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Abstract: The knowledge of physico-chemical properties of carbon nanotubes, including 
behavior in organic solvents is very important for design, manufacturing and utilizing  
of their counterparts with improved properties. In the present study a quantitative  
structure-activity/property relationship (QSAR/QSPR) approach was applied to predict the 
dispersibility of single walled carbon nanotubes (SWNTs) in various organic solvents. A 
number of additive descriptors and quantum-chemical descriptors were calculated and 
utilized to build QSAR models. The best predictability is shown by a 4-variable model. 
The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807), 
with high internal and external correlation coefficients. Presence of the X0Av descriptor 
and its negative term suggest that small size solvents have better SWCNTs solubility. Mass 
weighted descriptor ATS6m also indicates that heavier solvents (and small in size) most 
probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor 
indicates that higher polarizability of the solvent molecule increases the solubility. The 
developed model and contributed descriptors can help to understand the mechanism of the 
dispersion process and predictorganic solvents that improve the dispersibility of SWNTs. 
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1. Introduction 

With the rapid development of nanoscience and nanotechnology, carbon nanotubes (CNTs) have 
attracted a great deal of attention due to their unique and versatile properties since single-walled 
carbon nanotubes (SWCNTs) were discovered by Iijima in 1993 [1]. SWCNTs areknown for 
exhibiting unique mechanical, electrical, and thermal properties that are useful for a widerange of 
applications in materials. However, SWCNTs represent quite unusual systems and possess extremely 
low solubility or poor dispersibility in water and many known organic solvents [2]. Because of high 
polarizability, hydrophobic surface, and substantial van der Waals interactions, CNTs are able to 
aggregate, with each other, as well as with other chemical and biological systems to give mixture 
aggregates, especially in water [3,4]. The treating of CNTs by various active chemicals can change the 
surface properties and therefore the ability to aggregate. Some active chemicals can destruct the CNTs. 
This can be achieved by oxidizing CNTs by strong acids, such as refluxing in a mixture of sulfuric acid 
and nitric acid [5,6], “piranha” solution (sulfuric acid-hydrogen peroxide) [7], boiling in nitric acid [8], 
or treating with oxidative gases, such as ozone [4,9]. However, treatment under such harsh conditions 
clearly deviates from green chemistry and results in the opening of the tube tips [5], shortening of the 
tubes [7], and fragmentation of the sidewalls [8]. Therefore, the stability of CNTs may decrease, along 
with other important properties. 

In recent years there have been several studies describing the preparation of stable suspensions of 
SWCNTs in a range of known solvents [9–16]. To get detailed structural information and dispersion 
values of SWCNTs in organic solvents, Hildebrand or Hansen solubility parameters have received 
close attention by researchers [17–20]. The main purpose of these studies was to improve the dispersion 
of nanotubes and to understand the dispersion process. 

Quantitative structure activity relationships (QSARs) are often used to predict various 
physicochemical and biological properties of chemicals. Considering the difficulties in obtaining 
experimental data in CNTs research, theoretical approaches including Quantitative Structure-Property 
Relationships (QSPR) can provide useful information regarding predicted dispersibility values of 
carbon nanotubes directly from the structure. Discovering and developing effective new organic 
solvents for SWCNTs and C60 solubility have attracted many researchers’attention [21–26]. The first 
attempt to explain SWCNT dispersibility with the application of QSAR approach was carried out by 
Rofouei et al. [27], and the second study was made by Salahinejad et al. [28]. Our study is focused on 
developing an improved QSPR model that is able to predict the dispersibility of SWCNTs in various 
organic solvents. 
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2. Materials and Methods 

2.1. Data Set 

The QSAR modeling was applied for a set of single-walled carbon nanotubes in a pool of  
29 different solvents (molecular structures are represented in Figure 1) which were selected from  
Bergin et al. [29]. The set consist of 29 organic solvents, which are randomly divided into training  
(22 compounds) and test (7 compounds) sets. The splitting to training and test sets was balanced across 
the variables. The dispersibilities of studied compounds were expressed in terms of the C (mg/mL) for 
SWCNTs (Table 1). All original concentrations data were converted to molar LogC(exp) variables. 

Table 1. List of 29 organic solvents used in the study, including corresponding names, 
experimental and calculated dispersibility of single-walled carbon nanotubes (SWCNTs) in 
organic solvents. 

No Name C (mg/mL) LogC(exp) ** LogC(cal) 
1 N-Cyclohexyl-pyrrolidinone 3.5 0.544 0.317 

2 * 1,3-Dimethyltetrahydro-2(1H)-pyrimidinone 0.65 −0.187 −0.617 
3 1-Butylpyrrolidin-2-one 0.279 −0.554 −0.480 
4 1-Benzylpyrrolidin-2-one 0.18 −0.745 −0.566 

5 * 1-Methylpyrrolidin-2-one 0.116 −0.935 −0.972 
6 3-(2-Oxo-1-pyrrolidinyl)propanenitrile 0.115 −0.939 −0.510 
7 N-Ethyl-pyrrolidinone 0.101 −0.996 −1.200 
8 N-Octyl-pyrrolidone 0.092 −1.036 −1.241 
9 N-Vinyl-pyrrolidinone 0.084 −1.076 −1.459 
10 Dimethyl-imidazolidinone 0.083 −1.080 −1.111 
11 Dimethylacetamide 0.041 −1.387 −1.534 

12 * N-Formyl-piperidine 0.039 −1.409 −1.126 
13 N-Dodecyl-pyrrolidone 0.03 −1.553 −1.157 
14 Dimethylformamide 0.023 −1.638 −2.374 
15 Benzyl acetate 0.0192 −1.717 −2.040 
16 Propionitrile 0.015 −1.824 −1.850 
17 Acrylic acid 0.0138 −1.860 −2.345 
18 2,2'-thiodiethanol 0.0136 −1.866 −2.100 

19 * Ethanolamine 0.0133 −1.876 −1.424 
20 * Cyclopentanone 0.0129 −1.889 −1.757 
21 * Chlorophenol 0.012 −1.921 −2.064 
22 Acetone 0.011 −1.959 −1.530 
23 Benzyl benzoate 0.0109 −1.963 −2.160 
24 Isopropyl alcohol 0.0105 −1.979 −2.038 

25 * Cyclohexanone 0.0068 −2.168 −2.330 
26 Toluene 0.005 −2.301 −2.056 
27 Triethyleneglycol 0.0037 −2.432 −2.647 
28 Formamide 3.00 ×10−4 −3.523 −2.374 
29 Benzyl alcohol 2.79×10−4 −3.554 −3.007 

Notes: * Test Set; ** Experimental data is taken from [29]. 
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Figure 1. The structures of 29 organic solvents for single-walled carbon nanotube 
(SWCNT) derivatives. 

2.2. Quantum Chemical Calculations 

The initial structures of investigated organic solvents for SWCNTs were built using HyperChem  
7.5 package [30]. After that step, the structures of compounds were firstly pre-optimized with the 
Molecular Mechanics Force Field (MM+) procedure included in the HyperChem. The semiempirical 
quantum chemical descriptors (including total energy, binding energy, electronic energy, nuclear 
energies, heats of formation, total dipole moment, X, Y, and Z components of dipole moment, EHOMO, 
ELUMO, surface area, volume, hydration energy, refractivity, LogP, polarizability, mass) were 
calculated by the RM1 method implemented in HyperChem. An initial set of 258 DRAGON software 
generated [31] theoretical descriptors was selected from the entire set of generated descriptors and 
used to describe the chemical diversity of the compounds. The software provides about 4000 various 
descriptors corresponding to 0D-, 1D-, 2D-, and 3D- descriptor modules. The outlined modules are 
comprised of 20 different classes of descriptors, namely, the constitutional, the topological, the walk 
and path counts, the connectivity indices, the information indices, the 2D autocorrelations, the edge 
adjacency indices, Burden eigenvalues, the topological charge indices, the eigenvalue based indices, 
the randic molecular profiles, the geometrical descriptors, the RDF descriptors, the 3D-MoRSE 
descriptors, the WHIM descriptors, the GETAWAY descriptors, the functional groups, the  
atom-centered fragments, the charge descriptors, and the molecular properties descriptors [32,33]. In 
addition, the density functional theory (DFT) with the hybrid meta exchange-correlation functional 
M06-2X/6-311G(d,p) [34] calculations were applied to obtain another set of quantum-chemically 
generated physico-chemical parameters of studied SWCNTs solvents—including dipole moments 
(total dipole moment, X, Y, and Z components); orbital energies, EHOMO, ELUMO and heats of formation. 
All DFT calculations were performed using the Gaussian 09 software [35]. 

2.3. QSAR Modeling and Statistical Analysis 

The correlation between biological activity and structural properties was obtained by using the 
variable selection Genetic Algorithm (GA) and Multiple Linear Analysis (MLRA) methods. Preliminary 
models selection was performed by means of the GA-MLRA [36–38] technique as implemented in the 
BuildQSAR [39] program. Genetic Algorithms have been applied in recent studies as a powerful tool 
to address many problems in QSAR studies [36–38]. This method based on the mechanism of evaluation 
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of species, in which the higher descriptor weights are the more preserved in the mathematic model, while 
the lower weight is eliminated. In this form, the best model which represents the experimental biological 
activity isobtained [36–38,40,41]. We selected the resulting model in the range of 1–5 variables per 
model by limiting the GA variable selection algorithm. The MLR technique was used to develop 
QSAR models since it is transparent, easy interpretable, and ideal to obtain reproducible results. 
Several QSAR models developed were followed by statistical analysis with evaluation by squared 
correlation coefficient R2, standard error s, Fisher coefficient F, and non-collinearity of descriptors in 
the model. A final set of QSARs was tested by applying the “leave-one-out” technique (the process of 
removing a molecule from the set, then creating and validating the model against the individual 
molecules, which was performed for the entire training set). The mean was taken of all the Q2 based on 
the predictive error sum of squares (PRESS). 

The selection of robust and well predictive QSAR models on the basis of only R2, Q2 and R2pred 
might mislead the search for the ideal predictive model, so additional statistical analysis was done on 
the basis of a few other parameters, such as Average rm2, Delta rm2. For an acceptable QSAR model, 
the value of “Average rm2” should be >0.5 and “Delta rm2” should be <0.2 [42,43]. 

3. Results and Discussion 

Our study was focused on developing a valid model that is able to predict the dispersibility of 
SWCNTs in various organic solvents. For this purpose we utilized a QSAR approach. Dragon  
software-generated additive descriptors, as well as semi-empirical and quantum mechanical descriptors 
were calculated and a total of 280 descriptors were used to build a QSAR model. 

The correlation matrix for the most populated 2D-3D descriptors and LogC(cal) used in the present 
study is shown in Table 2. The sign of the correlation tells us whether the two variables are positively 
(more X means more Y) or negatively (more X means less Y) related. LogC(cal) and SRW09 had a 
good positive correlation (r=0.706) and strongly associated with dispersibility. In addition, LogC(cal), 
was found to be correlated to the Ram descriptor with r = 0.530 and to Dipole Z with r = 0.377, 
respectively. However, the correlations for any of these two descriptors considered as a single 
descriptor in the model were not sufficient to be considered significant in predicting dispersibility. 

Table 2. Correlation matrix for physicochemical, 2D-3D descriptors and LogC(cal) used in 
the study. 

Descriptor SRW09 Dipole Z piPC05 Ram X0Av ATS6m LogC(cal) 
SRW09 1       
Dipole Z −0.004 1      
piPC05 −0.002 0.009 1     

Ram 0.567 0.068 0.631 1    
X0Av 0.053 −0.112 −0.275 0.075 1   

ATS6m 0.427 0.118 0.532 0.545 0.042 1  
LogC(cal) 0.706 0.377 −0.037 0.530 0.159 0.276 1 

In Table 3 the performances for all developed models with 1–5 variables, for the training and  
test sets are listed. The 4-variable GA-MLRA based model showed the best predictive ability  
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(R2training = 0.797, Q2 = 0.665, R2test = 0.807), with high internal and correlation coefficients. It is clearly 
noticeable that R2 values in the case of the training set follow increasing order with increase of the 
number of variables: 1-variable model < 2-variable model < 3-variable model < 4-variable model and 
for the test set follow increasing order: 2-variable model < 4-variable model < 3-variable model  
< 1-variable model. In the results, according to Figure 2 the 4-variable model was chosen as the most 
predictive and robust model. 

Table 3. Descriptor names and statistical values for the developed models (statistics are 
shown for split sets into training (22 compounds) and test (7)). 

No. Descriptors 
Training Set Test Set 

N R2 Q2 F SDEP Spress N R2 Rm(avr)2 ΔR2 
1 SRW09 22 0.548 0.453 24.249 0.674 0.690 7 0.830 0.773 0.112 
2 SRW09, Dipole Z 22 0.679 0.573 20.080 0.595 0.626 7 0.786 0.717 0.137 
3 Ram,piPC05, Dipole Z 22 0.736 0.601 16.687 0.575 0.621 7 0.813 0.751 0.122 

4 
ATS6m,SRW09, X0Av, 

Dipole Z 
22 0.797 0.666 16.722 0.527 0.585 7 0.807 0.744 0.125 

5 
X3A,ATS6m, SRW09, 

X0Av, Dipole Z 
22 0.817 0.632 14.366 0.552 0.633 7 0.736 0.702 0.162 

 

Figure 2. Comparison of the regression coefficients (R2) for the training and test set. 

Table 4 represents the descriptor values selected using GA-MLR variable selection for dispersibility 
of SWCNTs in organic solvents. The one, two, and four variable models include SRW09 (9th order  
self-returning walk count). Organic solvents like 1, 3–10, 13, and 20 which have 5-membered rings, 
show a high value of SRW09, with a positive impact on the SWCNTs dispersibility. 

The 1-variable model is represented by the following Equation (1): 

Log(C)max = + 0.0020 (± 0.0008) SRW09 − 2.1522 (± 0.3620) (1) 

where n = 22, R2 = 0.548, s = 0.627, F = 24.249, p = 0.0001, Q2 = 0.453, SPress = 0.690,  
SDEP = 0.674. 
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Table 4. The descriptor values for organic solvents. 

No. SRW09 Dipole Z piPC05 Ram X0Av ATS6m 
1 702 2.225 30 3 0.632 6.731 
2 0 −0.166 10 1 0.576 0.000 
3 684 1.312 78 3 0.582 7.343 
4 684 0.459 14 2 0.660 6.580 
5 504 0.515 4 1 0.588 0.000 
6 684 1.110 18 2 0.584 6.472 
7 684 −1.214 8 2 0.648 2.583 
8 684 −0.743 18 2 0.673 7.406 
9 684 −1.345 10 2 0.595 2.215 
10 504 −0.006 4 1 0.554 0.000 
11 0 0.000 0 2 0.726 0.000 
12 0 2.665 12 1 0.621 3.566 
13 684 −0.590 22 2 0.681 7.797 
14 0 0.000 0 0 0.521 0.000 
15 0 1.192 63 2 0.583 6.898 
16 0 0.000 0 0 0.649 0.000 
17 0 0.000 0 1 0.528 0.000 
18 0 0.001 2 0 0.707 5.869 
19 0 0.887 0 0 0.610 0.000 
20 504 0.454 4 1 0.623 0.000 
21 0 0.000 52 2 0.611 0.703 
22 0 0.000 0 1 0.727 0.000 
23 0 −0.763 132 3 0.550 7.631 
24 0 −1.142 0 1 0.756 0.000 
25 0 1.892 10 1 0.635 0.000 
26 0 0.000 44 1 0.627 1.401 
27 0 0.000 5 0 0.595 6.923 
28 0 0.000 0 0 0.521 0.000 
29 0 −0.973 50 1 0.568 3.508 

The first descriptor given in the Equation (1) above is SRW09 (from the MWC class). It is among  
the 2D-descriptors representing self-returning walk counts of different lengths. The SRW count of any 
even order indicates the length and shape (branching) of the entire molecular graph. It increases when 
the number of atoms increases, when a molecule becomes more branched or contains even-membered 
rings. But on the other hand, the SRW count of the odd order represents only local surrounding of  
odd-membered rings [44,45]. To clarify the above, the self-returning walk of the 9th order of the 
molecules 1 and 4 structures is given in Figure 3. 

SRW09 is the self-returning walk count of the 9th order and represents the surroundings of odd 
membered rings (five-membered in our case). It provides valuable insight into the relationship between 
structure and dispersibility action. 
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Figure 3. Self-returning walk of the 9th order of molecules 1 and 4. 

The 2-variable model is represented by following Equation (2): 

Log(C)max = + 0.0019 (± 0.0007) SRW09 + 0.3809 (± 0.2865) Dipole Z − 2.1228 (± 0.3149) (2) 

where n = 22, R2 = 0.679, s = 0.543, F = 20.080, p < 0.0001, Q2 = 0.573, SPRESS = 0.626,  
SDEP = 0.595. 

The second descriptor in Equation (2) is a dipole moment descriptor, which is a 3D electronic 
descriptor that indicates the strength and orientation behavior of a molecule in an electrostatic field. 
Both the magnitude and the components (X, Y, Z) of the dipole moment are calculated. The descriptor 
is estimated by utilizing partial atomic charges and atomic coordinates. The presence and sign of the 
dipole moment contribution indicates that the higher polarity of the attached fragment the higher will 
be the overall dispersibility value of the SWCNT derivative. 

The 3-variable model is represented by following Equation (3): 

Log(C)max = +0.8389 (± 0.2960) Ram− 0.0209 (± 0.0122) piPC05 +  
0.3855 (± 0.2920) Dipole Z − 2.3590 (± 0.4189) 

(3) 

where n = 22, R2 = 0.736, s = 0.506, F = 16.687, p < 0.0001, Q2 = 0.601, SPress = 0.621,  
SDEP = 0.575. 

Here one can see the presence of the Ram descriptor, which positively contributes to the 
dispersibility. The topological descriptor Ram addresses the branching in the molecule [46]. Its 
regression coefficient suggests in favor of more branched molecular structures for increased activity. 
Another descriptor represents the molecular multiple path count of order 05 (piPC05). This descriptor 
reflects the length of the molecule. In Equation (3) piPC05 contributes negatively to the dispersibility. 

The 4-variable model is represented by the following Equation (4): 

Log(C)max = +0.0022 (± 0.0008) SRW09 + 4.0933 (± 3.1813) ATS6m −  
0.0832 (± 0.0857) X0Av + 0.5488 (± 0.2716) Dipole Z − 4.5062 (± 1.9741) 

(4) 

where n = 22, R2 = 0.797, s = 0.456, F = 16.722, p < 0.0001, Q2 = 0.666, SPRESS = 0.585,  
SDEP = 0.527. 

In the model (4) one can see the presence of other descriptors, ATS6m and X0Av. Walk and path 
counts class descriptors, SRW09, the 2D-AUTO class descriptors, the atomic mass weighted terms 
ATS6m show the higher weights with positive influences. In this model, the atomic mass weighted 
term (ATS6m) showed the highest contribution. The activity exhibits negative linear relationship with 
the connectivity index descriptor (X0Av), which is an average valence connectivity index chi-0. 
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Analysis of these influential molecular descriptors can lead to the revealing of the mechanism of 
the dispersion process and thus the model is able to predictnew organic solvents that improve the 
dispersibility of SWCNTs. For example, X0Av descriptor and its negative term suggest that small 
size solvents have better influence on the solubility of SWCNTs. Also, mass weighted descriptor 
ATS6m indicates that a heavier solvent (at the same time having a small size) is most probably a 
better solvent for SWCNTs. The presence of the Dipole Z descriptor indicates that higher 
polarizability of the solvent molecule increases the solubility. 

The dependence of the number of variables in the models, for training and test sets, on the R2 values 
is displayed in Figure 2. The correlation graph of the best QSAR model (Equation (4)) is shown in 
Figure 4. The GA-MLRA based QSAR model with four variables showed better results than other 
models (R2training = 0.797, Q2 = 0.666, R2test = 0.807), with high internal and external correlation 
coefficients. A good agreement between the predictions and the experimental values confirmed the 
reliability of the QSAR model. 

 

Figure 4. A plot of observed and predicted LogCmax values for the entire set  
(29 compounds) calculated by the 4-variable model. 

4. Conclusions 

In the present work we investigated the influence of the characteristics of a series of organic 
solvents on the dispersibility of SWCNTs. For this purpose both the additive descriptors  
(DRAGON-software based) and quantum-chemical descriptors were generated, a total of 280 
descriptors. 

The 4-variable model retains also a good ratio of the number of descriptors and their predictive 
ability. TheGA-MLRA based model showed good results (R2training = 0.797, Q2 = 0.665,  
R2test = 0.807), with high internal and external correlation coefficients. The model (4) developed here 
showed the highest performance with the presence of the following four descriptors, SRW09, ATS6m, 
Dipole Z, and X0Av. In this model the atomic mass weighted term (ATS6m) showed the highest 
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contribution. The other significant descriptors are graph elements weighted SRW09 (as walk and path 
counts) and Dipole-Z (as a 3D descriptor). Descriptors SRW09 and Dipole Z exhibit a positive 
influence on the dispersibility. A molecular multiple path count of the order 05 (piPC05) and an 
average valence connectivity index of the order 0 (X0Av) showed negative influence on the considered 
activity. The X0Av descriptor and its negative term suggest that small size solvents have better 
influence on the solubility of SWCNTs. Also, the mass weighted descriptor ATS6m indicates that a 
heavier solvent (at the same time having a small size) most probably is the better solvent for SWCNTs. 
The presence of the Dipole Z descriptor indicates that a higher polarizability of the solvent molecule 
increases the solubility. Analysis of these influential molecular descriptors can lead to details of the 
mechanism of the dispersion process and thus enable predictions of new organic solvents to improve 
the dispersibility of SWCNTs. 
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