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Abstract: Specialized gold nanostructures are of interest for the development of alternative 

treatment methods in medicine. Photothermal therapy combined with gene therapy that 

supports hyperthermia is proposed as a novel multimodal treatment method for prostate 

cancer. In this work, photothermal therapy using small (<100 nm) gold nanoparticles and 

near-infrared (NIR) laser irradiation combined with gene therapy targeting heat shock 

protein (HSP) 27 was investigated. A series of nanoparticles: nanoshells, nanorods,  

core-corona nanoparticles and hollow nanoshells, were synthesized and examined to 

compare their properties and suitability as photothermal agents. In vitro cellular uptake 

studies of the nanoparticles into prostate cancer cell lines were performed using light 

scattering microscopy to provide three-dimensional (3D) imaging. Small gold nanoshells 

(40 nm) displayed the greatest cellular uptake of the nanoparticles studied and were used in 

photothermal studies. Photothermal treatment of the cancer cell lines with laser irradiation 

at 800 nm at 4 W on a spot size of 4 mm (FWHM) for 6 or 10 min resulted in an increase 

in temperature of ~12 °C and decrease in cell viability of up to 70%. However, in vitro 

studies combining photothermal therapy with gene therapy targeting HSP27 did not result 

in additional sensitization of the prostate cancer cells to hyperthermia. 

Keywords: gold nanorods; gold core-corona nanoparticles; hollow gold nanoshells; light 

scattering microscopy; prostate cancer; gene therapy 
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1. Introduction 

Nanotechnology is at the forefront of several advancements in medicine, as nanomaterials have the 

potential to improve existing or develop novel treatment methods for diseases, such as cancer. There 

are several treatment options for cancer, such as surgery, radiation, chemotherapy, cryotherapy and 

high intensity ultrasound [1]. However, most of these treatments are only partially effective, fail to 

avoid recurrences and/or are invasive [1–3]. Prostate cancer is one of the most common cancers among 

men [4,5] and is generally difficult to treat, as the prostate lies at a critical juncture between several 

major organs [1]. Available treatments often have a high risk of damaging the surrounding organs or 

have other adverse effects [2,3,6]. Photothermal therapy using gold nanoparticles is under 

development, as it can be used to treat cancer in a non-invasive or minimally invasive manner and 

potentially improve treatment outcomes [7–9]. 

Photothermal therapy is a treatment modality that uses light to destroy cancer cells by heat 

(hyperthermia). Light in the NIR is used, as tissue has the lowest absorption in this region [10,11]. 

Photothermal therapy operates in two basic modes: light only or light coupled to a photothermal agent. 

The use of a photothermal agent, such as gold nanoparticles, allows the generated heat to be localized 

and intensified, confining damage strictly to the area of interest. The effectiveness of the photothermal 

therapy depends on the properties of the nanoparticles, which determine the absorption of light and 

conversion of light to heat [12]. The optical properties of gold nanoparticles depend on their plasmon 

resonance, which can be tuned based on particle size, shape, architecture and environment [9,13,14]. 

Numerous particle types that absorb in the NIR have been developed for use in photothermal  

therapy [15], such as nanoshells [9], nanorods [16] and gold nanocages [17]. Large nanoshells  

(>100 nm) with a solid core are generally the most commonly studied in in vitro and in vivo cancer 

models [9,18]. The most prominent work is the commercialization of a 150 nm gold nanoshell (silica 

core of 120 nm and 15 nm gold shell) based therapy called AuroLase® developed by Nanospectra 

Biosciences Inc. (Houston, TX, USA) This therapy is currently in Stage I clinical trials testing 

intravenous delivery of the particles to ablate cancerous tumours in the head and neck [19]. This work 

proves the feasibility of a nanoparticle based photothermal therapy. However, although these large 

nanoshells have good heating behaviour [18], their size is not optimized for this purpose. Larger 

particles scatter a larger fraction of light and require more energy to heat the particle, which leads to 

less heat dissipation to the surroundings [20]. In general, smaller nanoparticles are more attractive, 

because absorption is maximized and a greater temperature rise is possible due to the smaller mass of 

gold. Nanoshells <100 nm in size have been studied far less, with only a few synthesis reports of 

nanoshells with diameters of 10 to 60 nm [21] and only one report of a photothermal application [22]. 

Depending on whether the particles are internalized into cancer cells by endocytosis or anchored to the 

outer cell membrane, particle size may be important. Chithrani and Chan determined that a particle 

size of 50 nm had the best cellular uptake, leading to the highest accumulation in the cell [23]. In this 

study, nonspecific endocytosis was the mechanism of cellular internalization. Therefore, the amount of 

particles accumulated in the cell will also determine the effectiveness of the therapy, as the generated 

heat is due to collective heating by the particles [12]. The prospect of improved uptake and more 

efficient light absorption make smaller particles more desirable for use in photothermal therapy.  
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A limitation to the hyperthermic destruction of cancer is that cancer cells often have high 

thermotolerance [24]. Cells have many defensive mechanisms that protect the cell from environmental 

or physiological stresses. Heat shock proteins (HSPs) are part of the defence system and are essential 

to cell survival [25], as they facilitate the transport, folding and assembly of proteins. In particular, 

HSP27, a low molecular weight HSP, has increased expression in prostate cancer cells and is 

associated with thermotolerant and cytoprotective functions [24,26,27]. The level of HSP27 can also 

indicate prostate cancer progression. Work by Cornford et al. has suggested that the expression of 

HSP27 can be used as a diagnostic tool to predict the clinical outcome of patients with prostate  

cancer [28]. The cancer models used in this study were LNCaP and PC3 prostate cancer cell lines. 

These are commonly used in experimental work, as they can closely reflect disease conditions, as they 

can represent early and late stages of prostate cancer [29]. PC3 is an androgen-independent cell line, 

and LNCaP is androgen-dependent [30]. HSP27 is expressed in PC3 cells [24] and is weakly expressed 

in LNCaP [28]. Overexpression of HSP27 in LNCaP also causes the cells to become  

androgen-independent [31]. The presence of HSP is known to improve cell resistance to apoptosis and 

necrosis [25], which may result in a higher, more invasive temperature requirement to cause 

hyperthermia. Therefore, photothermal treatment efficiency may be improved if combined with 

strategic removal of HSPs by gene therapy. Removal of HSP can be accomplished by gene therapy 

using antisense oligonucleotides (ASO). ASO are single strands of nucleic acids that can be designed 

to be complementary to a specific sequence of RNA [32,33]. Introduction of ASO can result in the 

hybridization with the target RNA, blocking the synthesis of protein. 

Multimodal or combination therapy represents a new approach in fighting disease. The benefits of 

integrating photothermal therapy with gene therapy are that the combination could supplement and/or 

support cancer cell death. Studies have also shown that HSP suppression increases sensitivity to 

various types of cancer treatments, such as chemotherapy [26,34,35] and radiation [36]. However, 

there are limited studies that examine the relationship between HSPs and hyperthermia. Work by 

Gabai et al. showed that the knockdown of HSP72 increased the sensitivity of prostate cancer cell lines 

to hyperthermia [34]. Similar results were found by Rossi et al. with their work targeting HSP70 in 

HeLa cells [37]. Although research has been done using gold nanoparticles as a delivery agent for 

many types of biomolecules, such as ASO [32,38], there have not been any investigations into the 

therapeutic effect of ASO and photothermal therapy together. Furthermore, no study has yet examined 

the effect of HSP27 removal on the cell defence system to heat and if its absence could result in 

increased heat sensitivity.  

In the present study, a novel therapeutic strategy for prostate cancer is proposed consisting of the 

combination of photothermal therapy with ASO gene therapy with the overall goal to develop a 

treatment formulation that may be directly injected into tumour volumes and subsequently treated with 

a laser. The benefit of this approach is that the formulation will be concentrated within the tumour, and 

since tumour vasculature is physiologically distinct from normal healthy tissue [18], the gold 

nanoparticles will be retained, which will minimize damage to surrounding healthy tissue. The 

individual effects of each therapy were investigated, and the total effects were then evaluated. Various 

types of small gold nanoparticles with a size <100 nm that absorb in the NIR were synthesized, 

characterized and studied to determine their effectiveness as a photothermal agent. Smaller particles 

have distinct advantages over larger particles commonly used in photothermal therapy. This was 
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evaluated by comparison with commercially available particles (Auroshells®, large nanoshells, 

Houston, TX, USA). Gold nanoparticle uptake (nonspecific) into PC3 and LNCaP prostate cancer cell 

lines was determined by light scattering microscopy to confirm internalization and allow for a 

comparison of uptake between different particles. Photothermal therapy was performed in vitro by 

laser irradiation at 800 nm, and the results were evaluated by measuring the effect on cell viability.  

2. Results and Discussion 

2.1. Nanoparticle Synthesis and Characterization 

A selection of gold nanoparticles with the appropriate size, stability and optical properties for use as 

a photothermal agent were investigated. Particles included were nanoshells, nanorods, core-corona 

nanoparticles and hollow nanoshells. All particles met the size criterion of <100 nm to maximize 

cellular uptake and absorption in the NIR to meet appropriate photothermal therapy conditions. Small 

gold nanoshells were synthesized with a 30 nm silica core and a shell thickness of 5 to 10 nm. The 

final product had a diameter of 40 ± 12 nm as, measured by TEM (Figure 1) and DLS (Figure 2). 

Figure 1. TEM image of 40 nm gold nanoshells. 

 

Figure 2. DLS size distribution data of 40 nm gold nanoshells. 

 

According to Mie theory, a 30 nm diameter silica core requires a core-to-shell ratio of 7 and a 2 nm 

shell thickness to generate a plasmon maximum at 790 nm [21]. Although the shell thickness generated 
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in this work was at least 5 nm, the small nanoshells do exhibit a very broad, tail-end extinction in the 

NIR (Figure 3). This is consistent with the trends observed experimentally by  

Rasch et al. for nanoshells based on 28 nm and 38 nm silica cores [21]. The broadness and deviation 

from the expected optical behaviour was attributed to surface roughness, non-spherical particle shape, 

distribution in size and aggregation [21]. Rasch et al. suggests aggregation as a contributing factor to 

the shape of the extinction peak, as the coupling of plasmons leads to a lowering of the overall 

plasmon energy [39]. However, the size distribution of produced nanoshells shows a single peak for 

complete nanoshells (Figure 2). This result suggests fairly disperse particles in solution. The 30 nm 

silica cores were more spherical than the final nanoshell (Figure 1). Loss in uniform shape was 

attributed to the gold seeds. Variation in size distribution of the seeds and any clustering at the silica 

surface is expected to give a rough, uneven surface and a non-uniform shape [21]. Nanometer scale 

roughness has been shown to broaden the extinction of gold nanoparticles [18,40,41]. The extinction 

of small nanoshells in this work is expected to be influenced by all of the above factors. While the 

degree of influence for each factor is unknown, the net effect creates particles with a NIR absorption, 

which makes them appropriate for photothermal therapy.  

Figure 3. Extinction spectra of 40 nm gold nanoshells. 

 

The Auroshell® particles from Nanospectra Biosciences Inc. (large nanoshells; Houston, TX, USA) 

have a more distinct maximum in the NIR (Figure 4), as these particles are large enough for the 

extinction band to be tuned by the core-to-shell ratio. The extinction band is still quite broad, which is 

attributed to the same factors that affect the absorbance of the smaller 40 nm gold nanoshells. The size 

was measured using TEM (Figure 5) and DLS (Figure 6), and the values (152 ± 23 nm) were close to 

the reported size given by the manufacturer (silica core 120 ± 12 nm with a 15 nm shell thickness).  
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Figure 4. Extinction spectra of Auroshell® particles. 

 

Figure 5. TEM image of Auroshell® particles. 

 

Similarly, as the 40 nm gold nanoshells, all other particles investigated—nanorods  

(length = 73 ± 7 nm, width = 21 ± 2 nm), core-corona nanoparticles (78 ± 11 nm) and hollow 

nanoshells (85 ± 17 nm)—also demonstrated broad extinction spectra in the NIR and overall sizes 

below 100 nm (see the Supporting Information for further details). Quite a few approaches to 

generating gold nanoparticles exist, with wet chemical methods often being the preferred choice 

because of simplicity. Although the mechanisms governing particle growth for many gold 

nanoparticles are not well understood [42], most synthetic techniques, for common particle types, are 

well developed and easily controlled. This allows for a vast selection of particles and many methods to 
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generate them. Generally, particles are selected and evaluated based on size, shape, presence of 

impurities/toxic reagents, optical and thermal stability and scalability for practical applications (see the 

Supporting Information for discussion). Of the selection of gold nanoparticles studied in the present 

contribution, small gold nanoshells (40 nm) exhibited the best overall properties for photothermal 

therapy of prostate cancer cells (see also following sections). 

Figure 6. DLS size distribution data of Auroshell® particles. 

 

2.2. Light Scattering Microscopy and Cellular Uptake 

Gold nanoparticles may be anchored to the outer membrane of cells or internalized, depending on 

the functionalization of the gold surface. In this work, uptake is referred to as internalization of the 

nanoparticles by the cells, and particles are taken up non-specifically, as they are not functionalized to 

target receptors on the cell membrane. All eukaryotic cells have a membrane system that allows the 

uptake of molecules and particles from extracellular fluid [43]. If the particles are internalized, rather 

than specifically attached to the surface, the chances of cell necrosis after photothermal treatment may 

be higher [44], as there is collective heating of the particles [12] within the cell. For photothermal 

therapy, the amount of gold nanoparticles taken up by the cells will determine the effectiveness of the 

treatment. Therefore, it is important to measure accumulation. The light scattering properties of gold 

nanoparticles can be used to image cancer cells and detect the particle uptake in vitro. Light scattering 

images were obtained in order to gage particle uptake as cells exhibit minimal scattering. Light 

scattering is not a quantitative measure of internalization, as the scattering efficiency changes with 

particle properties and it is difficult to quantify the scattering intensity. However, it still can provide a 

simple confirmation of cellular uptake and provide a qualitative comparison between different  

particle types. 

Figure 7 shows representative scattering images of cells incubated with 40 nm nanoshells and 

Auroshells® (150 nm nanoshells) in PC3 cells. The particle incubation concentration determined by 

ICP-MS was approximately 4 × 1012 particles/mL for both particle types. Small nanoshells had the 

most consistent uptake, with accumulation across a greater portion of the cell (Figure 7 left). Although 

the larger Auroshell® particles are expected to scatter a greater fraction of light, the cells have lower 

scattering intensity (Figure 7 right) as compared to cells incubated with 40 nm nanoshells. This 
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suggests that the smaller nanoshells do have a better cellular uptake. Several studies have found that 

smaller particles do show a higher accumulation in cells [23,44,45], which can support this claim.  

Figure 7. Cellular uptake comparison for 40 nm gold nanoshells (left) and Auroshell® 

particles (right) in PC3 cells. 

 

The three 2D images in Figure 8 are representative for the distribution of gold nanoshells within a 

single cell. The top left shows a x,y-cross section at a specific z position, while the right and bottom 

panels show a y,z-cross section at a specific x position and a x,z-cross section at a specific y position, 

respectively. The two glowing bands visible in the right and bottom panels are due to the reflection of 

the cover slip and the microscope slide and are thus not features of the cell. The cell is visible in 

between, attached to the cover slip. The images in Figure 8 clearly demonstrate that the particles are in 

the cell interior (i.e., cytoplasm) and are not attached to the cell membrane. Further examination of 

various single cells at several different x, y and z positions proved that the particles are indeed 

internalized (Figure 8 shows only one representative example). 

We found that the 40 nm nanoshells had the best internal particle distribution compared with other 

particles, including Auroshells® (Figure 7). Similar to the Auroshells®, the cellular uptake of 

nanorods, core-corona nanoparticles and hollow nanoshells were found to have far less internalization 

than the 40 nm nanoshells (data not shown). This result may be associated to size [23,44,45],  

shape [23,44] and surface properties [16,44,46]. Nanorods stabilized with a coating of CTAB were 

toxic to PC3 and LNCaP cells (see the Supporting Information for further details). Replacement of 

CTAB with a PEG coating resulted in minimal to no uptake, as PEG coated particles result in less 

interaction with the cell membrane, leading to a lower uptake [45,47]. 
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Figure 8. 2D light scattering images of a single PC3 cell incubated with 40 nm gold 

nanoshells. (a) x,y-cross section; (b) y,z-cross section; (c) x,z-cross section. The thin lines 

mark the positions where the cross sections have been taken. The bright straight lines in  

(b) and (c) are reflections from the cover slide. The cell is visible in (b) to the right of and 

in (c) below the cover slide. 

 

2.3. ASO Gene Therapy 

Cells typically respond to lethal treatments in two ways: arrest in the cell cycle or the initiation of 

protective responses. When cancer cells are exposed to a heat shock, the latter type dominates, as there 

is a vast selection of pro-survival mechanisms [48]. Many of these mechanisms are mediated by 

HSP27 [26]. As a result of high heat resistance, unassisted thermal treatment of cancer must be done at 

high temperatures in order to be effective. Therefore, increasing the sensitivity of cancer cells to heat 

by gene therapy is an attractive option. The knockdown of HSP27 was done by an ASO  

(OGX-427) specific to HSP RNA. An ASO concentration test was performed, and it was determined 

that ASO had a concentration-dependent effect on cell viability (Figure 9). Based on cell viability 

results, the transfection of ASO using Lipofectamine on PC3 and LNCaP was effective, as the trend 

was consistent with work by Kamada et al. [26]. HSP27 ASO reduced the level of HSP27 and the 

corresponding cell viability in a dose-dependent manner. At a dosage of 50 nm, >95% of measured 

HSP27 was inhibited, as determined by Western blotting [26]. Knockdown of HSP27 did result in a 

noticeable change in cell condition (Figure 10), which can be explained by the work of  

Rocchi et al. [27]. They decreased HSP27 expression to undetectable levels in LNCaP and PC3 cells, 

resulting in a 2.4- to 4-fold increase in apoptotic cell death and 40%–76% inhibition of cell growth.  
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Figure 9. Antisense oligonucleotides (ASO) concentration test on PC3 (left) and  

LNCaP (right) at 37 °C. Cell viability by MTS assay. 

 

Figure 10. Microscope images of untreated (left) and transfected (right) PC3 cells. 

Treatment effect of 100 nM concentration of ASO.  

 

2.4. In Vitro Photothermal Therapy and ASO Gene Therapy 

Photothermal treatment, using gold nanoparticles and laser irradiation at 800 nm, was evaluated by 

measuring the changes in cell viability of PC3 and LNCaP cells using the MTT assay. The conditions 

for in vitro model experiments are selected to mimic therapeutic conditions for treatment in humans 

and must assess any limitations that may arise. For photothermal treatment, the absorption and 

scattering of light by tissue represents a treatment restriction that must be considered [10]. Major 

interferences in biological tissue are haemoglobin (Hb) and water (H2O), as they absorb visible and 

infrared light [11]. In the NIR, both species have the lowest absorption and scattering is minimized.  

In vitro studies can determine the basic requirements needed to destroy cancer cells. The photoinduced 

cell death of cancer using gold nanoparticles is dependent on the hyperthermic conditions generated. 

The conditions are determined by the amount of nanoparticles internalized or absorbed to the surface 

of cells [49,50], laser intensity [7,51] and total laser exposure time. Cheng et al. performed dosage 

studies on three cancer cell lines and found that there are minimum effective dosages that are 

dependent on the cancer cell line [50]. Laser irradiation studies of hybrid gold nanoparticles by  
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Kirui et al. demonstrated that 53% of colorectal cells were destroyed upon a 6 min treatment with a 

laser intensity of 5.1 W/cm2 (4 mm spot size) and 99% for 31.5 W/cm2 [7]. The heating time is 

important, and the effect on cell viability is more noticeable for longer times [52]. However, in 

practice, it is not feasible to have a laser treatment time longer than a few minutes. Treatment times 

should typically be below 10 min [9,50]. 

The treatment results of the 40 nm gold nanoshells (NS40) were compared against the Auroshells® 

(NSAS). Photothermal treatment was done using comparable particle concentrations for incubation. 

The cell viability results for treatment with NS40 and NSAS are shown in Figure 11 for a 4 W laser 

exposure. A summary of the results is given in Table 1. 

Figure 11. Representative photothermal experiment on LNCaP (left) and PC3 (right) 

incubated with 40 nm gold nanoshells (NS40) and Auroshell® particles (NSAS). Irradiated 

with a 4 W laser with a 42 °C background temperature. 

 

Table 1. Summary of the decrease in cell viability and changes in temperature for 

photothermal experiments with 40 nm gold nanoshells and Auroshell® particles in 

Figure 11. 

Laser 
irradiation 

(min) 
Sample 

LNCaP PC3 

Δ Temp 
(°C) 

Δ Cell 
viability 

(%) 
p value 

Δ Temp 
(°C) 

Δ Cell 
viability 

(%) 
p value 

6 
NS40 12 ± 1 54 <0.05 12 ± 1 68 <0.05 
NSAS 8 ± 1 27 <0.05 9 ± 1 39 >0.05 

10 
NS40 11 ± 3 44 <0.05 12 ± 1 71 <0.05 
NSAS 9 ± 1 35 <0.05 9 ± 2 60 <0.05 

The gold nanoparticles did not exhibit any toxicity at the incubation concentrations used (data not 

shown). Therefore, the 40 nm gold nanoshells and Auroshells® can be considered to be non-toxic. 

Cells, devoid of gold, were not affected by the laser under the same treatment conditions. A maximum 

temperature rise of 5 °C was obtained for up to 10 min of exposure in the absence of gold particles. 
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Laser irradiation resulted in an increase of up to 12 °C for samples incubated with 40 nm gold 

nanoshells and up to 9 °C with Auroshells®, for both PC3 and LNCaP. The decrease in cell viability in 

Table 1 is its change relative to the non-irradiated control devoid of gold (100%). The greatest cell 

viability decrease for LNCaP and PC3 was 54 and 71% (p < 0.05), respectively. This proves that an 

adequate amount of gold nanoparticles were internalized by the cells to generate a collective heating 

effect localized within cancer cells. Photothermal therapy with the 40 nm gold nanoshells resulted in a 

larger effect on cell viability and exhibited a greater change in temperature for both cell lines for all 

treatment times, suggesting a higher therapeutic efficiency compared to Auroshells®. This may be a 

result of the higher photothermal efficiency, greater cellular uptake (see Figure 7) or both. Treatment 

performed on PC3 did demonstrate a greater effect on cell viability as compared to LNCaP. This 

suggests LNCaP may have more effective survival mechanisms or might be a consequence of a greater 

gold nanoparticle uptake of PC3. The photothermal efficiency of pure concentrated solutions of 40 nm 

gold nanoshells and Auroshells® were calculated based on the ICP-MS concentration results  

(2.6 × 10−4 and 9.2 × 10−5 molAu/mL) [44]. Although the particle concentrations are not exactly 

equivalent, the measured absorbances of the nanoparticle solutions were close in value. At an 

irradiation power of 4 W for 1 min and temperature increases of 59 and 29 °C, the efficiencies were 

21% and 10%, respectively. Therefore, the thermal conversion is almost double for the smaller 

nanoshells. The higher efficiency for 40 nm gold nanoshells is consistent with the fact that smaller 

particles generate and dissipate more heat [20]. 

Photothermal treatment was combined with ASO gene therapy to study the net effect of the 

combined treatments (Figure 12). In the following, a “synergistic effect” means that the presence of 

ASO leads to a significant increase in heat sensitization for the combined treatment. Gene therapy with 

HSP27 ASO was found to reduce cell viability (Figure 9) by inhibiting cell proliferation and 

promoting apoptosis [27]. Treatment with 100nM HSP27 ASO resulted in an initial decrease in cell 

viability of ~50% and ~39% (p < 0.05) for LNCaP and PC3 (Table 2), respectively. Treatment of ASO 

transfected samples, in the absence of gold nanoparticles, with the laser for 6 and 10 min had no 

additional effect on cell viability (data not shown). Treatment with ASO and 40 nm gold nanoshells 

followed by laser irradiation for 6 min resulted in a total of ~64% decrease in viability for LNCaP and 

a total of 76% decrease for PC3 (Table 2). Laser radiation for 10 minutes resulted in a total of ~67% 

decrease in viability for LNCaP and a total of 76% decrease for PC3 (Table 2), respectively. When the 

NS40 results of Tables 1 and 2 are compared, there is not a significant difference between NS40 and 

(ASO + NS40) treatments. For both cell lines, the effect of (ASO + NS40) is larger than the effect of 

ASO alone (in particular for the PC3 cells), and it is also larger than the effect of heat (NS40) alone, 

albeit not significantly. From our results, it is thus not clear whether or not the combination of ASO 

with photothermal therapy results in a synergistic effect by affecting the heat sensitivity of PC3 and 

LNCaP. However, the combined treatment at temperatures of ~53 °C resulted in the destruction of up 

to 76% of the cell population. 
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Figure 12. Representative photothermal experiment on LNCaP (left) and PC3 (right) 

treated with 100 nM ASO and 40 nm gold nanoshells. Irradiated with a 4 W laser with a  

42 °C background temperature. 

 

Table 2. Summary of the decrease in cell viability and changes in temperature for 

photothermal experiments with 40 nm gold nanoshells and 100 nm, as in Figure 12. 

Sample 
Laser 

irradiation 
(min) 

LNCaP PC3 

Δ Temp 
(°C) 

Δ Cell 
viability 

(%) 
p value 

Δ Temp 
(°C) 

Δ Cell 
viability 

(%) 
p value 

ASO - - 50 <0.05 - 39 <0.05 
ASO + NS40 6 11 ± 1 64 <0.05 9 ± 1 76 <0.05 
ASO + NS40 10 11 ± 1 67 <0.05 10 ± 1 76 <0.05 

3. Experimental Section 

3.1. Materials 

For all materials used, see Supplementary Information.  

3.2. Preparation of Gold Nanoparticles (<100 nm) 

Gold nanoshells, nanorods, core-corona nanoparticles and hollow nanoshells were prepared by 

standard methods or modified procedures (see the Supporting Information for further details). Gold 

nanoshells (40 nm) were prepared using 30 nm aminated silica nanoparticles synthesized by a 

modified Stöber method [53,54]. The cores were seeded with small gold particles (<3 nm) [55,56], and 

the gold shell was produced by further reduction of gold [57]. Gold nanorods were prepared by the  

seed-mediated growth method by Nikoobakht and El-Sayed [58]. Gold core-corona nanoparticles were 

prepared using a modified procedure by Preston and Signorell [40]. The procedure was shortened by 

growing the corona directly on a silica core. Hollow gold nanoshells were synthesized by galvanic 

replacement of silver by gold. Growth of the gold shells was effected by a modified procedure by  

Au et al. to produce in situ polymer coated nanoparticles [59].  
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3.3. Particle Characterization 

Particles were characterized by a Hitachi H7600 transmission electron microscope (TEM) operating 

at 80 kV and by dynamic light scattering (DLS) and zeta potential measurements using a Malvern 

Zetasizer Nano-ZS. TEM was used to determine the average particle size and examine particle shape. 

DLS were used to determine the average particle diameter for spherical particles. The zeta potential 

was used to measure surface charge to confirm particle coatings. Extinction spectra were measured 

with a Varian 50 Bio UV-visible spectrophotometer over the range from 400 to 1100 nm, using a  

10 mm path-length quartz cuvette (Hellma, Müllheim, Germany). The gold nanoparticle concentration 

for nanoshells was determined by digesting the gold nanoparticles in aqua regia (1:3 volume ratio of 

HNO3:HCl, 2.5 mL) [60] and analyzing the total gold content by ICP-MS [44]. The ICP-MS analysis 

was performed by ALS Enviro, BC, Canada. 

3.4. Cell Culture 

Prostate cancer cell lines, LNCaP and PC3, were used to demonstrate cellular uptake and 

photothermal therapy under laser irradiation. Both are adherent cells that grow readily and are 

commonly used as experimental systems for in vitro and in vivo work of prostate cancer. The PC3 cells 

were cultured in Dulbecco’s modified Eagle medium (DMEM) and LNCaP cells in RPMI 1640 

medium, supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. For all 

studies, cells were grown to a confluence of 70% to 90%, at 37 °C and 5% CO2 in a  

humidified incubator. 

3.5. Cellular Uptake by Light Scattering Microscopy 

Cells were plated by adding approximately 1.5 × 105 cells per well in a 6 well tissue culture plate 

containing 18 mm glass cover slips and grown to 70% to 90% confluence. Gold nanoparticles were 

added and incubated for 24 h at 37 °C under 5% CO2. Cells were incubated with nanoparticle solutions 

that had similar absorbance values. After incubation, the cells were fixed for 10 min in 

paraformaldehyde (2%, 1 mL). The cover slips coated with a layer of cells, were washed in PBS (1X,  

1 mL) twice and mounted in 50% glycerol in 1X PBS on a microscope slide. Light scattering 

microscopy was used to image the gold particles using a previously developed set-up [61]. In brief, 

images were taken by using a modified Olympus FV300 laser-scanning microscope with a laser 

centered at 532 or 580 nm at a power typically less than 0.5 mW. The input laser beam was linearly 

polarized, and only the cross-polarized scattered light was collected using a 60× objective lens  

(NA = 1.2). The light intensity was detected by a photomultiplier tube (PMT) and digitized by an 

analog-to-digital converter. Two- (2D) and three-dimensional (3D) images of the cells were taken to 

observe uptake. 2D cross sections are shown as representative examples. 3D images were obtained by 

capturing a stack of 2D (x and y) images along the z-axis to determine if the particles were internalized 

by the cells (not shown). The lateral spatial resolution of the set-up was about 250 nm. 
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3.6. ASO Gene Therapy 

The effect of ASO concentration on cell viability was performed by the MTS assay. PC3 and 

LNCaP cells were plated by adding 10,000 cells per well in a 96 well plate and incubated overnight 

(Day 1). The transfection (Day 2) was performed using Lipofectamine and different concentrations of 

ASO under serum-free conditions using Opti-MEM medium. Control experiments using pure 

Lipofectamine at incubation concentrations did not have an effect on cell viability, so the carrier 

system was considered to be non-toxic. Final ASO incubation concentrations were 10, 30, 60, 100, 150 

and 250 nM. Final well volumes were 90 µL. After a 4 to 5 h incubation period, the medium was 

replaced with serum media and incubated for 15 h. MTS reagent (20 µL) was added to wells incubated 

for 3 h, and the optical density was measured directly at 450 nm (Day 3). The cell viability data was 

subject to statistical analysis using analysis of variance (ANOVA) with a p value of 0.05. ANOVA and 

a Bonferroni’s multiple comparison tests were performed using Graphpad Prism 4. When two or more 

samples were compared, if p < 0.05, the difference between the results was considered to be significant 

and if p > 0.05, the difference was not significant. 

3.7. Photothermal Therapy 

Cells were plated by adding 10,000 cells per well in a 96 well plate and incubated overnight  

(Day 1). ASO (100 nM) was transfected using Lipofectamine 2000 under serum-free conditions using 

Opti-MEM medium (Day 2). The total amount of Lipofectamine added was 5 μL per 250 μL of the 

total volume of ASO-Lipofectamine complex made, as per the manufacturer’s instructions. After a  

4 h incubation period, the medium was replaced with serum media. Cells were incubated further for  

15 h. Gold nanoparticles were added and incubated for 24 h (Day 3). Prior to the laser treatment  

(Day 4), all medium was removed, and fresh RPMI medium (100 to 200 µL) supplemented with FBS 

(10%) and HEPES (25 mM) was added. The cells, maintained at a set background temperature (42 °C) 

to mimic physiological conditions and to compensate for limitations in laser power, were irradiated 

with a continuous wave Ti:sapphire laser centered at 800 nm for 6 and 10 min [62]. The laser power 

and spot size were fixed to 4 W and 4 mm (FWHM). Cell viability after irradiation was assessed by the 

MTT assay. Various cell controls were prepared under similar conditions, without the addition of 

ASO, gold and application of the laser. The cell viability data was subject to statistical analysis, as 

previously described. 

4. Conclusions 

The present work reports on in vitro studies of the prostate cancer cell lines PC3 and LNCaP using 

photothermal therapy with gold nanoparticles and near infrared laser (NIR) irradiation in combination 

with gene therapy targeting heat shock protein (HSP)27 using antisense oligonucleotides (ASO). 

Various gold nanoparticles (gold nanoshells, gold nanorods, gold core-corona nanoparticles and 

hollow gold nanoshells) with strong absorptions in the near infrared and sizes below 100 nm were 

synthesized and evaluated according to their simplicity in synthesis, overall properties and cellular 

uptake into the prostate cancer cell lines. Larger nanoshells, 150 nm nanoshells (Auroshell®), were 

purchased from Nanospectra Biosciences Inc. (Houston, TX, USA) and used as a standard to compare 
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cell internalization and photothermal treatment results in vitro. Overall, we find that small gold 

nanoshells (40 nm) have the advantage of the most straightforward synthesis, show the best cellular 

uptake and the highest change in cell viability upon photothermal treatment. The gold nanoshells were 

optically and thermally robust, as they were able to endure treatment times and temperatures. Smaller 

gold nanoshells exhibited better internal distribution throughout the cell and had a higher photothermal 

efficiency. This supports their greater impact on cell viability and higher change in temperature upon 

laser irradiation. Hyperthermic conditions were generated and easily controlled using these gold 

nanoshells to give a therapeutic dose of heat. Near infrared light and gold nanoshells are both 

individually not cytotoxic, as cell viability was unaffected by each treatment. However, when 

combined, irreversible destruction of cancer cells was achieved. Photothermal therapy with 40 nm gold 

nanoshells resulted in up to a ~70% decrease in cell viability at final temperatures of ~51 to 54 °C.  

It remains uncertain from our study whether the combination of photothermal therapy and ASO 

gene therapy results in a “synergistic” effect. The effect on cell viability of the combined therapy 

(decrease of up to ~76% at 53 °C) was found to be slightly larger than the effect of heat alone, albeit 

not significantly. However, treatment with ASO specific to HSP27 alone does exhibit a  

concentration-dependent effect on cell viability, which may be useful to overall treatment goals as a 

supplement to the treatment of cancer cells/tumours. Multimodal or combination therapy may be the 

best alternative to improve treatment conditions and outcomes for cancer. Further research is needed to 

explore the various options available to create an effective formulation that can be directly injected 

into tumours. Targeting a different HSP may be of interest or adding another complementary 

treatment, such as chemotherapy, as HSP27 knockdown is known to sensitize cancer cells to drug 

treatment [26,34,35]. There are several other aspects that need to be investigated before a complete 

treatment formulation can be developed, such as performing in vivo tests on animal models. Some 

preliminary in vivo work has been performed with gold nanoparticles alone, but protocols must also be 

put in place to analyze the treatment with ASO and to determine the efficacy of the  

combined treatment. 
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