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Abstract: Metal oxide nanomaterials are widely used in various areas; however, the 

divergent published toxicology data makes it difficult to determine whether there is a risk 

associated with exposure to metal oxide nanomaterials. The application of quantitative 

structure activity relationship (QSAR) modeling in metal oxide nanomaterials toxicity 

studies can reduce the need for time-consuming and resource-intensive nanotoxicity tests. 

The nanostructure and inorganic composition of metal oxide nanomaterials makes this 

approach different from classical QSAR study; this review lists and classifies some 

structural descriptors, such as size, cation charge, and band gap energy, in recent metal 

oxide nanomaterials quantitative nanostructure activity relationship (QNAR) studies and 

discusses the mechanism of metal oxide nanomaterials toxicity based on these descriptors 

and traditional nanotoxicity tests. 
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(QSAR); descriptor; toxicity mechanisms 

 

  

OPEN ACCESS 



Nanomaterials 2015, 5 1621 

 

1. Introduction 

Nanotechnology involves the study of the synthesis, characterization, and properties of  

nanomaterials [1]. The emergence of nanotechnology has led to innovations in many areas of 

electronics, energy management, structural materials, functional surfaces, construction, information 

technology, pharmaceuticals, and medical devices. The largest share of the manufacturing and 

application market among the different nanomaterials belongs to metal oxide nanomaterials, they are 

already used in some consumer products, such as TiO2 in paints and ZnO in sunscreen products [2]. 

Moreover, since the 1950s, millions of tons of materials such as carbon black, SiO2, TiO2, and Al2O3 

have been produced per year for use in paints, catalysts, and surfactants [3]. Nanomaterials can release 

into the environment during production, transport, and use [4], and metal oxide nanomaterials are no 

exception [5]. The divergent published toxicology data on metal oxide nanomaterials makes it difficult 

to determine whether there is a risk associated with metal oxide nanomaterial exposure [2]. The small 

size and large specific surface area of metal oxide nanomaterials endows them with high chemical 

reactivity and intrinsic toxicity [6]. Therefore, most nanotoxicity studies have concentrated on metal 

oxide nanomaterials, and different metal oxide nanomaterials have different toxic effects according to 

previous studies [7–17]. 

However, performing toxicology tests for each metal oxide nanomaterial is time consuming and 

resource intensive; therefore, researchers are developing computational nanotoxicology methods, such 

as quantitative structure activity relationship (QSAR) modeling, to predict the toxicity of metal oxide 

nanomaterials. Such predictions would allow researchers to prioritize toxicology tests on real metal 

oxide nanomaterials [18]. QSAR modeling was originally a computational chemistry method; it is 

known as nano quantitative structure activity relationship (nano-QSAR) [19] or quantitative 

nanostructure activity relationship (QNAR) [20] modeling in nanotoxicology. In this review, we use 

the term QNAR modeling. QSAR modeling attempts to correlate a set of structural parameters (which 

are called molecular descriptors) that describe a chemical compound with its biological activity. The 

QSAR modeling procedure includes the selection of molecular descriptors and toxicology endpoint  

descriptors [21,22], as well as construction, validation [23–25], and evaluation [19] of the model. It is 

not our purpose to discuss every procedure in QNAR modeling here, which have been reviewed by 

many other researchers [3,19,20,22,26–30]. Current reviews about QNAR research in the past five 

years have been listed in Table 1. Instead, we focus on the molecular descriptors in this review 

because, as we know, we use metal oxide nanomaterial QNAR method to high-throughput screening of 

the toxicity of metal oxide nanomaterials and to guide the production of metal oxide nanomaterials, the 

most important steps to improve QNAR models are the selection of structural descriptors, to help 

readers moving forward in the implementation of QNAR, we listed the available structural descriptors 

and further analyzed the key issues in metal oxide QNAR study, and to the best of our knowledge, they 

have not been reviewed before. 
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Table 1. Quantitative nanostructure activity relationship (QNAR) reviews in the past five years. 

Title Summary Ref 

No time to lose—high throughput 

screening to assess nanomaterial safety 

This review aims to provide a comprehensive 

introduction to the high throughput/content 

screening methodology employed for safety 

assessment of engineered nanomaterials, 

including data analysis and prediction of 

potentially hazardous material properties. 

[3] 

Exploring QNAR modeling as a tool for 

predicting biological effects of 

manufactured nanoparticles 

The review discusses major approaches for model 

building and validation using both experimental 

and computed properties of nanomaterials by 

considering two different categories of 

nanomaterials datasets:(i) those comprising 

nanomaterials with diverse metal cores and 

organic decorations;(ii) those involving 

nanomaterials possessing the same core. 

[20] 

Predictive models for nanotoxicology: 

Current challenges and future opportunities 

The review aims to provide researchers strategies 

for directing research towards predictive models 

and the ancillary benefits of such research. 

[19] 

Applying quantitative structure-activity 

relationship approaches to nanotoxicology: 

Current status and future potential 

The purpose of this review is to provide a 

summary of recent key advances in the field of 

QNAR modelling, to identify the major gaps in 

research required to accelerate the use of QSAR 

methods, and to provide a road map for future 

research needed to achieve QSAR models useful 

for regulatory purposes. 

[26] 

Advancing risk assessment of engineered 

nanomaterials: Application of 

computational approaches 

The purpose of this review is to present the 

current state of knowledge related to the risks of 

the engineered nanoparticles and to assess the 

potential of efficient expansion and development 

of new approaches, which are offered by 

application of theoretical and computational 

methods, applicable for evaluation of 

nanomaterials. 

[27] 

Nano(Q)SAR: Challenges, pitfalls and 

perspectives 

This article aims to identify some of the pitfalls 

and challenges associated with (Q)NARs. Three 

major barriers were identified: the need to 

improve quality of experimental data in which the 

models are developed from, the need to have 

practical guidelines for the development of the 

(Q)NAR models and the need to standardise and 

harmonise activities for the purpose of regulation. 

[28] 

In classical QSAR modeling, these molecular descriptors typically relate to the steric and electronic 

properties of the chemical compound and can be measured experimentally or computationally. 

Classical QSAR studies usually begin from the stage of molecular modeling and descriptor  
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calculation [31,32]. There are many ways to classify classical molecular descriptors, such as theoretical 

molecular descriptors include 0D-descriptors, 1D-descriptors, 2D-descriptors, 3D-descriptors, and  

4D-descriptors [33]. However, the molecular descriptor of a nanomaterial is different from classical 

QSAR molecular descriptors, and we should give it a proper name “structural descriptor” in QNAR 

modeling because nanomaterials are no longer simple chemical compounds. The metal oxide 

nanomaterials QSAR study should be classified by two categories, (i) coated metal oxide 

nanomaterials QSAR study: the selection of coated metal oxide nanomaterials structural descriptors is 

always the structural descriptor of its organic surface modification; and (ii) bare metal oxide 

nanomaterials QSAR study: the selection of bare metal oxide nanomaterials structural descriptors is a 

challenge in metal oxide QNAR model-building because of its inorganic composition and 

nanostructure. For the first type of study, the surface modification of coated metal nanomaterials was 

considered to be the key factor to influence its toxicity [34,35]; therefore, we can refer to it as organic 

chemicals QSAR study. However, the relationship between the surface modification group of metal 

oxide nanomaterials and nanotoxicity is not the focus of this article. In this review, we emphasize on 

bare metal oxide nanomaterials QSAR study; all we discuss below is about bare metal oxide 

nanomaterials. Based on previous studies [36–41], we have classified the metal oxide  nanomaterial 

structural descriptors as experimental descriptors (describing the morphological structural properties 

and physicochemical properties of metal oxide  nanomaterials) and theoretical descriptors (describing 

the constitutional properties, electronic or thermodynamic properties); in addition, we summarize how 

to obtain these structural descriptors and introduce some novel structural descriptors used in existing 

metal oxide QNAR models. Finally, and also drawing on recent nanotoxicity studies, we propose 

mechanisms for metal oxide nanomaterial toxicity from the existing QNAR models based on these 

descriptors. We hope that this article will be useful for researchers, especially for toxicologists, in 

performing metal oxide nanomaterial QNAR research. 

2. Experimental Descriptors 

Metal oxide nanomaterial experimental descriptors are usually experimental measurements, such as 

size distribution, agglomeration state, shape, porosity, surface area, and chemical composition. Metal 

oxide nanomaterials exhibit different properties than bulk materials or isolated molecules. Knowing 

the morphology and physicochemical properties of metal oxide nanomaterials can open new exciting 

opportunities for modeling metal oxide nanomaterial characteristics through the use of the QSAR 

approach, so it is meaningful to classify these experimental measurements based on morphological 

structural properties and physicochemical properties which provide researches different views to select 

structural descriptors. Here we use size, shape, porosity, and surface area as morphological structural 

properties in addition to zeta potential and surface modification [6,7,16,42,43]. 

2.1. Morphological Structural Properties 

Metal oxide nanomaterials can be characterized by different sizes, shapes, porosities, surface areas, 

crystals, and aggregation; these characteristics are usually classified as physico-chemical properties, 

and we classify them as morphological structural properties in this review. Many techniques are 

complementary and used together to support the data. Various techniques such as scanning electron 
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microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), static 

light scattering (SLS), and atomic force microscopy (AFM) are available for primary size, size 

distribution, agglomeration state, porosity, and shape characterization [42–45]. Brunauer-Emmett-Teller 

(BET) surface area measurements can be used to measure a given amount of metal oxide nanomaterial 

based on the gas adsorption surface area, as well as the porosity of the samples [44,46–49]. X-ray 

diffraction (XRD) analysis is a classical crystallographic structure measurement technique that can be 

used for metal oxide nanomaterials with respect to the arrangements of atoms in the bulk as well as on 

the surface. This technique uses the patterns, positions, intensities, and shapes of the peaks to elicit the 

atomic structure of the samples. Moreover, small angle X-ray scattering (SAXS) can also be used to 

reveal the crystallographic properties of metal oxide nanoparticles [50–52]. Gajewicz [40] calculated 

11 image descriptors (area (A), volume (V), surface diameter (Ds), volume/mass diameter (dV/m), 

volume/surface diameter (dSauter), aspect ratio x (AR_x), aspect ratio y (AR_y), porosity X (PX), 

porosity Y (PY), sphericity (Ψ), and circularity (fcirc)) based on TEM microscopic images, which can 

reflect the size, size distribution, shape, porosity, and surface area for all 18 nanometer-sized metal 

oxides. These descriptors were not included in the final model; however, they provided us with a 

method to quantify the image characterization. Liu et al. [53] used nanoparticle primary size and 

volume fraction (in solution) as two of the structural descriptors to build a classification nano-SAR 

model, and the classification accuracy for both internal validation and external validation was 100%. 

Size has also been used in metal oxide nanomaterials QNAR models [54–58]. 

2.2. Physicochemical Properties 

Physicochemical properties include zeta potential, acidity coefficient (pKa), relaxivities, isoelectric 

point, and surface charge. The zeta potential of nanomaterials is measured by light-scattering 

electrophoresis or electro-acoustophoresis, and the isoelectric point (IEP) can be determined using 

electrophoretic mobility measurements (EPM). pKa can be measured by titration in various suspending 

media. Liquid contact angle assessment reveals additional information about surface chemistry, charge, 

and energy. Elemental speciation and redox state can be measured by Raman, X-ray absorption fine 

structure (XAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance 

(NMR), and electronic, magnetic, and photonic properties can be analyzed by small- and wide-angle  

X-ray scattering (SAXS), Mossbauer, electron spin resonance (ESR), Raman, and ultraviolet-visible 

spectroscopy (UV-Vis). “Dustiness” or tendency to aerosolize, can be measured by a scanning 

mobility particle sizer (SMPS). Charge density, pKa, point of zero charge (PZC), and ionization 

fraction can be tested by direct titration in various suspending media [3]. The total concentration of the 

metal oxide can be measured by X-ray fluorescence (XRF), and the concentration of soluble metal can 

be measured by inductively coupled plasma mass spectrometry (ICP–MS) conjugation with 

ultrafiltration [59]. Band gap energy (Eg) can be measured by UV-Vis spectroscopy [60]. UV-Vis 

spectroscopy can also be used as an alternative method to roughly evaluate nanoparticle sedimentation. 

Redox potential can be measured using an oxidation reduction potential (ORP) electrode probe [61]. 

Duffin et al. [62] proposed approaches that presented the possibility of modeling the potential toxicity 

of metal nanoparticles and nuisance dusts based on the inflammatory response under an instilled 

surface area dose. The zeta potential and IEP have been included in a metal oxide nanomaterial 
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nanoSAR model [53]. Singh et al. [56] used relativities (R1, R2) and zeta potential as four of the 

model’s parameters to predict the toxicity of 51 different NMs (with diverse metal cores) in four cell 

lines. Fourches used the zeta potential and relativities to build a nanoQSAR model [58]. Cho et al. [63] 

correlated the percentage of granulocytes of rats exposed to metal oxide nanomaterials with the zeta 

potential in physiological saline (pH 5.6) of these metal oxide nanomaterials. Main experimental 

structural descriptors used in some metal oxide QNAR models was reviewed in Table 2. 

Table 2. Main experimental structural descriptors used in some metal oxide (Q)NAR models. 

Experimental structural descriptors 

Ref 
Size 

Volume 

fraction 

Zeta 

potential 

Relativities 

R1 

Relativities 

R2 
IEP 

√ √ √   √ Liu et al. [53] 

  √ √ √  Epa et al. [54] 

  √ √ √  Singh et al. [56] 

  √ √ √  Fourches et al. [58] 

  √    Cho et al. [63] 

3. Theoretical Descriptors 

Theoretical descriptors usually involve applications of quantum chemical or molecular simulation 

methods that have been proven to be reliable and efficient means to predict molecular properties. 

Classical theoretical molecular descriptors are derived from a symbolic representation of the molecule 

and can be further classified according to the different types of molecular representation. Similar to 

classical molecular descriptors, theoretical descriptors are an important part of metal oxide 

nanomaterials QSAR study, but with their own special properties; metal oxide nanomaterials consist of 

metal oxide crystal structures, and we should, thus, first determine their crystal structure. 

3.1. Constitutional Properties 

Constitutional properties are simple molecular descriptors that can be obtained from the periodic 

table of elements, chemical handbooks, and molecular formulae, such as the molecular weight of the 

molecule, weight of the atom, number of molecular descriptors, and cation charge. This is a  

cost-effective approach to obtain molecular descriptors without depending on quantum software.  

Hu et al. [6] reported that the cytotoxicity of seven metal oxide nanoparticles was observed to be 

correlated with their cation charges. Kar et al. [39] used metal electronegativity (χ), the charge of the 

metal cation corresponding to a given oxide (χOx), atomic number and valence electron number of the 

metal as simple molecular descriptors to develop QSAR models for predicting the cytotoxicity of  

17 metal oxide nanomaterials to Escherichia coli. Moreover, the period of the nanoparticle metal has 

also been used in a metal oxide nanomaterials cytotoxicity classification model [53]. 

3.2. Electronic Properties 

Electronic properties are properties relate to energy and are the most widely used properties in metal 

oxide QNAR model building. Some electronic properties of metal oxides can be used as descriptors, 
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such as band gap and valence gap energy. However, most metal oxide nanomaterials are difficult to 

dissolve in solution, they are nano-size in water; so the unusual properties of nanoparticles, such as 

their hardness, high yield strength, flexibility, rigidity, and ductility, are related to their high  

surface-to-volume ratio, and the quantum size effect and macro-quantum tunneling effect are 

attributable to their nano-size [64]. Therefore, it is necessary to determine the metal oxide properties 

on the nanoscale. Fortunately, some contributions have highlighted that the most significant  

size-dependent changes of some properties of nanoparticles are observed below approximately 5 nm; 

thus, changes in nanomaterials properties between 15 and 90 nm can be ignored [65,66].  

Burello et al. [67] proposed a theoretical framework of a descriptor calculation that is related to the 

oxidative stress potential of oxide nanoparticles based on the assumption that a particle has a diameter 

larger than 20–30 nm and no surface states in the band gap. Since some quantum-chemical properties 

change with the diameter of the nanoparticle [68], another approach involves software-based 

calculations (e.g., CODESSA [69], DRAGON [70], CAChe [71], and MOE [72]). However, from a 

quantum chemistry viewpoint, nanoparticles (10–1000 Å) are very large systems [68]; therefore, it is 

necessary to maximally simplify the molecular models used for geometry optimization and/or 

calculation of the molecular properties to reflect the variability of the nanoparticles' structures [19]. 

Gajewicz et al. [68] observed that molecular properties change with size in two ways based on 

MOPAC software; one way is that the parameters vary non-linearly with the considered crystal size 

(e.g., ZnO, 11 Å) until they reach a saturation point (type A), and the other way is that the parameters 

vary linearly with the crystal size. Therefore, we can use the saturation point to determine the type A 

properties and use the linear equation to determine the type B properties with calculations based on 

many atoms. 

Puzyn et al. [41] used the ΔHMe+ descriptor that represents the enthalpy of formation of a gaseous 

cation with the same oxidation state as that in the metal oxide structure as a parameter to construct the 

toxicity prediction model for Escherichia coli. Gajewicz et al. [40] combined experimental–theoretical 

studies to develop an interpretative QNAR model to predict the toxicity of 18 nano-metal oxides to the 

HaCaT cell line. A simple and statistically significant QSAR model was successfully developed for the 

dark group based on two descriptors, the absolute electronegativity of the metal and of the metal oxide. 

Similarly, the best correlation was obtained to predict the photo-induced toxicity of metal oxide 

nanomaterials using two descriptors, the molar heat capacity and average of the alpha and beta lowest 

unoccupied molecular orbital (LUMO) energies of the metal oxide [37]. Liu et al. [73] used the 

atomization energy of the metal oxide, atomic mass of metal nanoparticles, conduction band energy of 

the nanoparticles, metal oxide ionization energy, and metal oxide electronegativity as descriptors to 

construct several metal oxide nanomaterial toxicity classification models.  Main theoretical structural 

descriptors used in some metal oxide QNAR models are reviewed in Table 3. 
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Table 3. Main theoretical structural descriptors used in some metal oxide QNAR models. 

Structural descriptors Ref 

Cation charges Hu et al. [6] 

The absolute electronegativity of the metal and of the metal 

oxide, the molar heat capacity and average of the alpha and  

beta LUMO 

Pathakoti et al. [37] 

Metal electronegativity, the charge of the metal cation, atomic 

number, valence electron number of the metal 
Kar et al. [39] 

Standard enthalpy of formation of metal oxide nanocluster, 

Mulliken’s electronegativity 
Gajewicz et al. [40] 

The enthalpy of formation of a gaseous cation with the same 

oxidation state as that in the metal-oxide structure 
Puzyn et al. [41] 

4. Other Novel Descriptors 

Actually, except these structural descriptors listed above, some new methods appeared to select 

more comprehensive structural descriptors for researchers. 

4.1. Liquid Drop Model 

The other novel descriptor is the “liquid drop” model (LDM). The LDM was applied to describe the 

supramolecular structure of nanoparticles [36]. It is beneficial to use a combination of descriptors that 

reflect the structure of the nanoparticles for the different levels of organization: from a single molecule 

to a supramolecular ensemble of molecules, to the interactions of nanomaterials with biological 

systems. Sizochenko et al. [36] established an LDM for 17 metal oxide nanomaterials to predict the 

toxicity toward Escherichia coli and HaCaT cells. 

4.2. QSAR-Perturbation Approach Based Descriptors 

Luan et al. [38] used the descriptor DDV (ca.) to characterize the physicochemical properties, as 

well as the types of cells against which the metal oxide nanomaterials were tested. The descriptors 

represent their relative degrees of importance in the QSAR-perturbation model. This model can 

simultaneously predict the cytotoxicity of different nanoparticles against several mammalian cell lines 

while considering different times of exposure of the cell lines, as well as the chemical composition of 

the nanoparticles, their size, the conditions under which the size was measured, and their shape. 

4.3. Optimal SMILE-Based Descriptor 

SMILES is a sequence of symbols which represent the molecular architecture. It has been applied in 

QSAR study of carbon nanotubes [74] and some organic chemicals [75]. It has been proven it can be 

applied to metal oxide nanomaterials QNAR model building. Toropova et al. [76] constructed a model 

to predict the membrane damage caused by a group of zinc oxide and titanium oxide nanomaterials;  

Toropova et al. [77] built up a model for prediction of dark cytotoxicity and photo-induced 

cytotoxicity of metal oxide nanoparticles to the bacteria Escherichia coli. The advantages and 

disadvantages of different structural descriptors in metal oxide QNAR studies can be seen in Table 4. 
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Table 4. Advantages and disadvantages of different structural descriptor types in metal 

oxide QNAR studies. 

Descriptors type Advantages Disadvantages 

morphological structural 

properties 

directly relate to the characteristics of 

metal oxide nanomaterials, easy to 

explain the toxicity mechanism  

measuring error, some of the 

properties are difficult to 

quantitate 

physicochemical properties 

directly relate to characteristics of 

metal oxide nanomaterials, easy to 

explain the toxicity mechanism 

measuring error 

constitutional properties easy to obtain 

characteristics of metal 

oxide nanomaterial are not 

included 

electronic properties or 

thermodynamic properties 

easy to obtain , easy to explain the 

toxicity mechanism 

the calculation system is 

relatively small 

novel descriptors 

directly relate to the characteristics of 

metal oxide nanomaterials, easy to 

explain the toxicity mechanism 

the calculation method is 

complex 

5. Understanding Toxicity Mechanism(s) from Existing QNAR Models 

In traditional nanotoxicity studies, the toxicity of metal oxide nanomaterials is related to their size, 

size distribution, surface area, shape, zeta potential, surface charge, aggregation state, and the extent of 

ion detachment from the surface [2]. Karlsson et al. [10] discovered that nano-sized copper oxide was 

much more toxic than micro-sized copper oxide toward A549 cells. Hamilton et al. [78] observed that 

the alteration of anatase titanium dioxide nanomaterials into a fiber structure of greater than 15 μm was 

highly toxic and initiated an inflammatory response by alveolar macrophages. Fröhlich et al. [79] 

demonstrated that charge density and hydrophobicity are equally important in non-phagocytic cell 

ingestion, but that the cellular uptake of cationic NPs is higher than that of anionic NPs in these cells; 

phagocytic cells, however, preferentially take up anionic nanomaterials. Rogers [80] observed that 

body length and progeny count decreased and organismal stress increased in Caenorhabditis elegans 

when exposed to aggregated cerium oxide (0–17.21 ug/mL). Heinlaan et al. [5] noticed that the metal 

ions detached from the surface were responsible for the toxicity of nano-sized zinc oxide and  

nano-sized copper oxide in Vibrio fisheri bacteria. However, in recent metal nano-QSAR studies, size, 

size distribution, shape, surface area, zeta potential, surface charge, and aggregation state were not the 

key factors that affected the toxicity of the metal oxide nanomaterials, and some descriptors related to 

the release of ions detached from the metal oxide were often included in the models. Puzyn et al. [41] 

observed that the particle size of the metal oxide nanomaterials did not affect the antibacterial activity 

in their model; however, the descriptor that represented the enthalpy of formation of the gaseous cation 

having the same oxidation state as that in the metal oxide structure was used to build a satisfactory 

model that can be applied to predict the EC50 of E. coli. Kar et al. [39] used some simple molecular 

descriptors, such as metal electronegativity, charge of the metal cation corresponding to a given oxide, 

atomic number and valence electron number of the metal, to develop QSAR models for the EC50 of 

metal oxide nanoparticles toward E. coli. Pathakoti et al. [37] used the absolute electronegativity of the 
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metal atom and the absolute electronegativity of the metal oxide to predict EC50 of metal oxide 

nanomaterials to E. coli in dark conditions, and used the literature molar heat capacity of the metal 

oxide at 298.15 K and the average of the alpha and beta lowest unoccupied molecular orbital energy of 

the metal oxide to predict the photo-induced toxicity of the metal oxide nanomaterials. Gajewicz et al. [40] 

used two descriptors (the enthalpy of formation of the metal oxide nanocluster representing a fragment 

of the surface and the Mulliken’s electronegativity of the cluster) to predict the median lethal 

concentration (LC50) of metal oxide nanomaterials toward HaCaT cells. The primary size was only 

included in a few metal oxide toxicity classification nanoSAR models [53,73]. 

We proposed a possible toxicity mechanism of metal oxide nanomaterials to explain these conflicts. 

Size, size distribution, shape, surface area, zeta potential, surface charge, and aggregation state are not 

direct factors that cause cell inhibition, cell death, or cell apoptosis. They can affect the cellular uptake 

of metal oxide nanomaterials by van der Waals forces, steric interactions, and electrostatic charges [3]. 

It can be performed by directly affecting the function of the cell membrane [81,82], or indirectly 

performed by some chemical activities, such as influencing the formation of protein corona [83], than 

finally influence their ability to enter cell. After entering the cell, metal oxide stability is an important 

factor that causes toxic effects, such as ions detaching from the surface of metal oxide nanomaterials, 

inducing ROS generation and then causing a series of oxidative stress reactions related to cell viability, 

cell apoptosis and cell death. In addition, we cannot ignore extracellular ROS and ions release induced 

toxicity [83,84]. From the characterization aspect, surface charge is usually reported as the zeta 

potential, which takes into account the electric potential in the interfacial double layer as well as the 

pKa of the particle [85]. The surface charge of nanomaterials is particularly interesting as it is one of 

the factors that controls the dispersion and aggregation of engineered nanomaterials as well as 

affecting cellular uptake [86]. Surface charge may determine binding sites for receptors, affect the 

dispersion and aggregation of the particles, and affect the capacity to produce reactive oxygen species 

(ROS) [79]. Stable metal oxides do not exhibit any toxic effects, whereas metallic nanomaterials that 

have a redox potential may be cytotoxic and genotoxic [87]. The stability is found to be of prime 

importance to dictate ZnO QDs toxicity either towards the ROS generation or towards the liberation of 

metal [88]. Heavy metal ions induce oxidative stress and inflammatory responses and electron-hole 

pair generation during photoactivation, leading to free-radical generation [3], which is consistent with 

the results from some metal oxide nanomaterials QNAR studies. 

In a 2008 NATO workshop, experts proposed that toxicity may occur via one or a combination of 

four possible mechanisms [89]. The first mechanism suggested that the release of the chemical 

constituents from the nanomaterials leads to toxicity, such as the release of toxic anions. The second 

mechanism suggested that the size and shape of the particle produces steric hindrances or interferes 

with some important binding sites. The third mechanism of toxicity is related to the surface properties 

of the materials, such as local electric fields, electronic semi-conductance and charge densities. Finally, 

the fourth mechanism of toxicity involves the capacity of nanomaterials to act as vectors for 

transporting other toxic chemicals to sensitive tissues. The results of the QNAR study and nanotoxicity 

test study are consistent with these mechanisms. We combined metal oxide nanoparticle toxicity 

mechanisms with a recent metal oxide nanomaterials QNAR study that included a toxicity test, as 

shown in Figure 1. 
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Figure 1. Characteristics such as size, size distribution, aggregation state, surface charge, 

and zeta potential can affect the cellular uptake of metal oxide nanomaterials. After 

entering the cell, metal oxide stability is an important factor that causes toxic effects, such 

as ions detaching from the surface of metal oxide nanomaterials, inducing ROS generation 

and then causing a series of oxidative stress reactions related to cell viability, cell apoptosis 

and cell death. In addition, extracellular ROS and released ions can also induce a series of 

oxidative stress reactions. 

6. Conclusions and Outlook 

Metal oxide nanomaterials QNAR modeling is a comprehensive task that requires the combined 

efforts of toxicologists, inorganic chemists, materials scientists, and statisticians. We aim to provide 

readers available structural descriptors and the method to obtain these structural descriptors after 

reading this review. Recent studies have demonstrated that QNAR modeling is an effective and 

accurate tool to assess the biological activity and toxic potential of metal oxide nanomaterials in a 

short period with reduced cost. On one side, we use QNAR model to predict the toxicity of metal oxide 

nanomaterials; however, there were unavoidable problems in recent QNAR models, which are 

discussed here. First, most of the recent models were based on in vitro toxicity tests; there are few 

metal oxide nanomaterials QNAR models based on in vivo toxicity tests or model organisms, even 

though the toxicity data should involve multiple species in different environmental systems. 

Unavoidably, it was difficult to obtain some quantitative toxicity data for these organisms, such as 

median lethal dose (LD50) and lethal concentration 50 (LC50), because the toxicity of some metal 

oxide nanomaterials was very low. Second, the elucidation of the mechanism of toxicity appears to be 

a complex problem, with many studies reporting conflicting results. The toxicity tests should be  

cross-validated in multiple laboratories; reliable experimental data are necessary for the successful 

development of new QNAR, which requires researchers to work together with the QSAR community 

to provide reliable and useful data to better understand the toxicity mechanism of metal oxide 

nanomaterials. Third, most of the existing metal oxide QNAR models are based on limited data, which 

may cause some statistical errors; we should extend the types of metal oxide nanomaterials studied to 

reduce these errors. Meanwhile validation is vital to ensure that the predictive ability of the model is 
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not caused by chance factors, but there are no standardized validation metrics [28]. On the other side, 

we use QNAR models to design safer metal oxide nanomaterials based on their structural descriptors, 

but some of the structural descriptors, such as constitutional structural descriptors, are not associated 

with characteristics of metal oxide nanomaterials, so it is necessary to select structural descriptors 

which are directly relate to the characteristics of metal oxide nanomaterials. Additionally, the issue of 

chemical doping which is reported as a potential factor causing toxicity, should also be considered  

in future QNAR studies. Only reliable and meaningful QNAR models can be applied to the  

high-throughput screening of the toxicity of metal oxide nanomaterials and to guide the production of 

metal oxide nanomaterials. 
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