mol% W is new. The low doping of TiO2 by different cations generally
produced an activity increase, in which the contribution of the photoinduced charge
separation seems to play an important role [24]. On the other hand, the compositions
corresponding to maximum adsorption (Figure 7) have not been reported as highly active
so far. We also notice negligible direct MB photolysis by UV-A light.
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Figure 8. MB degradation kinetics using W-TiO2 photocatalyst under UV-A lamp (λ = 365 nm)
illumination (a), and decomposition rate dependence on W content (b) (calcination temperature of
550 ◦C; Ccatalyst = 0.125 g/L).

The photocatalytic rate constants of the prepared W-TiO2 nanopowders calcined at
different temperatures are shown in Figure 9. One can see that the nanopowder activity



Nanomaterials 2024, 14, 765 10 of 18

does not correlate with that of the most active TiO2 component. Indeed, the pure TiO2
catalyst had the highest activity after calcination at temperatures of 450–500 ◦C, which
corresponds to the pure anatase phase formation; in contrast, its calcination at elevated
temperatures of 550 and, most evidently, at 600 ◦C resulted in an activity decrease, which
is explained by the rutile phase formation [97]. Furthermore, an addition of tungsten
extends the optimal activity to 550 ◦C (2 mol% W). Except for the activity increase upon
low cation doping of a few mol% (followed by the activity decrease) taking place in many
cation-doped TiO2-based materials, an evident second greatest enhancement in activity
appearing around the concentration of 15 mol% clearly showed the added value of the
mixed-oxide material.
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Figure 9. Photocatalytic activity of UV-A illumination (λ = 365 nm) on W-TiO2 photocatalysts with
different compositions calcined at 450, 500, 550 and 600 ◦C (Ccatalyst = 0.125 g/L).

The photocatalytic activity of the prepared W-TiO2 materials was additionally evalu-
ated with natural sunlight illumination. In order to soften the influence of the daily sunlight
intensity variations, these experiments were carried out simultaneously at the same time
for the complete series of W-TiO2 nanopowders with different compositions. The results of
the MB decomposition kinetics are shown in Figure 10a for the material calcined at 550 ◦C.
The data followed first-order kinetics (Figure S3 of Supplementary Materials), and the rate
constants are presented in Figure 10b as a function of the composition x of the synthetized
compounds.

The comparison of the W-TiO2 photocatalysts’ activities under sunlight (Figure 10b)
and UV-A (Figure 8b) illuminations confirms the existence of two maxima, with a tung-
sten content of W1 = 2 mol% and W2 = 15 mol%. At the same time, the relative peak
values of the corresponding rate constants are dependent on the light source. Indeed,
while with UV-A illumination the rate constant kUV(W1) = 2.6 × 10−3 min−1 was signif-
icantly higher than kUV(W2) = 7.8 × 10−4 min−1, the materials’ activities with sunlight
illumination were both enhanced and close to each other: kSL(W1) = 6.1 × 10−3 min−1

versus kSL(W2) = 5.1 × 10−3 min−1. Because, as previously discussed, W2 composition
corresponds to the peak adsorption, the peak in the photocatalytic activity might be related
to the direct photolysis of the adsorbed MB molecules (~97% according to Figure 6) by
sunlight. However, we reject this possibility because of the negligible MB decomposition
in the blank photocatalytic tests. As a result, we attribute kSL(W2) to the heterogeneous
photocatalytic decomposition of MB by Wx=0.15-TiO2 nanopowders.
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Figure 10. MB degradation kinetics using W-TiO2 photocatalyst powders (calcination temperature of
550 ◦C; Ccatalyst = 0.125 g/L) under sunlight illumination (a), and decomposition rate dependence on
tungsten content (b).

3.4. Synergy of Adsorption and Photocatalysis

The heterogeneous photocatalytic process basically includes two steps of (1) physical
adsorption of pollutant molecules on the material surface and (2) surface reactions including
the release of reaction products. Since, in common experiments, the material activation by
light is applied after attaining adsorption equilibrium, the contributions of these steps can
be, respectively, characterized by the adsorbed amount of material C (in ppm units) and
the apparent reaction rate constant k (in min−1 units).

In order to inspect the reaction constant of the materials with different compositions,
TRMC measurements were performed. The decay curves of the photoinduced charges in
pure and W-doped TiO2 nanopowders are shown in Figure 11. The observed signal has
been previously attributed to the liberation of charges from shallow traps with binding
energy E* following a power law decay I = Atα with parameter α = kBT/E*, where kB
is the Boltzmann constant and T is temperature [23]. The shallow states have attracted
much attention over the last decade because of their key influence on the photocatalysts’
activity [98,99]. According to our data, the depths of the shallow electron traps increased
from 169 meV (0 mol% W) to 183 meV (1 mol% W), while they decreased afterwards to
95 meV (4 mol% W) and 73 meV (15 mol% W). In nanopowders with x = 100 mol% (W-only
material), the signal disappeared very rapidly to the noise level. Although no quantitative
relation between the charges’ lifetime and photocatalytic rate has been proposed in previous
studies, the present TRMC measurements confirm the observed tendency in the activity of
the prepared powders, showing that photoinduced charges do not effectively trigger the
reactions when they disappear fast.

A comparison with previous results summarized in Table 1 showed a general agree-
ment about the enhancement factor of 2.5 ± 0.5 after the insertion of ~2 mol% W into TiO2,
with both UV-A and sunlight illuminations. According to the TRMC measurements, the in-
trinsic material reactivity can be responsible for the maximum activity W1 (Figures 8 and 10)
but cannot be the only reason explaining the W2 maximum activity. Below, we discuss this
issue in more detail.
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least-squared fits with power law: I = Atα (power constants α and calculated electron trap energies
E* are indicated).

The material activity in Figures 8 and 10 generally reflects the combined action of
photocatalytic and adsorption processes. In order to distinguish these two contributions, we
normalized the decomposition rate constants (in min−1 units) for the adsorbed component
(in ppb units) and plotted kNORM (in min−1ppb−1 units) versus the tungsten content in the
W-TiO2 nanopowders in Figure 12a. This rate constant kNORM apparently reflects a pure
photocatalytic response of the material to the adsorbed MB pollutant. Two particularities
can be noticed:

– kNORM was greatly different for 0 ≤ CW/(CW + CTi) ≤ 0.02 and 0.04 ≤ CW/(CW + CTi) ≤ 1;
– kNORM was stronger under sunlight illumination compared to UV-A, attaining the

peak value at 15 mol% W.
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As we can see, the insertion of W into the TiO2 matrix does not enhance the intrinsic
response of the mixed oxide material and the photocatalytic activity is most effective on
pure anatase TiO2. Furthermore, the material with a W content of 4 mol% and higher has a
greatly reduced kNORM, which drops down by about 30 times to a lower level.

At the same time, the pollutant decomposition takes place at the material surface
and the decomposition kinetics can be enhanced by increasing the number of pollutant
molecules at the photocatalyst surface. A strong increase in the material adsorption due to
the compositional adjustment may therefore promote synergy between the two processes
(adsorption and reaction), moving toward the highest total effectiveness of the pollutant
removal process. Taking into account a much stronger (by almost 100 times) initial elimina-
tion rate of MB via adsorption (Figure 6) compared to photocatalysis (Figures 8 and 10), one
can suggest preferential use of 15 mol% W-doped TiO2 nanopowders in the environmental
process, especially in emergency cases. Indeed, a large amount of a pollutant can be rapidly
bound to the photocatalyst surface in the first few minutes after an accident, while its
decomposition can be readily achieved within a longer timescale. This would significantly
reduce the negative impact of an accident on nature.

The reaction inhibition in W-TiO2 nanopowders (see in Figure 12a), which proba-
bly is due to faster recombination of photoinduced electron–hole pairs (as confirmed by
the TRMC data in Figure 11), can be largely compensated for by the material’s adsorp-
tion rate and capacity. The synergy factor (R) earlier proposed for the two-component
composite TiO2-AC (AC = activated carbon) materials [20] cannot be directly applied
to the one-component system, in which both reaction and absorption rates are tuned
via elemental composition. However, taking it as a ratio of the pollutant removal rates
R = k(W-TiO2)/k(TiO2), one can obtain R~10 at the beginning of the process, converging to
R~2 after longer durations of the stationary operation under illumination, when adsorption
equilibrium is attained. This shows the high potential of this material for depollution use in
emergency cases of an occasional pollutant leak. The very high concentration of adsorbed
pollutant molecules can largely compensate for the reduced reaction constant and results
in effective pollutant removal. As a result, the Wx=0.15-TiO2 nanocatalyst could be highly
promising for wastewater purification in industrial plants.

The observed difference in the photocatalytic effectiveness of the W-TiO2 materials
under UV-A and sunlight illuminations (Figure 12b) seems to be a general feature (see, e.g.,
V-TiO2 photocatalyst [22]). We noticed that a great enhancement in the MB decomposition
rate by anatase TiO2 (0 mol% W), ksunlight/kUV-A ≈ 1.7 (Figure 12b), can be explained by
tge greater intensity of the UV-A component in sunlight as compared to the laboratory
lamp. However, the W insertion further increased this ratio up to 6.5 for 15 mol% W, which
can be a sign of photocatalyst activation by the visible light. Since WO3 does not crystallize
in the material at W ≤ 15 mol%, this activation is believed to involve intraband impurity
states. The activation of the Wx=0.15-TiO2 nanocatalyst by sunlight can be an additional
argument supporting its use in environmental catalysis.

4. Conclusions

Photocatalytic W-TiO2 nanopowders with a large variation in the composition
x = CW/(CW + CTi), including end members TiO2 and WO3, were successfully synthe-
sized by using the sol–gel method, using TTIP and WCl6 precursors and a low hydrolysis
ratio h = CH2O/(CTi + CW) = 1.25, following calcination at 450, 500, 550 and 600 ◦C to form
a crystalline product. The materials preserved the anatase crystalline structure, while the
crystalline size decreased with an increase in W content up to 0.15 mol%; the nucleation of
WO3 crystallites was observed with the greater W loadings. The structural characterizations
suggest that the solubility limit of W into anatase TiO2 is 15 mol% W. The adsorption and
photocatalytic kinetics of the prepared materials were evaluated based on MB removal in
aqueous solutions. Both adsorption kinetics and adsorption capacity strongly increased
in the material with 15 mol% W, in which the maximum adsorption capacity reached
0.25 mM/g, which is almost 50 times higher compared to that of pure anatase TiO2. Overall,
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the rates of MB adsorption and photocatalytic decomposition were stronger in, respectively,
W-rich and Ti-rich compositions. A comparison of the photocatalytic activities under UV-A
and sunlight illuminations revealed two optimal compositions with tungsten contents
of W1 = 2 mol% and W2 = 15 mol%. Our analysis permitted us to attribute them to the
adsorption/photocatalytic decomposition of MB molecules at the W-TiO2 photocatalyst
surface. The normalization of decomposition rates for the adsorbed amount of MB showed
(i) the conservation of the intrinsic TiO2 material’s activity at low doping 0 ≤ W ≤ 0.02 and
(ii) a decrease in the activity with greater W insertion. The compensation for the activity
decrease by the adsorption increase was observed in the material’s pollutant removal
process.

The synergy of adsorption and photocatalysis in the water purification process was
shown, which revealed the material with 15 mol% W to be the most effective in terms of
pollutant removal. Furthermore, an additional activation of the W-TiO2 photocatalyst by
sunlight compared to a UV-A lamp was shown. To summarize, the mixed oxide Wx=0.15-
TiO2 nanocatalyst appeared to be promising for applications in the environmental process
of pollutant removal in aqueous media, especially in emergency cases involving a strong
peak in the pollutant concentration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano14090765/s1, Table S1: W/Ti elemental composition of
selected W(x)-TiO2 nanopowders calcinated at 550 ◦C; Figure S1: W/(W + Ti) composition of W-TiO2
nanopowders (calcinated at 550 ◦C); Figure S2: BET plots of W-TiO2 nanopowders (calcinated at
550 ◦C); Figure S3: Semi-logarithmic plots of MB degradation kinetics using W-TiO2 photocatalyst
(Ccatalyst = 0.125 g/L) under UV-A lamp (λ = 365 nm) (a–c) and sunlight (d) illuminations.
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