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Abstract: Improving the energy capacity of spinel Li4Ti5O12 (LTO) is very important to 

utilize it as a high-performance Li-ion battery (LIB) electrode. In this work, LTO/Si 

composites with different weight ratios were prepared and tested as anodes. The anodic and 

cathodic peaks from both LTO and silicon were apparent in the composites, indicating that 

each component was active upon Li+ insertion and extraction. The composites with higher 

Si contents (LTO:Si = 35:35) exhibited superior specific capacity (1004 mAh·g−1) at lower 

current densities (0.22 A·g−1) but the capacity deteriorated at higher current densities.  

On the other hand, the electrodes with moderate Si contents (LTO:Si = 50:20) were able to 

deliver stable capacity (100 mAh·g−1) with good cycling performance, even at a very high 

current density of 7 A·g−1. The improvement in specific capacity and rate performance was 

a direct result of the synergy between LTO and Si; the former can alleviate the stresses from 

volumetric changes in Si upon cycling, while Si can add to the capacity of the composite. 

Therefore, it has been demonstrated that the addition of Si and concentration optimization is 

an easy yet an effective way to produce high performance LTO-based electrodes for  

lithium-ion batteries. 
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1. Introduction 

In recent years, the need for high performance lithium-ion batteries has increased dramatically given 

their potential application in electric vehicles (EVs) and hybrid electric vehicles (HEVs) [1–5].  

Spinel-Li4Ti5O12 (LTO) has attracted significant interest as an anode material for lithium-ion batteries 

because of several advantages: as a zero-strain insertion material, LTO is able to intercalate three lithium 

ions per molecule with negligible volumetric changes (spinel Li4Ti5O12 to rock salt Li7Ti5O12) [6–9].  

In addition, LTO exhibits a very flat charge-discharge at ~1.55 V vs. Li/Li+, which is well above the 

formation potential of solid electrolyte interface (SEI) [6–9]. The ability of LTO to intercalate lithium 

ions with almost negligible strain gives it excellent cycle longevity and the SEI-free operational potential 

makes it a safe material. However, low intrinsic electrical conductivity (ca. 10−13 S·cm−1) and poor 

lithium-ion diffusivity (ca. 10−9–10−13 cm2·s−1) are two major issues that need to be addressed in order 

to realize excellent performance from LTO-based electrodes [10]. Several strategies have been adopted 

to address these challenges. For instance, conductive surface coatings [11–13] and cation doping [14,15] 

have been used to enhance the electrical conductivity of LTO while “nano”-sizing of LTO has shown to 

improve the specific capacity due to the reduction in both electron and ion-transport distances [16–21]. 

The theoretical capacity of structural transition of LTO from spinel to rock salt is only 175 mAh·g−1, 

if the cell is discharged to 1 V [11]. However, it has been shown that discharging LTO to 0 V allows for 

further intercalation of additional 1.5 lithium ions and as a result of which the theoretical capacity reaches 

298 mAh·g−1 [22–24]. This not only enhances the overall energy density because of the larger theoretical 

capacity but also because of the lowered working voltage. However, discharging LTO to 0 V induces 

the possibility of SEI formation which in general is detrimental to the electrode performance.  

An intuitive approach to increase the capacity of LTO is making composites with anode materials with 

superior theoretical capacities. However, for most anode materials the operational voltages are less than 

1 V, which makes discharging the composite below 1 V a prerequisite. In some of the reports, Sn [25], 

SnO2 [26], CuO [27] and Fe2O3 [28] were used with LTO and improvement in specific capacity was 

noted. Since the enhancement in capacity is a direct result of the composite components, silicon makes 

an excellent choice given its phenomenal theoretical capacity (4200 mAh·g−1), which is about 13 times 

higher than that of LTO (even when discharged to 0 V) [29]. However, one of the major drawbacks of 

silicon is the ~300% volumetric change upon charging and discharging, which results in peeling and 

pulverization of the electrode and eventual capacity loss. Numerous works have been carried out to 

address these issues, such as using nano-enabled silicon structures, preparing Si/C composites to 

improve electric conductivity and constructing porous structure or compositing with other  

active/non-active matrix to buffer the volume change [30–33]. Considering the structure stability of 

LTO, it is expected that LTO can also alleviate some of the volumetric expansion of silicon during the 

cycling process by acting as a buffer. Until now, only a few studies have been reported on the use of 

LTO/Si composite electrodes. Lin et al. [34] deposited a thin coating of amorphous silicon on the surface 

of LTO electrode by thermal evaporation aiming to improve the cycling performance of LTO at elevated 

temperatures. However, there is a lack of systematic study on LTO/Si composites for LIB electrodes. 

In this paper, the goal is to investigate if LTO/Si composites hold potential as high-performance  

Li-ion battery anodes. We have evaluated the electrochemical performance of LTO/Si composites based 

on commercial battery grade electrode materials using conventional battery fabrication procedures.  
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The synergism between LTO and Si was investigated by studying the influence of different weight ratios 

of LTO and Si on the rate capability and cyclability of the composites. Two control samples (pure-LTO, 

pure-Si) and three composite samples (65LTO5Si, 50LTO20Si, 35LTO35Si, the number indicates the 

weight percent of each component in the composite) were prepared and tested. It was found that sample 

35LTO35Si delivered a capacity of 1004 mAh·g−1 at a current density of 0.22 A·g−1. Moreover, a 

capacity of 265 mAh·g−1 was maintained at a high current density of 2.25 A·g−1. Even at a very  

high current density of 7 A·g−1, sample 50LTO20Si were still able to deliver a stable capacity of  

100 mAh·g−1 with good cycling performance. Our results show that the LTO/Si composites exhibit both 

improved energy capacity and high rate capability. 

2. Results and Discussion 

The LTO and Si composites were prepared with five different weight ratios, as summarized in  

Table 1. In this work, the current densities at different C-rates were calculated based on their theoretical 

values as well as the weight ratios of LTO and Si components. Poly (acrylic acid) (PAA) and  

super P Li® were used as binder and conducting additive, respectively. 

Table 1. Summary of LTO/Si composites. 

Sample 
Composition (wt %) 1 C Current Density a 

(mA·g−1) Si LTO PAA Super P Li®

pure-LTO 0 70 15 15 298 
65LTO5Si 5 65 15 15 577 

50LTO20Si 20 50 15 15 1413 
35LTO35Si 35 35 15 15 2249 

pure-Si 70 0 15 15 4200 

Note: a Calculation based on theoretical capacity of LTO (298 mAh·g−1) and Si (4200 mAh·g−1). 

The morphologies of typical as-casted LTO/Si composite electrodes are shown in Figure 1a–c.  

For pure Si in Figure 1a, it can be seen that the average size of silicon particles was around 100 nm and 

the particles were relatively uniformly mixed with other additives, which includes carbon black and 

polymer binder. From the pure LTO in Figure 1b, it can be observed that the LTO particles were 

relatively large with particle size ranging from 0.2 to 1 μm. The large size and irregular shape of LTO 

particles results in relatively low-density composites. Figure 1c shows the morphology of 50LTO20Si 

composite electrode. No obvious cracks were observed in the as-deposited electrodes. However, the 

particle size of LTO in 50LTO20Si is smaller than that in pure-LTO electrode, which may be due to the 

grounding effect of Si nanoparticles in the sample preparation process. Morphologies of the respective 

electrodes after electrochemical tests are shown in Figure 1d–f and will be discussed later. 

Figure 2a exhibits the CV curves for the pure-Si electrode. A broad peak can be seen at around  

0.4–0.95 V in the cathodic branch of first and second cycles. However, this broad peak disappears in the 

third cycle. No obvious oxidation peaks corresponding to this reduction process is observed in the  

anodic branch, which indicates that this peak corresponds to the solid electrolyte interphase (SEI) 

formation [32,33]. There is a distinctive reduction peak which starts at 0.3 V and becomes quite sharp 

below 0.1 V. This peak is attributed to the lithiation of silicon [32,33]. During charging, two well defined 
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peaks centered at 0.34 and 0.51 V are observed and are ascribed to the formation of intermediate  

LixSi and amorphous silicon, respectively [30,31]. The magnitude of current at these two anodic peaks 

increases from 0.05 to 0.12 mA from the first to the fifth cycle due to activation process from Si phase [35,36]. 

However, the peak current stays almost the same at the 10th cycle, implying that the activation process 

of Si is almost completed at the end of 10th cycle. The observed CV curves and the activation process 

are in good agreement with previous report of porous silicon [32–36]. The reconstruction of crystal 

structure near silicon surface is explained as the reason for the activation phenomenon [35,36]. 

 

Figure 1. Typical SEM images of electrodes based on (a) pure-Si; (b) pure-LTO  

and 50LTO20Si before the electrochemical test (a–c) and after the electrochemical  

test (d–f), respectively. 

Figure 2b displays the CV curves of pure-LTO electrode: a pair of redox peaks appears at  

1.38 V (reduction) and 1.78 V (oxidation), which corresponds to the Li+ insertion and extraction process 

of LTO, which is in good agreement with literature [9,37]. The 0.5 V separation between the anodic and 

cathodic peaks is most likely because of the polarization resulting from the sluggish lithium diffusion 

and relatively low electrical conductivity [38,39]. Further Li intercalation into Li7Ti5O12 leads to a broad 

shoulder from 0.02 to 0.5 V. A small peak at around 0.75 V can be seen from the first to the 10th cycle, 

which is also due to the further lithium intercalation into the Li7Ti5O12 structure [9,37]. In the second 

cathodic cycle the current value dips as compared to the first cycle. This decrease in current is attributed 

to the SEI formation owing to the low operational voltage [38]. 

Figure 2c displays the CV curves for the 50LTO20Si composite electrode. As compared to Figure 2a,b, this 

electrode has both anodic and cathodic peaks for both Si and LTO as expected and the peak positions 

remain unchanged, which proves that both Si and LTO can work well with each other without interfering 

with the activity of the other component. 
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Figure 2. CV curves of electrodes based on (a) pure-Si, (b) pure-LTO, and (c) 50LTO20Si 

at scan rate of 0.2 mV s−1 in the range of 0.02–3 V, respectively. 

In order to further examine the synergy between LTO and silicon, rate capability and cycling 

behavior, the composites were evaluated for different LTO:Si ratios. Figure 3 shows the rate 

performance of five different samples with different LTO:Si ratios and their corresponding 

charge/discharge curves. It can be seen from Figure 3a that the specific capacities of pure-Si sample at 

0.1, 0.2, 0.5 and 1 C are 542, 76, 18 and 8 mAh·g−1, respectively. The first cycle discharge capacity is 

only 377 mAh·g−1, which gradually increases to a maximum value of 850 mAh·g−1 at the 7th cycle.  

The low discharge capacity during the first cycle is probably due to partial utilization of the silicon particles 

and the enhanced capacity in later cycles can be explained by the activation process in silicon [35,36],  

which is consistent with what has been observed in the CV curve. However, the capacity decreases to 

542 mAh·g−1 at the 20th cycle, and most of the capacity is delivered between 0.05 and 0.2 V which can 

be seen in the corresponding charge-discharge curves. The capacity decreases as the C-rate increases 

and at 1 C, only 8 mAh·g−1 was achieved. When charged back to 0.1 C, a capacity of 275 mAh·g−1 was 

recovered, which stabilized at 100th cycle. In order to understand the capacity decrease and partial 

recovery of pure-Si electrode, the coin cell was disassembled after the rate capability tests at 100th cycle 

and structural changes in the electrode were examined, as shown in Figure 1d. Severe cracks were 

generated, which led to the isolation of some islands and failure of the electrode. In some areas, peeling 

was also observed (not shown in Figure 1), which is a common problem for pristine Si electrodes.  

The cyclability of pure LTO electrode is shown in Figure 3c–d. For the first discharge and charge 

cycle at 1 C, capacities of 520 and 266 mAh·g−1 were achieved, which resulted in a columbic efficiency 

of 51%. In the discharge curve, a capacity of about 115 mAh·g−1 was delivered as a plateau near 1.5 V 

and about 390 mAh·g−1 was delivered as a long slope between 0.05 and 1.5 V. The plateau at 1.5V 

represents the phase equilibrium between the two end members Li4Ti5O12 and Li7Ti5O12 [9,37].  

In traditional LTO based electrodes test where the cut off voltage is 1 V, most of the capacity is observed 

in the plateau region [18–21]. The capacity in the slope region is mainly due to further intercalation of 

Li7Ti5O12 to Li8.5Ti5O12 and the SEI formation process [38]. During the first charging process, capacity 

delivered in plateau region at around 1.6 V is around 70 mAh·g−1 which is 45 mAh·g−1 less than the 

discharge process. The electrode tends to stabilize at the 20th cycle and the capacity is 118 mAh·g−1.  

The columbic efficiency is near 100% at this point. However, when the charge and discharge curves are 

compared with the first cycle, it could be seen that the 1.5 V plateaus in both charge and discharge curves 

diminished and only long slopes were left in the 20th cycle. The capacities decreased when the C-rates 

increased, however, when the cell was cycled back to 5 C, an increased capacity of 64 mAh·g−1 was observed 
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as compared to the previous 5 C test. Unlike pure silicon electrode, the disassembled pure LTO electrode at 

220th cycle (in Figure 1e) had a few smaller cracks but the structural integrity was retained, which can be 

considered as one of the reasons for the total capacity recovery when the cell was charged back at 5 C. 

As shown in Figure 3e–f, the first cycle charge and discharge capacities of 35LTO35Si electrode were 

955 and 1240 mAh·g−1, respectively. In the discharge curve, instead of a plateau, a slope starting from 

1.5 to 0.1 V was observed. A long plateau below 0.1 V that had a capacity of 970 mAh·g−1 was mainly 

due to the alloying process of silicon. In the following charging processes, the plateau at 1.6 V still 

existed, same as pure LTO electrode, and delivered a capacity of 50 mAh·g−1. At the 10th cycle under the 

same C-rate, the discharge capacity decreased to 1004 mAh·g−1 and gave a columbic efficiency of 96.6%. 

The plateau on the charge curve diminished. The capacity achieved at 0.1 C was excellent as compared 

to both pure silicon and LTO electrodes and proved the positive effect by using these two materials. 

When C-rates increased from 0.5 to 1 C, the discharge capacity decreased from 581 to 265 mAh·g−1, 

respectively. Although a large amount of the capacity was decreased, 265 mAh·g−1 was still comparable 

to the theoretical capacity of LTO when discharged to 0 V. At an even higher C-rate of 2 C, a capacity 

of only 10 mAh·g−1 was retained. When the cell was charged back to 0.5 C, a recovery of 70% was 

observed, which is attributed to the stable structure of the composite sample. Another reason, which 

contributed to the decreased capacity at high C-rates could be its sluggish kinetics from the silicon 

component. The 50LTO20Si electrode showed similar charge-discharge curves and capacities for the 

first cycle, as shown in Figure 3g–h. However, unlike 35LTO35Si, when the C-rate increased, even at  

1 C, the plateau at 1.6 V did not diminish in the charging curve. At lower C-rates (<1 C), the electrode 

with lower LTO contents showed higher capacity whereas, at high C-rates (>1 C), higher LTO 

concentration was helpful to maintain the performance. As for 50LTO20Si at 5 C, 100 mAh·g−1 capacity 

was still achievable. For the disassembled electrode image at 195th cycle in Figure 1f, no obvious cracks 

were generated in such electrode even after high C-rate testing. The stable capacity at high C-rates could 

be attributed to the structural integrity of the composite. In Figure 3i–j, the 65LTO5Si electrode shows 

relatively stable capacities under various C-rates, however, the capacities are not comparable to that of 

50LTO20Si and 35LTO35Si because of low concentration of Si. It should be noted that there is no 

capacity decrease when the cell was charged back at 1 C even after 10 C tests for 20 cycles. In its  

charge-discharge curves, it should be noted that only slopes instead of plateaus existed in the curves 

from the very first cycle. Comparing our composite electrodes of 65LTO5Si, 50LTO20Si and 

35LTO35Si, the plateaus at 1.5 V in discharge curves and at 1.6 V in charging curves differed from the 

first cycles and the following cycles, and also varied from low C-rates to high C-rates. However, it is 

ambiguous (i) if discharging the cell to 0 V had an influence on the 1.5 V plateau region; (ii) if the  

C-rates had any effect on the plateau and/or (iii) if other active materials affected the plateau. Further 

studies are required in order to investigate these phenomena. 

Since Si and LTO have a huge difference in theoretical capacities, the current densities of the 

composite samples at the same C-rate of different samples are greatly varied. As shown in Table 1,  

the current density of 35LTO35Si at 1 C is about 4 times that of 65LTO5Si for the same C-rate, which 

makes current density a useful parameter as opposed to the commonly used C-rate to analyze such 

composite electrodes. Figure 4 shows the relationship between capacity and current density for each 

sample. The synergism between LTO and silicon is obvious and there is major enhancement in 

capacities, especially at current densities lower than 3 A·g−1. The stability of 65LTO5Si is similar to 
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pure-LTO but the capacity of the electrode is limited due to low Si contents. 50LTO20Si and 35LTO35Si 

show relatively better overall performance since the capacity enhancement is realized without sacrificing 

much rate performance. At lower current densities (<3 A·g−1), 35LTO35Si performs better than 

50LTO20Si due to higher Si involvement. However, when current density is higher than 3 A·g−1, 

50LTO20Si delivers higher capacity than 35LTO35Si. Even at a high current density of 7 A·g−1, a 

capacity of 100 mAh·g−1 is still achievable, which is mainly attributed to the contribution of LTO. 

Compared to the theoretical capacities of graphite (372 mAh·g−1) and LTO (175 mAh·g−1 when 

discharged to 1 V), the performance of both 50LTO20Si and 35LTO35Si were excellent at the current 

density of 3 A·g−1. 

 

Figure 3. Cont. 
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Figure 3. The rate performance and corresponding charge-discharge curves for  

electrodes based on pure-Si (a,b), pure-LTO (c,d), 35LTO35Si (e,f), 50LTO20Si (g,h) and 

65LTO5Si (i,j), respectively. 

 

Figure 4. Relationship between capacities and current densities for all electrodes. 

From the above results, we have confirmed our strategy to achieve better energy capacity and rate 

capability by using LTO/Si composites. The addition of Si can enhance the specific capacity of the 

electrode and at the same time LTO could effectively buffer the volume change of Si, thereby resulting 

in enhanced C-rate performance. A thin layer of oxide (thickness: 3–5 nm) has been observed in our 

previous work by TEM using same Si product [32]. The effect of such thin oxide layer on the 

electrochemical performance could be complicated. At one hand, the oxide layer usually has poor 

electron conductivity, which could be a limiting factor for the poor rate performance of the Si based 

battery electrodes [40]. At another hand, it is reported that SiO2 and non-stoichiometric silicon oxides 

are electrochemical active with reasonable Li ion storage capacity [30,41]. How to distinguish the 
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contribution of thin oxide layer is still a big challenge especially in the composite system, which will 

require more effort in the future work. We believe that great enhancement in the electrochemical 

performance of the composites can be realized with careful engineering of each component. 

3. Experimental Section 

3.1. Sample Preparation and Characterization 

Silicon powder (<100 nm, Sigma-Aldrich, St. Louis, MS, USA) and Li4Ti5O12 (D10 = 1.09 μm, MTI 

corporation, Richmond, VA, USA) powders were used as received, without any further treatment. The 

composite electrodes were prepared by casting a slurry on copper foil. The slurry was prepared by mixing 

different amounts of Li4Ti5O12 powder, silicon powder, poly (acrylic acid) (PAA) and Super P Li® in 

ethanol (See Table 1 for detailed sample composition). PAA and super P Li® were used as binder and 

conducting additive, respectively. Then the electrodes were transferred to a vacuum oven and dried at 

80 °C for 12 h. The morphology of the electrodes was investigated using a field emission-scanning 

electron microscope (JEOL 6335FE-SEM, Peabody, MA, USA). 

3.2. Electrochemical Characterization 

Electrochemical test cells (2032 coin cells) were assembled in an argon filled glove box  

(VAC Nexus I, Hawthorne, CA, USA). The composite electrode was used as the working electrode; a 

lithium foil was used as the counter electrode and reference electrode. Celgard 2400 microporous  

polypropylene (Charlotte, NC, USA) was used as the separator. The electrolyte was 1 M 

lithiumbis(perfluoroethylsulfonyl)imide dissolved in ethylene carbonate (EC): diethyl carbonate (DEC): 

ethyl methyl carbonate (EMC) in the volume ratio of 1:1:1. Cyclic voltammetry (CV) was performed 

using Bio-logic versatile multichannel potentiostat (VMP3). All electrochemical cells were 

galvanostatically cycled at room temperature using a NEWARE BTS-610 Battery Test System 

(Shenzhen, China). All the voltages mentioned in this manuscript are vs. Li/Li+. 

4. Conclusions 

The novel LTO/Si composite electrodes have been demonstrated as promising anodes for Li-ion 

batteries. By comparing the electrochemical performance of composite electrodes with different Si and 

LTO concentrations at diverse current densities, it was shown that the LTO/Si composite electrodes 

showed both improved energy capacity and rate capability due to the synergy between silicon and LTO. 

It indicates that the LTO/Si composites benefit from both the high energy capacity of silicon and the 

good rate capability of LTO. The present finding indicates that it is achievable to improve the specific 

capacity without sacrificing much rate capability of LTO-based electrodes for Li-ion batteries. 
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