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Abstract: Challenges exist for the study of time dependent sorption processes for 

heterogeneous systems, especially in the case of dispersed nanomaterials in solvents or 

solutions because they are not well suited to conventional batch kinetic experiments. In this 

study, a comparison of batch versus a one-pot setup in two variable configurations was 

evaluated for the study of uptake kinetics in heterogeneous (solid/solution) systems:  

(i) conventional batch method; (ii) one-pot system with dispersed adsorbent in solution 

with a semi-permeable barrier (filter paper or dialysis tubing) for in situ sampling; and  

(iii) one-pot system with an adsorbent confined in a semi-permeable barrier (dialysis 

tubing or filter paper barrier) with ex situ sampling. The sorbent systems evaluated herein 

include several cyclodextrin-based polyurethane materials with two types of phenolic dyes: 

p-nitrophenol and phenolphthalein. The one-pot kinetics method with in situ (Method ii) or 

ex situ (Method iii) sampling described herein offers significant advantages for the study of 

heterogeneous sorption kinetics of highly dispersed sorbent materials with particles sizes 

across a range of dimensions from the micron to nanometer scale. The method described 

herein will contribute positively to the development of advanced studies for heterogeneous 

sorption processes where an assessment of the relative uptake properties is required at 

different experimental conditions. The results of this study will be advantageous for the 

study of nanomaterials with significant benefits over batch kinetic studies for a wide range 

of heterogeneous sorption processes. 
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1. Introduction 

The study of conventional kinetic uptake experiments for two phase (e.g., solid-solution) systems is 

often met with several experimental challenges [1–3]. In particular, powdered adsorbent materials are 

generally studied using batch kinetic experiments. The time dependence of the adsorption profile relies 

on rapid phase separation of components which require work-up procedures after the kinetic uptake 

process to allow for reliable temporal sampling of the solution phase composition. Moreover, 

discrepancies can arise from inadequate separation of phases when centrifugation of supernatant is 

used to carry out phase separation of a two-phase (e.g., solid-solution) system to quantify the solution 

phase composition [4]. Similar challenges exist for the use of filter media such as membranes [5] for the 

separation of two-phase systems. The use of filtration media is problematic for quantitative analysis, 

especially when competitive adsorption occurs onto the media when filtering the solid-solution 

components. An additional challenge concerning the rapid separation of multi-phase systems occurs 

when employing batch methods for the study of uptake kinetics at variable temperature. By contrast, 

one-pot sorption experiments have been employed which rely on sampling of aliquots in a multi-phase 

system as a function of time. This method often neglects the loss of adsorbent during sampling of 

heterogeneous fractions which contain the sorbent phase residues that are often unaccounted for during 

the serial sampling process [6]. In either case, the utility of batch experiment studies relies on  

well-defined differences in the time resolution of the sampling interval relative to the kinetics of the 

adsorption process [7]. Batch kinetics of multiple samples can overcome these challenges but the 

method is time consuming, labor-intensive, requires substantive amounts of sorbent material, and may 

be inapplicable to solid-solution systems with rapid uptake kinetics due to the aforementioned 

systematic errors over the sampling interval [2]. 

To address the shortcomings of conventional batch kinetics for heterogeneous systems, an 

alternative approach is required, especially in the case of colloidal nanomaterials which cannot be 

readily separated by routine centrifugation or filtration methods, as described above. Herein, we report 

a comparative study of conventional batch kinetics that uses a facile one-pot method with two different 

sampling configurations (i.e., in situ vs. ex situ). The one-pot method relies on physical separation of 

the solid phase and the solution with adsorbate species using a semi-permeable barrier [8]. The study 

herein employs two types of model phenolic dyes (p-nitrophenol; PNP and phenolphthalein; phth) in 

aqueous solution with several types of cyclodextrin-based polyurethane materials (PUs) as the 

adsorbent phase for evaluation of the uptake properties at variable kinetic conditions. In a previous 

study [9], various types polymer sorbent/dye systems were characterized at equilibrium conditions 

using batch conditions and provide a useful reference to compare the kinetic uptake results. The results 

of this study examine the utility of the one-pot kinetic method for the study of the sorptive uptake for 

solid-solution systems. The results are compared with the uptake kinetics of the same systems using 

conventional batch methods for solid-solution systems. The one-pot method may employ in situ or ex situ 

sampling and offers several advantages over conventional batch methods. The one-pot method 

described herein employs reduced amounts of sorbent material and is amenable to studies at variable 

temperature, and is applicable to highly dispersed and colloidal sorbents such as nanomaterials that often 

present experimental challenges by conventional batch methods, as described above. 
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2. Results and Discussion 

As indicated above, there are challenges for the study of adsorption processes of powdered 

materials depending on their relative particle size when using conventional batch methods. Herein, a 

series of insoluble polymer materials and phenolic dyes in solution were selected to study conventional 

batch kinetics using a facile one-pot method that employs two different sampling configurations (i.e.,  

in situ vs. ex situ). The polymer-dye systems were chosen since the uptake mechanism at equilibrium 

conditions was reported elsewhere [9]. To evaluate the uptake properties of materials in the form of 

insoluble powdered materials, a comparison of conventional batch kinetics (Method A) was compared 

against a one-pot setup with two different configurations (Methods B and C), as illustrated in  

Scheme 1. Batch kinetic methods (Method A) have been discussed in detail elsewhere [6,7]; whereas, 

the one-pot method employed herein uses a barrier material with variable pore size (i.e., dialysis 

membrane or filter paper) which allows quantitative assessment of the concentration of unbound 

adsorbate species by in situ sampling (Method B) vs. ex situ sampling (Method C). It should be noted 

that there are systematic errors when using such one-pot methods without a barrier material due to the 

inadvertent removal of sorbent material during sampling of aliquot volumes for subsequent 

quantitative analyses, especially spectroscopic analyses. It will be shown below that the use of the  

one-pot setup (i.e., Methods B or C) offers significant advantages for the study of uptake kinetics for 

heterogeneous sorption phenomena in solid-solution systems for a diverse range of adsorbent materials. 

 

Scheme 1. Three experimental configurations for the study of solid-solution adsorption 

kinetics. Method A; conventional batch kinetics, Method B; dispersed adsorbent with  

in situ sampling of adsorbate phase, and Method C; confined adsorbent in a membrane (or 

filter paper) with ex situ sampling of the adsorbate phase. 

2.1. Dye Uptake Kinetics Equations and Models 

The temporal dependence of the isotherms are represented as plots of the amount of dye adsorbed 

per mass of polymer material (Qt) vs. time (t) where Qt is defined by Equation (1). The value of Qt is 

defined by Equation (1) where Co is the initial adsorbate (dye) concentration, Ct is the dye 

concentration at any time (t), V is the volume of solution, and m is the mass of sorbent. 
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The data was fit with a pseudo-first order (PFO) [10] or a pseudo-second order (PSO) [11] model, 

according to Equations (2) and (3), respectively. Qt and Qe are the levels of dye adsorbed at any 

particular time (t) and at pseudo-equilibrium, respectively. ki is a rate constant (i = 1 (k1) for the PFO 

and i = 2 (k2) for the PSO models, respectively) where t represents time. The sum of square of errors 

(SSE) was used as a criterion of the “best fit” where a lower value of SSE (cf. Equation (4)) indicates 

an overall “best-fit”. Consideration of the mechanism of dye uptake was made since it is known that 

phenolphthalein (phth) is bound at the CD inclusion sites; whereas, p-nitrophenol (PNP) is bound at 

the inclusion sites along with the cross-linker domains [9]. This was obtained by minimization of the 

SSE for all data across the range of experimental conditions. Thus, single site and dual site binding are 

considered when choosing the appropriate kinetic models (Equations (2) and (3)) along with the 
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2.2. Comparison of Batch and One-pot Kinetic Methods 

Figure 1 illustrates the time dependent uptake of CDI-2 with PNP according to the batch and one-pot 

methods (A–C; cf. Scheme 1). The relative rate of dye uptake varies according to each method as 

follows: Method A > Method B > Method C. The time dependence of the adsorption profile for each 

system is well described by the PSO model as evidenced by the “best-fit” results in Figure 1. The 

uptake of PNP is consistent with dual binding sites reported for such urethane copolymers according to 

a previous equilibrium study [9]. Dual adsorption sites are represented by the β-CD inclusion sites and 

the interstitial cross-linker domains of the polymer framework [9]. It should be noted that the relative 

binding affinity of the inclusion sites generally exceed that for the interstitial domains [K(inclusion) > 

K(interstitial)] due to differences in the preorganization of each binding site [12]. The value of Qe 

(µmol/g) varies according to each method (listed in parentheses); 11.5 (A), 11.6 (B) and 6.15 (C), and 

the value for k2 (g/µmol.min) also varies; 0.139 (A), 0.00458 (B), and 0.00176 (C). Methods A and B 

yield similar estimates of uptake (Qe) at equilibrium conditions which agree with results from a 

previously reported study [9]. However, the rate of dye uptake differs for the one-pot method that uses 

dialysis tubing since a reduction in the rate constant (ca. 30-fold) is observed when comparing k2 

values for Methods A (batch) and B that used dialysis membrane. Method A reaches equilibrium 

rapidly within 30 min while method B requires a longer equilibration time (~240 min), in agreement 

with previous observations [13]. The results indicate that dispersion of the insoluble polymer by 

Method A enables attainment of a maximum value of Qe over a relatively short time interval that 
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compares well with estimates from conventional batch studies. However, the rate of adsorption is 

attenuated due to attenuated diffusion across the dialysis membrane when using the one-pot system 

(Method B). An advantage of Method B over Method A involves the direct sampling and analysis of 

the isolated aliquots which contain unbound adsorbate since the barrier material enables in situ 

separation of any measurable amounts of adsorbent. Sampling of a homogeneous (single phase) 

solution affords direct and reliable quantitation of the unbound adsorbate with good time resolution 

without the need for further separation of phases. By contrast, conventional batch methods require 

centrifugation or filtration to separate sorbent and solution phases. One drawback of method B is that 

sorbent materials may tend to locate at interfaces (e.g., air/water, glass/solution, membrane/solution) 

when the density of the material is low. Thus, the nonuniform dispersion of powdered materials may 

occur for such solid-solution systems; thereby, limiting an accurate assessment of the solid-solution 

uptake kinetics. The one-pot Method C may offer an improvement over Method B due to confinement 

of the sorbent in a fixed volume within the barrier material (cf. Scheme 1). However, the value of Qe is 

~ two-fold lower for Method C relative to Methods A and B. The attenuated value of Qe for Method C 

is related to a reduction in mass transfer due to confinement the sorbent within a smaller volume. Such 

differences in the uptake kinetic processes for Methods B and C, the results are consistent with 

attenuated rates of diffusion and variable mass transfer between the bulk and adsorbent phases [14]. 

The foregoing is consistent with the lower value of k2 obtained by Method C since it is ca. eighty-fold 

lower than Method A. Qt was measured after 24 h and found to be 9.58 µmol/g. The value of Qe 

obtained from Method C converges with the results obtained from Methods A and B at sufficiently 

long time intervals (24 h) as the isotherm approaches saturation, in agreement with the above 

discussion. Although Methods B and C may not provide absolute estimates of kinetic rate parameters 

(Qt and ki) due to the mass transfer effects of the adsorbate across the barrier material (dialysis 

membrane or filter paper), Methods B and C offer a convenient approach for the systematic 

comparison of different adsorbent materials on a relative scale. At controlled experimental conditions, 

Methods B and C enable the study of colloidal materials using the one-pot set up with in situ or ex situ 

sampling with an appropriate choice of barrier material. Batch methods do not allow for the reliable 

study of colloidal nanomaterials due to less technical challenges when separating the solid and solution 

phases. The ability to estimate the concentration of unbound adsorbate for relatively rapid kinetic 

uptake processes with a one-pot system is feasible using Methods B or C. As well, the one-pot system 

is suitable for maintaining temperature control for variable temperature studies due to the advantage of 

direct sampling of unbound adsorbate species using Methods B or C. The one-pot method can be 

scaled to use minimal amounts of adsorbent when compared with conventional batch adsorption 

studies [8]. As well, the one-pot system using Methods B and C attenuate the “apparent” uptake 

kinetics or increase the time interval required to achieve saturation of the isotherm due to diffusion and 

mass transfer effects, as described above. The attenuation of the uptake kinetics across the barrier 

results in a longer time interval relative to conventional batch methods. The one-pot system (Method C) 

bears a close similarity to the stir bar sorptive extraction (SBSE) method [15,16]; however, the use of 

powdered materials offers significant advantages. The SBSE method requires preparation of a  

well-defined polymer film that is resistant to mechanical damage whilst stirring. The preparation of 

well-defined polymer films in the case of SBSE studies may present challenges for quantitative 
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analysis as compared with the one-pot method that can utilize diverse powdered sorbent materials with 

variable morphology due to the use of the semi-permeable barrier. 
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Figure 1. Kinetic profiles for a cross-linked organic copolymer (CDI-2) with p-nitrophenol 

(PNP) in aqueous solution at pH 4.60 and 298 K using different experimental methods. The 

solid lines represent the “best-fit” using the pseudo-second order (PSO) kinetic model. 

2.3. Comparison of Sorbent Materials with Phenolic Dyes 

Methods A and C were further studied by comparison of a series of PUs with different structural 

forms [17] and their uptake properties with phth at pH 10.5 (cf. Figure 2). Unlike the kinetic uptake 

studies of PNP above, the barrier material used for phth was a cellulose-based filter paper instead of a 

dialysis membrane. The observed difference in mass transfer between different barrier materials arises 

because of changes in the barrier pore-size and the zeta-potential at various pH conditions. In the case 

of dialysis tubing, the mass transfer was observed to be highly attenuated in the case of PNP at pH 9. 

Therefore, the uptake kinetics was studied at conditions where charge repulsion was minimized (pH 

4.6). Zeta-potential effects were less pronounced in the case of filter paper due to its relatively constant 

zeta-potential over a wide pH range. Thus, the uptake kinetic experiments at alkaline conditions with 

conventional filter paper as the barrier medium provides reliable results due to the faster diffusion 

processes. The PFO model provided the “best-fit” for the adsorptive processes where the values of Qe and 

kt derived from the PFO model are listed in Table 1. The batch process (Method A) shows that the Qe 

values decrease as follows: NDI-1 > HDI-2 > CDI-1 ≈ MDI-1 > PDI-1. Method C reveals the following 

trend in Qe values: NDI-1 > HDI-2 > MDI-1 > CDI-1 > PDI-1. Each respective method reveals  

self-consistent results except for the CDI-1 material. The trends for k1 are not readily comparable since 

the relative uptake for a given polymer is highly dependent on fractional coverage of the adsorbent 

surface. Methods B and C employ different dosage of sorbent (sorbent weight per given solution 

volume). Method C is versatile and provides a valuable comparison of the adsorptive properties of the 

PUs with phth due to the enhanced uptake profile, as shown by a 25-fold difference relative to method B 

for the reasons described above. 
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Table 1. Qe and k1 values obtained from pseudo-first order (PFO) kinetic model using the 

data obtained in Figure 2. 

Copolymer 
Method A Method C 

Qe (μmol/g) k1 (s−1) Qe (μmol/g) k1 (s−1) 

HDI-2 12.8 237 19.2 0.875 
CDI-1 11.6 100 3.13 0.978 
MDI-1 11.4 103 14.7 1.02 
PDI-1 3.21 156 2.17 0.54 
NDI-1 13.4 330 36.9 1.23 

 

Figure 2. Kinetic uptake isotherms for polyurethane materials (PUs) with phth at pH 10.5 

and 25 °C for; (A) Method A, and (B) Method C. The solid lines represent the “best-fit” 

using the pseudo-first order (PFO) kinetic model. 

2.4. Comparison of Sorbent Materials with Phenolic Dyes at Variable Temperature 

The kinetic profiles of HDI-2 and MDI-1 polymers at variable temperature are shown in Figure 3. 

The results reveal measurable differences in values of Qe and k1 for each material with increasing 

temperature (cf. Table 2). In general, many adsorptive processes are enthalpy driven [18] if one ignores 

entropic contributions that arise due to hydration or solvation phenomena. The results for HDI-2 in 

Figure 3a represent a decrease in sorptive uptake with increasing temperature which indicates that the 

sorptive process is driven exothermally. By contrast, an opposite temperature dependence of kinetic 

uptake is observed for MDI-1. The main difference between these polymers is the nature of the linker 

and the level of cross-linking for HDI-2. HDI is a flexible aliphatic linker, whereas; MDI is more rigid 

in nature due to the presence of aromatic ring moieties. The greater cross-linking of HDI-2 may offset 

any differences in the flexibility of each system. The observed differences for HDI-2 and MDI-1 

according to the positive and negative temperature dependence of Qt may relate to differences 

attributed to hydration and/or steric effects since the values of Qe are generally comparable for each 

system. The uptake values at equilibrium conditions using batch conditions were reported elsewhere 

for these polymer systems where it was concluded that steric effects arising from cross-linking govern 

the sorptive uptake of phth for these CD polymer/dye systems [19,20]. Notwithstanding the structural 

differences between cross-linkers and their relative composition, the use of the one-pot method enables 
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the study of structurally related materials where variable uptake properties can be detected that are 

often difficult to measure by conventional batch techniques. Detailed studies of this type are 

anticipated to provide insight about the sorption mechanism of structurally related polymer materials. 

It is noteworthy that the kinetic models of adsorption for PUs with PNP and phth are the PSO and PFO, 

respectively. The PSO model is understood due to the fact that PNP is bound at the inclusion and  

non-inclusion sites of the polymer [9]. By contrast, the PFO model describes the uptake of phth since it 

is bound mainly at the inclusion sites of β-CD in the polymer framework [9,19]. Therefore, the best-fit 

of the kinetic uptake results agree with previous results obtained at equilibrium conditions that show 

either one-site (PFO model) or dual site binding (PSO model), respectively. 

Table 2. Qe and k1 values obtained from PFO kinetic model using the data obtained in 

Figure 3. 

Temperature 
HDI-2 MDI-1 

Qe (μmol/g) k1 (s−1) Qe (μmol/g) k1 (s−1) 

25 °C 19.2 0.875 14.7 1.02 
30 °C 14.8 0.886 17.2 1.17 
40 °C 14.9 0.581 18.1 1.18 

 

Figure 3. Kinetic uptake profiles for PUs with phth at pH 10.5 and variable temperatures 

(25, 30 and 40 °C) using Method C for; (A) HDI-2 and (B) MDI-1. The solid lines 

represent “best-fit” using a pseudo-first order (PFO) kinetic model. 

3. Experimental Section 

3.1. Materials 

The PUs were synthesized by crosslinking β-cyclodextrin with various cross-linkers, i.e.,  

1,6-hexamethylene diisocyanate (HDI), 4,4'-dicyclohexylmethane diisocyanate (CDI), 4,4'-diphenylmethane 

diisocyanate (MDI), 1,4-phenylene diisocyanate (PDI) and 1,5-naphthalene diisocyanate (NDI). The 

nomenclature of the PUs is described according to the type of diisocyanate and the relative reagent 

mole ratio (β-cyclodextrin: diisocyanate linker). Details of the synthesis and characterization was 

reported elsewhere [17]. PNP and phth were used as model phenolic adsorbates in this kinetic study 

due to their differences in size, solubility, and lipophilic surface area. Stock solutions were serially 
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diluted to prepare dye solutions with variable concentration. 1.0 × 10−4 M PNP was prepared at pH 

4.60 in 0.01 M potassium phosphate monobasic buffer solution. 4.2 × 10−5 M phth was prepared from 

a stock solution of phth in ethanol [19]. 

3.2. Kinetic Uptake Methods 

Three kinetic methods (A, B, and C; see Scheme 1) were examined to evaluate the uptake of PNP 

with various sorbent materials, as described below. Methods A and B were used to study PNP at 

various conditions while Method C was used to evaluate uptake of phth at various temperatures. 

Method A: 10 mg of the PUs was weighed in several 2 dram vials. 7.0 mL of dye solution was 

added, covered with parafilm before sealing with a screw-cap lid. The vials was shaken in a horizontal 

shaker (150 rpm) for variable time periods and stopped to measure uptake at variable time. The 

copolymer was immediately separated from the solution phase by briefly centrifuging for 2 min and 

the supernatant was quantitatively analyzed using UV-vis spectrophotometry with a double beam 

spectrophotometer (Varian CARY 100, Agilent Technologies, Santa Clara, CA, USA) at room 

temperature (295 ± 0.5 K) by monitoring the absorbance changes of the unbound dye, where λmax = 

317 nm (PNP) and λmax =552 nm (phth). 

Method B: The mid-section of a 60 mL syringe, without the plunger, was cut open (not completely, 

two opposite sides of ~5 mm in width was left) and wrapped with the dialysis tubing cellulose 

membrane (average flat width 76 mm (3.0 inch), MWCO 12,000-14,000 Da) using parafilm. The end 

of the syringe body where the needle was attached was cut and the hole plugged with parafilm. The 

syringe with the attached dialysis tubing was soaked in the PNP solution for at least 2 h prior to 

running the kinetic uptake experiment. This was done to hydrate and saturate the adsorption sites of the 

cellulose membrane (dialysis tubing) since uptake of dye by the barrier material may represent a small 

contribution to the overall adsorption that can be accounted for by soaking the membrane prior to the 

kinetic uptake experiment. Pre-saturating the “blank” membrane (no sorbent) accounts for small errors 

in uptake that are otherwise unaccounted for by the one-pot configuration shown in Scheme 1. To 

conduct the experiment, the syringe was immersed (held with a clamp on a stand) in a 150 mL beaker 

containing 100 mL of the PNP solution. 100 mg of the polymer was added and stirred with a magnetic 

stir bar set at 600 rpm. Three milliliter aliquots of the PNP solution was pipetted out after each 

designated time interval and analyzed, as outlined for Method A. 

Method C: Approximately 6 cm of the dialysis tubing cellulose membrane (average flat width  

35 mm (1.4 inch), MWCO 12,000 Da) was cut to size and soaked in the aqueous PNP solution for ~2 h. 

One end of the tubing was clamped using the weighted plastic closures. 100 mg of the polymer was 

added and the other end was similarly closed. The tubing containing the polymer was immersed in a 

fixed volume (120 mL) of PNP solution of a known concentration. Three milliliter aliquots of the PNP 

solution was pipetted out after each designated time interval and quantified by UV-vis absorption. The 

ex situ sampling method was used for monitoring the kinetics of sorption for the various polymer 

materials with phth. Ahlstrom filter paper (Grade 613, 7.5 cm) was used instead of the dialysis tubing 

as the barrier material. Stainless steel wire was used to wrap the filter paper to contain the sorbent 

within the barrier material. 
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4. Conclusions 

Herein, we report a simplified experimental design for kinetic uptake studies of heterogeneous 

solid-solution systems that employ a “one-pot” method with in situ or ex situ sampling. The “one-pot” 

method described herein enables time resolved kinetic uptake studies of powdered solids in solution 

with no subsequent phase separation of the solid sorbent and solution phase. The method is facile and 

offers some advantages relative to uptake studies that employ conventional batch kinetic methods. The 

one-pot method differs from conventional batch methods due to mass transfer effects across a  

semi-permeable barrier. A key advantage of the “one-pot” method for kinetic uptake studies enables 

direct analysis (in situ or ex situ) of the unbound adsorbate species. The one-pot method is a versatile 

method for comparison of the uptake kinetics for structurally related sorbent materials [21,22]. In 

contrast with conventional batch kinetic uptake studies for solid-solution systems, the challenges for 

the study of highly dispersed solids, colloids, and nanomaterials can be overcome using the one-pot 

approach described herein can be applied to adsorption processes at variable temperature conditions. 
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