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Abstract: Herein, we investigate the effect of tilt mismatch on the quantum oscillations of spin
transport properties in two-dimensional asymmetrically tilted Dirac cone systems. This study
involves the examination of conductance oscillation in two distinct junction types: transverse- and
longitudinal-tilted Dirac cones (TTDCs and LTDCs). Our findings reveal an unusual quantum
oscillation of spin-polarized conductance within the TTDC system, characterized by two distinct
anomaly patterns within a single period, labeled as the linear conductance phase and the oscillatory
conductance phase. Interestingly, these phases emerge in association with tilt-induced orbital pseudo-
magnetization and exchange interaction. Our study also demonstrates that the structure of the LTDC
can modify the frequency of spin conductance oscillation, and the asymmetric effect within this
structure results in a quantum beating pattern in oscillatory spin conductance. We note that an
enhancement in the asymmetric longitudinal tilt velocity ratio within the structure correspondingly
amplifies the beating frequency. Our research potentially contributes valuable insights for detecting
the asymmetry of tilted Dirac fermions in type-I Dirac semimetal-based spintronics and quantum
devices.

Keywords: Dirac materials; graphene; quantum beat; spin polarization; tilted Dirac cone

1. Introduction

Graphene, the first two-dimensional carbon to be realized [1–4], has sparked great
interest in condensed matter physics, particularly in the study of charge transport phe-
nomena in two-dimensional (2D) systems. This interest has resulted in the identification
of a novel class of materials called Dirac materials [5,6]. These materials exhibit unique
transport properties, such as the chiral nature of the electronic wave function and a linear
band structure around the Dirac point. At this point, the behavior of charge carriers exhibits
characteristics analogous to relativistic massless Dirac fermions, a behavior governed by
the massless Dirac equation. One of the intriguing features of Dirac materials is the Dirac
cone, a term referring to the linear energy dispersion relation around the Dirac point. In
graphene, this cone is isotropic, meaning the energy dispersion is the same in all directions.
However, the Dirac cone is sensitive to changes in the local crystal structure and symme-
try [7,8], leading to potential deviations from Lorentz invariance due to strong anisotropy
in the band structure. Recent research reveals unprecedented control over Dirac cones in
graphene and other emerging 2D materials. DFT calculations reveal that the hydrogenation
of graphene leads to the emergence of a tilted and anisotropic Dirac cone [9]. Furthermore,
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quinoid-type deformations in graphene lead to a linear relationship between strain and
Dirac cone tilt [10]. This tunability extends beyond graphene; tilted Dirac cones arise
in materials like α-(BEDT-TTF)2I3 under uniaxial pressure [11] and 8-Pmmn borophene,
which intrinsically exhibits anisotropic, tilted cones [12]. Engineering these properties
has profound implications: coupled periodic scalar and vector potentials enable tunable
tilted anisotropy in graphene-based structures [13]. Even atomic-level modifications within
8-Pmmn borophene offer precise control over the Dirac cone’s tilt [14]. Notably, tilted Dirac
cones in photonic systems lead to entirely new phenomena. Using a Lieb–kagome lattice
framework, Hanafi et al. demonstrated the manipulation of Dirac cone tilt in photonic
structures, unveiling asymmetric conical diffraction and showcasing control confirmed
both theoretically and experimentally [15]. Photonic systems provide a rich platform for
exploring Dirac cone physics. Tilted Dirac cones in artificial photonic systems are designed
to mimic the behavior of electrons in graphene. These can be controlled by manipulating
the interplay between flat bands and Dirac cones, as demonstrated in photonic orbital
graphene [16]. This control suggests numerous intriguing research avenues, from funda-
mental explorations of exotic Dirac physics to the design of functional devices exploiting
engineered tilt characteristics.

Tilting Dirac cones disrupts their perfect conical symmetry, introducing anisotropy.
This anisotropy significantly impacts the material’s transport properties, such as conduc-
tivity [17], magnetoresistance [18], and the Hall effect [19]. Understanding how the tilt
influences these properties is crucial not only for characterizing these materials but also
for manipulating their behavior for potential device applications. Notably, this anisotropy
enables the perfect transmission of charge carriers at non-zero angles of incidence, the
hallmark of anomalous Klein tunneling [20]. The tilt-induced separation of charge carriers
by chirality in Dirac/Weyl systems enables the design of devices based on valley filtering
and beam splitting [21]. Tilting the Dirac cone in graphene-based Josephson junctions leads
to electrically charged Andreev modes [22]. These modes, involving cooperative electron–
hole reflection, offer exciting potential for novel quantum devices and fundamental physics
exploration. Unexpectedly, the Josephson current scales as N² (where N represents transmis-
sion channels), rather than linearly. This reflects the unique behavior of charged Andreev
modes in tilted Dirac materials, where the tilt acts like a strong gravitational field, promot-
ing the generation and repeated reflection of electron–hole pairs. Furthermore, the tilted
Dirac cone leaves measurable signatures, offering ways to characterize its properties and
potentially manipulate a material’s electronic behavior. For example, in α-(BEDT-TTF)2I3,
analyzing the interlayer magnetoresistance can reveal the strength and direction of the
Dirac cone tilt. [18]. Additionally, it has been reported that the Fano factor, a measure of
the fluctuations in a system, is vulnerable to the tilt of the Dirac cone [23]. This suggests
that the Fano factor could be used as a tool to validate the tilted Dirac cone characteristics
of materials.

A key discovery in this field is the oscillatory behavior of spin conductance in
ferromagnetic-gate graphene structures [24]. This spin conductance can be tuned through
the gate potential. Further research demonstrated that the exchange interaction appears
to generate quantum modulation [25]. Additionally, the existence of quantum beats, a
result of interference between oscillatory spin conductance components, arises from the
ferromagnetic graphene barrier [26]. This demonstrates the profound impact of the ex-
change field on the transport properties of graphene. Interestingly, it was observed that
the amplitudes of quantum oscillation do not diminish with thicker barriers, a finding
relevant to graphene-based device design [25]. The potential for controllable spin transport
in double ferromagnetic-gate graphene has been theoretically demonstrated [27], suggest-
ing that ferromagnetic gates could be used to engineer graphene’s transport properties.
Finally, recent work indicates a strong influence of tilted Dirac cones on the frequency
of spin conductance oscillation in single tilted Dirac cones coupled with ferromagnetic
graphene [28].
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The ability to manipulate spin conductance and observe the resulting quantum oscilla-
tion phenomena opens up possibilities for understanding and controlling spin transport
properties in graphene, as demonstrated by phenomena like the Shubnikov–de Haas (SdH)
effect. In normal metals, the SdH oscillations occur when a magnetic field is applied [29].
Electrons in the conduction band exhibit oscillatory behavior as Landau levels shift and
periodically intersect the Fermi energy. This results in fluctuations in the electron pop-
ulation at the Fermi surface. The result reveals the quantum oscillations in the metal.
Yampol’skii et al. [30] showed that the massless Dirac fermions in graphene can be shown
quantum oscillations by driving an external electric field, like a magnetic field SdH-like
oscillation. This oscillation arises due to the periodic movement of the localized levels
passing over the Fermi energy, leading to a change in the density of localized states in the
electrostatic potential barrier. The asymmetry of double potential barriers in graphene het-
erostructures introduces a difference in the frequency or phase of the quantum oscillations
associated with each barrier. This difference gives rise to the phenomenon of quantum beats.
Liu et al. [31] studied SdH-like oscillations of conductance in graphene-based structures
with double Fermi velocity barriers. They discovered that the quantum beat of charge
conductance directly arises from the asymmetry of the double velocity modulation. The
presence of quantum beats offers a potentially sensitive method for detecting and char-
acterizing subtle asymmetries within heterostructures. The introduction of an exchange
field further modifies the quantum beat phenomenon, influencing spin-polarized transport
and causing a shift in the spin-dependent quantum beats. Saipaopan et al. [32] observed
similar SdH-like oscillations in graphene-based structures with both double Fermi velocity
modulation and an exchange field. Significantly, they discovered the existence of quantum
beats in spin-resolved conductance. This beating behavior arises from the superposition of
the oscillating conductances within the asymmetric double Fermi velocity barriers. Cru-
cially, the presence of the exchange field has a remarkable effect: it causes the spin-resolved
quantum beats to shift in the opposite direction. The discovery of exchange field-induced
shifts in spin-resolved quantum beats underscores the potential for the fine control of spin
transport properties in graphene heterostructures.

In this study, we investigate the spin transport properties of Dirac electrons in asym-
metric tilted Dirac cone heterostructures under the influence of an exchange field. Our
primary focus is to analyze how the tilt mismatch between two Dirac cones affects the
quantum oscillations observed in spin transport properties within these two-dimensional
systems. This analysis will involve examining conductance oscillations in both transverse-
and longitudinal-tilted Dirac cone junctions. Our model incorporates a unique feature:
tilted Dirac cones exhibiting both transverse and longitudinal tilts. In a transverse-tilted
Dirac cone (TTDC), the tilt is perpendicular to the electron’s direction of motion. Con-
versely, in a longitudinal-tilted Dirac cone (LTDC), the tilt is parallel to the electron’s motion.
These distinct tilting directions can significantly influence the spin transport properties
within the heterostructure. Next, we aim to explore the voltage-driven quantum oscillation
of spin-resolved conductance within the TTDC system. We are particularly interested in
identifying any distinct anomaly patterns (e.g., sudden shifts, unexpected peaks) within a
single oscillation period that may arise due to the interplay between tilt-induced orbital
pseudo-magnetization and exchange interaction. Finally, we plan to investigate how the
specific structure of the LTDC cone can modify the frequency of spin conductance oscil-
lation. We are also interested in understanding how the asymmetric effect within this
structure might result in a quantum beating pattern (characterized by multiple overlapping
frequencies) in oscillatory spin conductance. Building upon the investigation of spin trans-
port properties, our model of a tilted Dirac cone draws inspiration from experimentally
realized systems like graphene–borophene heterostructures [33]. In these structures, lattice
mismatch induces tilt and anisotropy in the Dirac cone. Additionally, normal-buckled
graphene superlattices [34] demonstrate how controlled deformations can modulate the
Dirac cone shape. Analyzing quantum beats could provide valuable insights into the sym-
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metry of tilted heterostructures, aiding in the optimization and control of their properties
for anisotropic device applications.

2. Materials and Methods

As illustrated in Figure 1, our model system consists of massless Dirac fermions
traveling through a junction with alternating non-tilted (ND) and tilted Dirac cone (TDC)
regions: ND/TDC1/ND/TDC2/ND. Notably, both TDC regions exhibit both transverse
and longitudinal tilts. A magnetic insulator coating induces exchange fields (J1 and J2) in
TDC1 and TDC2, respectively. These exchange fields can be further tuned by applying a
gate potential (U1 for TDC1 and U2 for TDC2) via a metallic gate deposited on the insulator.
The widths of TDC1 and TDC2 are L1 and L2, respectively, and are separated by a distance
D. It is important to note that this model focuses on a scenario where the tilted Dirac cone
regions exhibit both transverse and longitudinal tilts. If we consider a case where the tilts
are purely transverse (TTDC) or purely longitudinal (LTDC), the corresponding junction
configuration would be ND/TTDC1/ND/TTDC2/ND or ND/LTDC1/ND/LTDC2/ND,
as depicted in Figure 1a,b, respectively. These variations would allow us to isolate the
effects of each tilt direction on the spin transport properties.
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Figure 1. An asymmetrical double-tilted velocity barrier structure along with its corresponding
Dirac cones. Regions with lengths L1 and L2 represent the asymmetry in the double-tilted velocity
barriers, which are coated by a metallic gate on a magnetic insulator. The tilted Dirac cone within the
double-tilted velocity barriers is depicted in two configurations: (a) perpendicular and (b) parallel to
the direction of electron transport.

While the exchange interaction with magnetic ions in magnetic insulators has been
recognized to influence the electronic structure of Dirac materials, we assume in this
study that such an interaction does not significantly affect the electronic structure of
the tilted Dirac cone material. This assumption is based on the proposition that the
exchange interaction arises from the orbital overlap between the tilted Dirac material and
the magnetic ions in the unoccupied shells of the magnetic insulator. Notably, the direction
of the exchange field is consistently identified as perpendicular to the graphene plane, as
supported by multiple studies [35–40].

Our model exploits the analogy between low-energy quasiparticles in Dirac materials
and relativistic quantum particles. This allows us to simplify the model by assuming
the propagation of massless Dirac electrons in the ballistic transport regime, where spin-
flip scattering is negligible [27,41]. Additionally, intervalley scattering between K and
K′ valleys within the Brillouin zone is considered insignificant [42,43]. Based on these
assumptions, we can derive a general Dirac Hamiltonian that incorporates both transverse
and longitudinal tilts. This Hamiltonian effectively captures the anisotropic nature of the
tilted Dirac cones within our model system.

Ĥ = ∑
i,j

(
ℏvijκiσj + ℏ(ρi1,2κi − Vτ(x))σ0

)
(1)
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where the index i, j ∈ {x, y}. The potential can be defined as Vτ(x) = EF + U1,2 + Λτ J1,2
for TDC1, TDC2 regions and Vτ(x) = EF for ND regions. Spin-up and spin-down elec-
trons are represented as Λ↑,↓ = +1,−1. In tilted Dirac cones with both transverse and
longitudinal tilts, the wave vector, denoted by κi, becomes directionally dependent due
to the altered dispersion relation. This alteration transforms the originally circular Fermi
surface (characteristic of non-tilted cones) into an elliptical Fermi surface, as illustrated in
Figure 2, while σx,y are the Pauli matrices and σ0 is the 2 × 2 unit matrix. All anisotropies
can be described using the upper diagonal of the anisotropy matrix vij. The tilt term ρiκi
arises when the tilted Dirac cone depends on the tilt velocity ρx1,2 and ρy1,2, representing
LTDC1(2) and TTDC1(2), respectively. In this study, we focus solely on the tilted Dirac cone.
The anisotropy matrix is fixed at vij = vFδij, where vF ≈ 106 m/s. In the context of the
scattering problem, the propagation of massless Dirac fermions is across the asymmetric
tilted Dirac cone. The tilt velocity in each region can be written as follows:

ρi1,2 =



0, x < −L1 − D/2

ρi1, −L1 − D/2 ≤ x ≤ −D/2

0, −D/2 ≤ x ≤ D/2

ρi2, D/2 ≤ x ≤ L2 + D/2

0, x > L2 + D/2

(2)

The wave function for a non-tilted Dirac cone in each ND region described as

ψI(x < −L1 − D/2) =
(

1
eiϕ

)
eikx x + rτ

(
1
−eiϕ

)
e−ikx x

ψI I I(−D/2 ≤ x ≤ D/2) = cτ

(
1
eiϕ

)
eikx x + dτ

(
1
−eiϕ

)
e−ikx x

ψV(x > L2 + D/2) = tτ

(
1
eiϕ

)
eikx x

(3)

The wave vector component of particles outside barrier is denoted as kx = (EF/ℏvF) cos ϕ =
kF cos ϕ, ky = (EF/ℏvF) sin ϕ = kF sin ϕ. ϕ denotes the incident angle with respect to the
barrier. Next, the wave function in the TDC1, TDC2 regions is written as

ψτ
I I(−L1 − D/2 ≤ x ≤ −D/2) = aτ

(
1
η1

)
eiqτ,+

x x + bτ

(
1
η2

)
e−iqτ,−

x x

ψτ
IV(D/2 ≤ x ≤ L2 + D/2) = fτ

(
1
η3

)
eipτ,+

x x + gτ

(
1
η4

)
e−ipτ,−

x x
(4)

where η1,2 = − qτ,±
x ±iqy

∓
√
(qτ,±

x )
2
+qy2

and η3,4 = − pτ,±
x ±ipy

∓
√
(pτ,±

x )
2
+py2

. The wave vector components of

particles inside TDC1 and TDC2 are qτ,±
x = q cos θτ,±

1 , qy = q sin θτ,±
1 , and pτ,±

x = p cos θτ,±
2 ,

py = p sin θτ,±
2 . The refractive angle for electron propagation in TDC1 and TDC2 can be

written as θτ,±
1 = arctan

(
qy/qτ,±

x

)
, θτ,±

2 = arctan
(

py/pτ,±
x

)
. We can find the wave vector

component inside barriers by considering the corresponding eigenenergy of the tilting Dirac
cone in the Dirac material under the exchange field. Energy dispersion from Equation (1)
can be written as

Eλ(κ) = −Vτ(x) + ℏρx1,2κx + ℏρy1,2κy + λℏ
√
(vFκx)

2 +
(
vFκy

)2 (5)

where λ is the band index. The tilting of the Dirac cone can be represented by the vector
→
ρ 1,2 =

(
ρx1,2, ρy1,2

)
that corresponds to the tilted magnitude ρ1,2 =

√
ρx1,2

2 + ρy1,2
2 along

the angle γ = arctan
(
ρy1,2/ρx1,2

)
with respect to the κx axis. To effectively investigate
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the quantum beating pattern, the transverse-tilted velocities (ρy1 and ρy2) must be zero.
While the longitudinal-tilted velocities (ρx1 and ρx2) should ideally range between 0.2vF
and 0.4vF for enhanced pattern visibility, the pattern can still be observed within a broader
range. To observe the wave vector of the tilted Dirac cone under the zero-bias condition, it

should be ensured that Eλ = 0 [24]. Equation (5) is written as (κx′+kc)
2

ka
2 +

κy′2

kb
2 = 1 with the

components ka =
(EF+U1,2+Λτ J1,2)

λℏvF(1−β2)
, kb =

(EF+U1,2+Λτ J1,2)

λℏvF
√

(1−(α2/β2))(1−β2)
, and kc =

(EF+U1,2+Λτ J1,2)β

λℏvF(1−β2)
.

The parameters are given by α =
2ρx1,2ρy1,2

λ2vF2 , β =
ρ1,2
λvF

. The angular-dependent wave vector
can be represented in the following form:

κ =
ka
(
1 − w0

2)
1 + w0 cos(ϕ − γ)

=
(EF + U1,2 + Λτ J1,2)

ℏvF
(
λ + (ρx1,2/vF) cos ϕ +

(
ρy1,2/vF

)
sin ϕ

) (6)

For the Fermi surface, w0 = kc/ka = β is the eccentricity. λ indicates that the direction
of the conduction band and the valance band are always tilted in opposite directions. The
wave vector in Equation (6) reveals that the angular-dependent properties disappear when
the Dirac cone is non-tilted [44]. Equation (6) also depicts how the angular-dependent
wave vector outside the barrier depends on the incident angle. The expression for the
angular-dependent wave vector inside the barrier in a function of the refractive angle is
as follows:

κ =
(EF + U1,2 + Λτ J1,2)

ℏvF
(
λ + (ρx1,2/vF) cos θ +

(
ρy1,2/vF

)
sin θ

) (7)

The refractive angle θ = sin−1((kF/κ) sin ϕ) is determined by considering the transla-
tional symmetry in the y-direction, where the wave vector parallel to the y-axis remains
conserved. For simplification, both barriers have the same exchange field tuning with the
same gate voltage U1 = U2 = U and J1 = J2 = J. After substituting θ into Equation (7), we
obtain the x-component of the wave vector for the particle inside TDC1 and TDC2 as

qτ,±
x = 1

L1
(A1 ∓ B1) =

1
L1

(
ξx1ω1

1−ξx1
2 ∓

√
ω1

2+(kF L1 sin ϕ)2(1−ξx1
2)

1−ξx1
2

)

pτ,±
x = 1

L2
(A2 ∓ B2) =

1
L2

(
ξx2ω2

1−ξx2
2 ∓

√
ω2

2+(kF L2 sin ϕ)2(1−ξx2
2)

1−ξx2
2

) (8)

where ω1,2 = kFL1,2 + χ1,2 + Λτµ1,2 − ξy1,2kFL1,2 sin ϕ. We defined kFL1,2 =
EF L1,2
ℏvF

,

χ1,2 =
UL1,2
ℏvF

=
kF L1,2U

EF
, and µ1,2 =

JL1,2
ℏvF

=
kF L1,2 J

EF
. The parameters ξx1,2 = ρx1,2/vF and

ξy1,2 = ρy1,2/vF are the longitudinal tilt velocity ratio and transverse tilt velocity ratio in the
TDC1 and TDC2 regions, respectively. The width of both barriers is equal, L1 = L2 = L. The
spin and tilt dependence of the transmission coefficient tτ,ξ can be determined by consider-
ing the wave function’s continuity at the boundaries located at x = −L − D/2, x = −D/2,
x = D/2, and x = L + D/2. In the limit of EF ≪ |U + Λτ J| and θτ,±

1,2 = 0, one can observe the
oscillatory behavior of conductance easily. The transmission coefficient is as follows:

tτ,ξ =
ei(A1+A2)e−ikF(2L+D) cos ϕ cos2 ϕ

eikF D cos ϕ sin B1 sin B2 sin2 ϕ + e−ikF D cos ϕ(cos B1 cos ϕ + i sin B1)(cos B2 cos ϕ + i sin B2)
(9)
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Finally, the spin-resolved conductance Gτ,ξ in terms of the transmission probability
Tτ,ξ(ϕ) can be written as [24]

Gτ,ξ = G0

∫ π/2

−π/2
Tτ,ξ(ϕ) cos ϕdϕ = G0

∫ π/2

−π/2

∣∣tτ,ξ(ϕ)
∣∣2 cos ϕdϕ (10)

where G0 = 2e2EFLy/πℏ with the width of structure Ly. The important parameters are
the charge conductance GC = G↑ + G↓ and the spin conductance Gs = G↑ − G↓, where
G↑ and G↓ represent spin-up conductance and spin-down conductance, respectively. The
condition U/EF is required to control the spin transport by varying the gate voltage [24]. In
the case where the Dirac material is ferromagnetic graphene with a wave vector with kFL
equal to 1 and a Fermi energy EF equal to 1, it can be shown that the length of the barrier is
approximately 0.66 µm. The gate voltage and the exchange field require more than 1 meV
for controllable spin transport. This structure can be reduced to a single tilted barrier by
neglecting the width of the gap, and

qτ,±
x = pτ,±

x =
1
L
(A ∓ B) =

1
L

 ξxω

1 − ξx
2 ∓

√
ω2 + (kFL sin ϕ)2

(
1 − ξx

2
)

1 − ξx
2

 (11)

The new spin and tilt dependence transmission coefficient can be written as

tτ,ξ =
e2iAe−2ikF L cos ϕ cos2 ϕ

sin2 B sin2 ϕ + (cos B cos ϕ + i sin B)2 (12)

If the tilted velocity ratio is neglected, the transmission coefficient in Equation (12) can
be reduced to that in [24].
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3. Results and Discussion

In this study, we focus on the oscillatory characteristic of spin-resolved conductance
in the presence of a TTDC within asymmetric tilted velocity barriers. The TTDC is charac-
terized by a tilted velocity ρy1,2, as depicted in Figure 1a. Our investigation begins with the
analysis of spin-resolved conductance oscillation behavior in the context of an asymmetric
TTDC. The results, as shown in Figure 3, reveal an oscillatory behavior in spin-resolved
conductance, G↑ and G↓. The presence of an asymmetric TTDC coupled with an exchange
field results in a phase shift in the oscillation behaviors of spin-resolved conductance.
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Figure 3. Plots of conductance versus gate voltage for charge conductance GC, spin-up conductance
(blue), spin-down conductance (red), and spin conductance GS for double TTDC with different values
of difference tilted velocity from two barriers ∆ξy = ξy2 − ξy1 when ξy1 is equal to 0.1. The Fermi
energy kF L and the exchange field µ are fixed to 1 and 10, respectively.

Interestingly, the spin conductance oscillates with a combination of two distinct pat-
terns within a single period. The first half of the period shows a linear pattern, controllable
by the gate voltage. This linear pattern arises from the superposition of both types of
spin-resolved conductance, each oscillating with distinct phases. The second half of the
period, on the other hand, exhibits an oscillatory pattern.

Comparing these findings with the results of spin conductance without the tilted
parameter from [22], it is evident that the TTDC with an exchange field introduces the
oscillating pattern in the second half period of spin conductance. When the difference in the
tilted velocity ratio between two barriers (∆ξy = ξy2 − ξy1) is equal to 0.4, the oscillatory
pattern in the second half period for the spin conductance is analogous to the quantized
conductance. However, no quantum beat pattern was observed in any conductance for the
asymmetric tilted velocity barrier in the case of the TTDC.

Furthermore, we explore the influence of the TTDC on the oscillatory behavior of
spin-resolved conductance by simplifying the model to a single TTDC. The results, as
shown in Figure 4a, indicate that spin-up and spin-down components exhibit distinct
phases of oscillation in spin-resolved conductance. Upon introducing varying values of the
transverse-tilted velocity ratio, we observed oscillations in the conductance as a function
of the gate voltage. However, it is noteworthy that the frequency of the spin conductance
oscillation remains unaffected by the TTDC, indicating no discernible relationship between
the tilted velocity and the frequency of conductance oscillation. We further observed that
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an increase in tilting of the TTDC leads to a splitting of the peaks in the oscillation pattern.
This splitting is attributed to a shift in the electron’s wave vector, which is induced by
the breaking of time reversal symmetry in the presence of a pseudo-magnetic field. A
pseudo-magnetic field can be induced through two methods in materials with a tilted Dirac
cone. The first occurs in a homogenous-tilted Dirac cone structure coupled with an electric
field [17]. The second method involves the presence of an asymmetric-tilted Dirac cone
junction, even without an applied electric field [44].
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Figure 4. (a) Plots of conductance versus gate voltage for spin-up conductance (blue) and spin-down
conductance (red) for single TTDC with varying values of transverse-tilted velocity ratio. The Fermi
energy kF L and the exchange field µ are fixed to 1 and 10, respectively. (b) Asymmetric refraction of
electron transport with different incident angles through a single tilted velocity barrier where the
symmetry in the transmission is restored. (c) Plots of spin-up (blue) and spin-down (red) conductance
versus gate voltage and the spin-resolved conductance with the incident region Gτ,ξy

(
ϕ+
)

(green)
and Gτ,ξy

(
ϕ−) (yellow).

The presence of the TTDC leads to asymmetric refraction within the barrier, as depicted
in Figure 4b. When the electrons are transported to the TTDC barrier, the wave vector



Nanomaterials 2024, 14, 811 10 of 17

with a positive incident angle bends towards the normal, while the wave vector with a
negative incident angle bends away from the normal. From this scenario, the spin-resolved
conductance with two regions of incident angles can be represented as follows:

Gτ,ξy = Gτ,ξy

(
ϕ+
)
+ Gτ,ξy

(
ϕ−) = G0

(∫ π/2

0
Tτ,ξ(ϕ) cos ϕdϕ +

∫ 0

−π/2
Tτ,ξ(ϕ) cos ϕdϕ

)
(13)

where Gτ,ξy(ϕ
+) and Gτ,ξy(ϕ

−) correspond to the contribution from the wave vector with
positive and negative incident angles, respectively. The results, depicted in Figure 4c, con-
firm that the peak splitting observed in the spin-resolved conductance originates from the
superposition of asymmetric refraction within the barrier. Both spin-resolved conductances
exhibit the same asymmetric refraction behavior. For spin-up conductance, there is a higher
probability of electron transmission with a wave vector possessing a positive incident angle
compared to the wave vector with a negative incident angle. Conversely, for spin-down
conductance, the chance of electron transmission with a wave vector having a negative
incident angle is higher than that with a positive incident angle. In summary, our findings
unveil the occurrence of anomalous spin conductance oscillation in the presence of an
asymmetric TTDC combined with the exchange field. This observation offers a promising
approach for identifying and characterizing the TTDC in spintronic devices.

Next, we turned our attention to exploring the behavior of spin-resolved conductance
oscillation in the presence of an asymmetric LTDC system. In this configuration, the Dirac
cone is tilted parallel to the direction of electron propagation. The asymmetry in the LTDC
introduces unique properties that can affect the spin transport characteristics. To gain
insights into the oscillation behavior in the case of an asymmetric LTDC Dirac cone, we
initiated our investigation by examining the effect of tilted velocity in a single LTDC. By
analyzing the spin-resolved conductance, we observed oscillatory behavior in both the spin-
up and spin-down components. Notably, the phases of these oscillations differ between the
two spin orientations. Furthermore, intriguingly, we discovered that the presence of the
LTDC influences the oscillation frequency of the conductance, as shown in Figure 5.

In this section, we delve further into the influence of a mismatched LTDC within an
asymmetric tilted Dirac cone structure and its impact on the oscillatory behavior of spin-
resolved conductance. We specifically investigated the effect of the LTDC mismatch on the
oscillation patterns exhibited by spin-resolved conductance, focusing our analysis on the
relationship between conductance and gate voltage for spin-up conductance. The decision
to focus on spin-up conductance was motivated by the observation that the oscillatory
behavior of spin-resolved conductance is highly similar. By narrowing our investigation to
spin-up conductance, we can effectively capture the key features of the oscillatory patterns.

In Figure 6b, a distinct quantum beating pattern is depicted in the spin-resolved
conductance, revealing an intriguing phenomenon. This behavior emerges from the su-
perposition of two oscillating conductances within the asymmetric LTDC, as shown in
Figure 6a. These spin-resolved quantum beats offer valuable insights into the complex
dynamics of spin-resolved conductance, particularly in the presence of an asymmetric mis-
matched LTDC. To achieve a comprehensive understanding of the oscillating characteristic
of spin-resolved quantum beats in the presence of the asymmetric mismatch LTDC, the
oscillations in spin-resolved conductance can be precisely described by a cosine function.

Gτ(ξx1) ∝ cos2
(

1
1 − ξx1

2 (χ + Λτµ)

)
and Gτ(ξx2) ∝ cos2

(
1

1 − ξx2
2 (χ + Λτµ)

)
(14)
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To accurately determine the frequencies of beats in each spin-resolved conductance
within a single barrier, we analyzed the transmission probability derived from the trans-
mission coefficient, as described by Equation (9). In the limit of EF ≪ |U + Λτ J|, the
transmission probability for the single barrier can be expressed as follows:

Tτ(ξx1,2) →
cos2 ϕ

1 − sin2 ϕ cos2
(

1
1−ξx1,2

2 (χ + Λτµ)

) (15)
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Figure 6. Plots of conductance versus gate voltage for (a) the spin-up conductance of electron in single
longitudinal-tilted velocity barrier. (b) Spin-up conductance in double longitudinal-tilted velocity
barriers and (c) the combination of two oscillatory components from the asymmetric longitudinal-
tilted velocity barriers. The other parameters are given by ξx1 = 0.2 and ξx2 = 0.4, respectively.

In the case of a single barrier, we found that the beat frequency of the spin-resolved

conductance is f ≈ 1
2π

(
1

1−ξx1,2
2

)
. The frequencies associated with each spin-resolved

conductance exhibit a proportional relationship, as described by Equation (15). This
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proportionality provides a fundamental understanding of the observed oscillatory behavior
in spin transport through a tilted Dirac cone.

Figure 6a,b provide a visual representation that effectively demonstrates the distinc-
tion between the two oscillatory components of spin-resolved conductance within single
tilted Dirac cones. It illustrates how these components combine coherently, resulting in
the observed conductance in double tilted velocity barriers. The figure uses a box with
dashed lines to represent constructive interference and a box with solid lines to represent
destructive interference, offering a clear visual depiction of these phenomena. Figure 6c
combines the two sources for asymmetric double tilted velocity barriers. This equation
provides a mathematical representation of how the two sources interact and contribute to
the overall behavior observed in the system. The accompanying figure visually depicts this
combination, enhancing our understanding of the complex dynamics at play in asymmetric
double tilted velocity barriers. This visual representation enhances the understanding of
the complex behavior and dynamics of spin transport in the appearance of tilted Dirac
cones. The behavior of the superposition is characterized by the following expressions,
which reveal the oscillatory nature of the spin conductance in the double tilted Dirac
cone system:

Gτ(ξx1, ξx2) ∝ cos2
(

1
1 − ξx1

2 (χ + Λτµ)

)
+ cos2

(
1

1 − ξx2
2 (χ + Λτµ)

)
(16)

The equation can be rearranged as follows:

Gτ(ξx1, ξx2) ∝ cos
(

1
ξx

+ (χ + Λτµ)

)
cos
(

1
ξx

− (χ + Λτµ)

)
(17)

where 1
ξx

+ = 1
1−ξx1

2 + 1
1−ξx2

2 and 1
ξx

− = 1
1−ξx1

2 − 1
1−ξx2

2 . This result reveals the beat

frequency term cos
(

1
ξx

− (χ + Λτµ)
)

and amplitude term cos
(

1
ξx

+ (χ + Λτµ)
)

. The number
of quantum beats (loop) in the spin-resolved conductance is related to the difference in
tilted velocity ratios between the two regions. As the relation between the spin-resolved
conductance and the gate voltage, the beat frequency can be determined as fb = ξx

−/2π.
Furthermore, it was shown that the presence of the exchange field leads to a shift in the
spin-resolved conductance. To simplify the observation of spin-resolved beating behavior,
an indirect observation of the charge conductance can be employed. This approach allows
us to detect and analyze the oscillatory patterns in the conductance, which provides
valuable insights into the spin transport properties in the system. The quantum beating
in charge conductance oscillation is depicted in Figure 7. The oscillatory characteristic of
the charge conductance arises from the superposition of both spin-resolved conductances
as GC = G↑(ξx1, ξx2) + G↓(ξx1, ξx2). In the presence of an exchange field, both spin-
resolved conductances undergo a phase shift. The phase shift between the two spin-
resolved conductances is represented by 2µ. It is important to note that the phase shift
for each individual spin-resolved conductance remains constant and is not influenced
by the difference in the tilted velocity ratio between the two regions. This significant
finding is visually presented in Figure 7a,b, where the results clearly illustrate the observed
phase shift behavior. These figures provide a visual representation of the phase differences
between the spin-resolved conductances, emphasizing the impact of the exchange field on
the conductance oscillation. The consistent phase shift for each spin orientation underscores
the robust nature of this phenomenon.
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Figure 7. The charge conductance (black line) and spin-resolved conductance as a function of
gate voltage for the spin-up conductance (blue line) and spin-down conductance (red line) in the
asymmetric double longitudinal-tilted velocity barrier structure. The values of difference in tilted
velocity from two barriers ∆ξx = ξx2 − ξx1 are (a) ∆ξx = 0.1 and (b) ∆ξx = 0.2 when ξx1 is equal to 0.2.
The Fermi energy kF L and the exchange field µ are fixed to 2 and 4, respectively.
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4. Conclusions

This study investigated the influence of tilted Dirac cones (TDCs) on spin transport
properties within an ND/TDC1/ND/TDC2/ND junction configuration. We analyzed both
transverse-tilted Dirac cones (TTDCs) and longitudinal-tilted Dirac cones (LTDCs) to under-
stand their distinct effects. We observed oscillatory behavior in spin-resolved conductance.
Notably, the transverse tilt does not induce quantum beating but leads to peak splitting in
these oscillations. Second, we examined the LTDC in the ND/LTDC1/ND/LTDC2/ND
junction. The presence of asymmetric tilts in LTDCs results in a unique quantum beating
pattern. This effect arises due to the superposition of conductance oscillations with different
frequencies, determined by the difference in longitudinal-tilt velocities between the two
barriers. The phase shift for spin-resolved conductance remains at 2µ and is independent of
the difference in tilted velocity from two barriers. These findings provide valuable insights
into how the orientation and the degree of asymmetry of the tilt in a Dirac cone influences
spin transport in two-dimensional materials. Understanding these effects is crucial for
the development of spintronic devices and opening avenues for future research in spin
manipulation techniques.
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