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Abstract: Size-controlled spherical silver nanoparticles (<10 nm) and chitin-nanofiber sheet
composites (Ag NPs/CNFS) have previously been reported to have strong antimicrobial activity
in vitro. Although Ag NPs/CNFS have strong antimicrobial activity, their cytotoxicity has
not been investigated. This study was performed to evaluate the effects of Ag NPs/CNFS
on cytotoxicity for fibroblasts in vitro and healing delay of wound repair in vivo, focused on
oxidative stress. Cytotoxic activities of Ag NPs/CNFS were investigated using a fibroblast cell
proliferation assay, nitric oxide/nitrogen dioxide (NO/NO2) measurement of the cell lysates in vitro,
inhibitory effects of Ag NPs/CNFS on healing-impaired wound repair using diabetic mice in vivo,
8-hydroxy-2′-deoxyguanosine (8-OHdG) immunohistochemical staining of the skin sections, and
generation of carbonyl protein in the wound was performed to evaluate cytotoxicity with oxidative
stress. Ag NPs/CNFS exhibited cytotoxicity for fibroblasts and a significant increase of total NO/NO2

levels in the cell lysates in vitro and increased levels of 8-OHdG and carbonyl proteins in vivo.
Although wound repair in the continuously Ag NPs/CNFS-treated group was delayed, it could be
mitigated by washing the covered wound with saline. Thus, Ag NPs/CNFS may become accepted as
an anti-infectious wound dressing.

Keywords: silver nanoparticles; chitin-nanofiber sheets; wound dressing; cytotoxicity;
oxidative stress

1. Introduction

Recently, interest in silver nanoparticles (Ag NPs) and their applications has increased, mainly
because of their antimicrobial activities, allowing their use in commercial products such as personal
care, household, and medical products as well as in textiles and food products [1,2]. Multiple processes
have been reported for controlling the physical and/or chemical characteristics of Ag NPs [3],
and environmentally friendly processes have been devised using harmless materials to prepare
Ag NPs, precluding the need for complicated purification procedures prior to use in biomedical and
environmental applications [4]. We also reported the synthesis of Ag NPs (diameter < 10 nm) using only
AgNO3-containing glass powder, glucose, and water [4–6]. Commercially available AgNO3-containing
glass is usually used as an antimicrobial agent in environmental, osseous, or dental applications
because it allows the sustained release of Ag+ into aqueous environments.
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Biological and environmental risks of synthetic Ag NPs include adverse effects on some aquatic
organisms, including cytotoxicity and genotoxicity in fish [7] and inhibition of photosynthesis in
algae [8]. In addition, significant declines in mouse spermatogenic stem cells were observed following
treatments with Ag NPs [9]. Several studies have demonstrated that Ag NPs have toxic effects at the
cellular, subcellular, and biomolecular levels, such as genes and proteins [2,10]. The evaluation
of cytotoxicity of Ag NPs has been carried out in different cellular models [1], including lung
fibroblasts [10], glioblastoma cells [10], lung cancer cell line [11], hepatocytes [12], and mesenchymal
stem cells [13]. Indeed, oxidative stress and severe lipid peroxidation have been observed in various
tissues of fish upon exposure to Ag NPs. The proposed mechanism by which Ag NPs lead to
cytotoxicity has been considered to at least partially be through the induction of reactive oxygen
species (ROS) [11,14].

Intraperitoneal administration of Ag NPs into mice, at an extremely high concentration
(1000 mg/kg), may lead to alterations of gene expression, suggesting neurotoxic effects.
Furthermore, there are some reports on oral applications of Ag NPs [15]. After oral exposure, Ag NPs
are likely translocated from the gut into the blood stream, inducing inflammation, skin discoloration,
and liver damage [16]. Although there is little information available related to pulmonary toxicity of
Ag NPs routed by inhalation [16], the oxidative potentials of Ag NPs within the lung may drive the
toxicity. Another interesting use of Ag NPs is dermatological applications, such as wound dressings
containing Ag NPs. The Ag NPs can have different biological behaviors in wounded skin compared
with normal skin, since the liver has been suggested as a secondary target for the toxicity [17,18].
Therefore, methods for preventing the diffusion of Ag NPs into the environment and their uptake into
human bodies are necessary before their wide use as an antimicrobial wound dressing [2].

Owing to the biological activity and the safety of chitin/chitosan, these compounds have attracted
considerable interest as biomaterial sources for hydrogels, micro/nanoparticles, and membranes and
sheets [19]. Chitin/chitosan has been widely studied as a natural cationic biopolymer because of its
excellent biocompatibility, biodegradability, nontoxicity [20], antimicrobial [21], tissue adhesive [22],
hemostasis [23,24], and wound healing [25,26] properties.

Methods for preventing the diffusion of Ag NPs into the environment and their uptake into
the human body are necessary before their wide use as antimicrobial agents [27], since Ag NPs are
well known to have toxic effects at the cellular, subcellular, and biomolecular levels. In our previous
studies, Ag NPs were stably adsorbed onto chitin/chitosan powders [6,28] and sheets [29] with
nanoscale fiber-like surface structures. In those applications, Ag NPs/chitin/chitosan composites
showed enhanced stability of Ag NPs and exhibited strong antimicrobial (antiviral, bactericidal, and
antifungal) activities. In the previous studies, chitin-nanofiber sheets (CNFS) were used to adsorb
and to stabilize Ag NPs, remove the caramel generated during autoclaving, and prevent aggregation
and precipitation of Ag NPs. Ag NPs were homogenously dispersed and stably adsorbed onto CNFS
with nanoscale fiber-like surface structures [29]. Subsequent studies showed that the bactericidal,
antifungal, and antiviral activities of Ag NPs/CNFS increased with Ag NP adsorption, indicating
potential applications of CNFS as novel stabilizers and carriers for Ag NPs [27,29]. On the other hand,
Ag NPs have exhibited various degrees of in vitro and in vivo cytotoxicity [10]. Moreover, despite the
acceptance of chitin/chitosan as a suitable biocompatible carrier agent for Ag NPs [27,29], no study
has investigated the cytotoxicity of Ag NPs/CNFS. It is necessary to fully understand the cytotoxicity
of Ag NPs/CNFS in dermal applications and its mechanism of action, thereby ensuring its safety in
clinical applications as an anti-infectious wound dressing.

We previously reported that Ag NPs were efficiently adsorbed onto CNFS. The resulting
Ag NPs/CNFS composites enhanced the stability of Ag NPs and exhibited much stronger antimicrobial
activities [27,29]. Although those observations indicate that Ag NPs/CNFS have potential as
antimicrobial biomaterials and anti-infectious wound dressings, no further study has been performed
on the cytotoxicity and safety of Ag NPs/CNFS for dermatological applications as anti-infectious
wound dressing. The aim of this study is to evaluate the cytotoxic effect of Ag NPs/CNFS for fibroblasts
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in vitro and the inhibitory effect on wound healing of healing-impaired wound in vivo, focused on
oxidative stress.

2. Results

2.1. Cell Proliferation Assay and NO/NO2 Measurement In Vitro

Human fibroblasts were cultured on 24-well tissue culture plates in 1 mL of Dulbecco’s modified
Eagle Medium (DMEM) with or without 10% heat-inactivated fetal bovine serum (FBS) and various
concentrations of Ag NPs alone or Ag NPs/chitin (2 mg) complex for 2 days to evaluate the cytotoxicity
of Ag NPs and Ag NPs/chitin complex [5,6]. Fibroblasts cultured in the presence of ≥100 ng/mL
Ag NPs (Figure 1A) or ≥200 ng Ag NPs/chitin (2 mg) (Figure 1C) without FBS showed decreased
proliferation during 2-day culture. In contrast, the number of cells increased with 10% FBS in the
presence of ≤1.6 µg/mL Ag NPs (Figure 1B) and Ag NPs/chitin (2 mg) (Figure 1D).
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Figure 1. Fibroblast cell proliferation assay. Human fibroblasts were cultured with (B,D) or without
(A,C) 10% fetal bovine serum (FBS) and various concentrations of silver nanoparticles (Ag NPs) alone or
Ag NPs/chitin complex (Ag NPs/CNFS) for 2 days. Data represent the mean± SD of 6 determinations.

The fibroblasts were also cultured on 6-well tissue culture plates in 3 mL of DMEM containing 10%
FBS for 2 days. Either Ag NPs (6 µg)/CNFS (diameter 20 mm, about 10 mg) or CNFS alone was placed
on a round cell-strainer (diameter: 21 mm). The distance between the cell layer and the cell strainer
was 2 mm. For Ag NPs and control groups, 2.5 mL of medium with and without 2 µg/mL Ag NPs,
respectively, was poured from the cell strainer (Figure 2). These cultures were incubated in 2.5 mL
DMEM with 10% FBS and the antibiotics for 1 day. The cells cultured with either Ag NPs/CNFS or
Ag NPs decreased in number compared to control at 1-day culture (Figure 3A). Microscopic observation
of Ag NPs/CNFS- and Ag NPs-treated cells showed distinct morphological changes, indicating
unhealthy cells and floating cells, and suggested widespread cell death due to necrosis (Figure 3C).
In this experiment, there was no direct contact between the cells and Ag NPs/CNFS, and there was no
detectable release of Ag NPs into the medium from Ag NPs/CNFS (data not shown). However, the
possibility that the cytotoxic effect was caused by Ag+-release from Ag NPs/CNFS into medium was
not ruled out, since although silver ions (Ag+) in the medium were measured using silver ion detection
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kits, the sensitivity was low. On the other hand, Ag NPs alone permeated through the cell strainer
and directly interacted with the cells. Furthermore, total amounts of NO/NO2 in the cell lysates
of Ag NPs/CNFS (271 ± 70 µmol/mL: ratio = 1.18) and Ag NPs (269 ± 50 µmol/mL: ratio = 1.17)
groups were significantly increased compared to the control (230 ± 60 µmol/mL: ratio = 1.0) and
CNFS (220 ± 50 µmol/mL: ratio = 0.96) groups (Figure 3B).
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Figure 2. Scheme of experiments on noncontact cytotoxicity of Ag NPs/CNFS (for Figure 3).
The fibroblasts were cultured on a 6-well tissue culture plate in 2.5 mL of Dulbecco’s modified Eagle
Medium (DMEM) containing 10% FBS for 2 days. Either Ag NPs/CNFS or CNFS alone was placed on
a round cell-strainer.
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Figure 3. Cytotoxicity of Ag NPs/CNFS in vitro toward fibroblasts. The proliferation of fibroblasts
cultured with either Ag NPs/CNFS or Ag NPs as described in Figure 2 decreased for 1-day culture (A).
Each fibroblast was harvested after cells were exposed to Ag NPs/CNFS for 1 day. The cell lysates
were subjected to total NO/NO2 analysis (B). Data represent the mean ± SD of 6 determinations.
Microscopic observation showed that the cells in Ag NPs/CNFS- and Ag NPs-groups were necrotized,
and each microphotograph was representative of six cultures (C).
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2.2. Wound Closure and Histochemical Analyses

Male well-established diabetic mice (C57BLKS/J Iar-+Leprdb/+Leprdb; SLC Japan Inc.,
Tokyo, Japan) were used (12–16 weeks old) as a healing-impaired wound model. On 2, 4, 7, and
9 days after wounding, each cover sheet was removed and digital photographs were taken to
quantify the epithelialization rates. The continuously covered wounds with Ag NPs (6 µg)/CNFS
(diameter: 20 mm, about 10 mg) exhibited significantly delayed wound closure on days 4, 7, and
9 compared to wounds covered with CNFS alone (Figure 4A). However, the delay in wound
closure was mitigated by washing Ag NPs/CNFS-covered wounds with saline on days 2 and 4
(Figure 4B). Figure 4C shows histological examination of reepithelialization and granulation of
wound treated with continuous Ag NPs/CNFS, CNFS alone, and Ag NPs/CNFS with saline wash.
The result also indicated mitigation of the delay in wound repair with Ag NPs/CNFS with saline
wash. For histological observation, 8-hydroxy-2′-deoxyguanosine (8-OHdG) immunohistochemical
staining of skin sections after 24 h was performed to measure the 8-OHdG-positive sites (Figure 5).
The 8-OHdG indicates the hyperoxidation state of nucleic acids, allowing evaluation of the
antioxidative effect [30]. Significant increases in the number of 8-OHdG-positive sites were observed
in the Ag NPs/CNFS-treated wounds compared with the CNFS-treated (control) wounds (Figure 5).
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Figure 4. Effects of Ag NPs/CNFS removal and washing on wound epithelialization. Ag NPs/CNFS
(3) and CNFS (#) were removed, and Ag NPs/CNFS was removed and the wound was washed
with saline (�) on the indicated day after wound creation, and digital photographs were taken to
quantify the epithelialization rates (A and B). Each photograph was representative of six wounds (A).
Data represent the mean ± SD of 6 determinations, Wilcoxon rank sum test (multiple comparison),
* p < 0.05, ** p < 0.01 (B). Wound closure in the wash group was recovered by removal of Ag NPs/CNFS
on day 4–9. Histological examination of reepithelialization and granulation of wounds treated with Ag
NPs/CNFS on days 2 and 4, and each microphotograph was representative of six cultures (C).
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Figure 5. Effect of Ag NPs/CNFS or CNFS treatment on oxidative stress in skin. Immunohistochemical
(8-hydroxy-2′-deoxyguanosine, 8-OHdG) staining of skin sections was performed to measure the
proportion of 8-OHdG-positive sites 1 day after treatment with either Ag NPs/CNFS (A) or CNFS (B).
A significant increase in the number of 8-OHdG-positive sites was observed in the Ag NPs/CNFS group
compared with the CNFS group. The arrows show the 8-OHdG-positive sites. Each microphotograph
is representative of six samples (A,B). The number of 8-OHdG-positive sites in microphotograph of
each sample (n = 6) were statistically analyzed (C). Data represent the mean ± SD of 6 determinations,
** Student’s t test, p < 0.01 (C).

2.3. Carbonyl Protein

Protein oxidation, which produces carbonyl proteins, is defined as the covalent modification
of proteins induced either directly by reactive oxygen species (ROS) or indirectly by reaction with
secondary byproducts of oxidative stress [30,31]. Figure 6 shows a scheme of carbonyl protein
assay. Carbonyl protein levels in the washes of 0.39 µg/cm2, 0.74 µg/cm2, and 1.55 µg/cm2

Ag NPs/CNFS-treated wounds were significantly higher on day 2 than those in the CNFS-treated
group (Figure 7). In contrast, the wash group, which was treated with 1.55 µg/cm2 Ag NPs/CNFS
for 2 days and then treated with 1.55 µg/cm2 Ag NPs/CNFS after washing the wound with saline on
days 2 and 4 exhibited significantly lower values on day 4 than those of the continuously 0.74 µg/cm2

and 1.55 µg/cm2 Ag NPs/CNFS-treated groups. Thereafter, the amounts of carbonyl proteins in each
group gradually decreased on day 7 and day 9, and there were no significant differences.
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Figure 6. Scheme of experiments on carbonyl protein. A cut conical microtube with phosphate-buffered
saline (PBS) was placed on the wound, which was gently washed on days 2, 4, 7, and 9. The washes
were collected and measured for the amount of carbonyl protein. The data were analyzed in Figure 7.
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Figure 7. Effect of Ag NPs/CNFS or CNFS treatment on carbonyl protein generation. Carbonyl protein
levels in the washes of various concentrations of Ag NPs/CNFS, CNFS, and washed groups were
measured, as illustrated in Figure 6. The wash group was treated with 1.55 µg/cm2 Ag NPs/CNFS
for 2 days and then treated with 1.55 µg/cm2 Ag NPs/CNFS after washing the wound with saline
on days 2 and 4. Data represent the mean ± SD of 6 determinations, Wilcoxon’s rank sum test
(multiple comparison), * p < 0.05.

3. Discussion

Oxidative stress has specific effects in cells, including oxidative damage to proteins, lipids, and
DNA. To establish the role of oxidative stress as a decisive factor in Ag NPs/CNFS toxicity, cell growth
assay and measurements of NO/NO2 levels were performed in this study. Ag NPs/CNFS as well
as Ag NPs alone exhibited cytotoxicity in fibroblasts in this study by direct contact; the cytotoxicity
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could be partially ameliorated in the presence of 10% FBS (Figure 1). In addition, a significant increase
of total NO/NO2 levels was also observed in both Ag NPs/CNFS- and Ag NPs-treated cell lysates
in vitro. The identical increase of total NO/NO2 levels when treated with either Ag NPs/CNFS
or Ag NPs might indicate enhanced inflammation [32]. In this study, there was no direct contact
between the cells and Ag NPs/CNFS (Figure 3), and there was little detectable release of Ag NPs from
Ag NPs/CNFS. However, since it has been reported that Ag+ may be rapidly released from Ag NPs
in some conditions [33–35], the possibility that Ag release from Ag NPs/CNFS into medium was
not ruled out. Although silver ions (Ag+) in the medium were measured using silver-ion detection
kits, the sensitivity was low. Thus, the cellular uptake or direct interaction of Ag+ released from
Ag NPs/CNFS cannot be ruled out as a major mechanism of the cytotoxicity of Ag NPs/CNFS since
toxic concentration of Ag+ is very low. However, further investigation is required regarding the
possible dissolution and cellular uptake of Ag+ or Ag NPs from Ag NPs/CNFS and the long-term
safety effects in both humans and for the environment.

Wound healing of db/db diabetic mice in the Ag NPs/CNFS group in vivo was significantly
delayed on days 4, 7, and 9 compared to the CNFS group. However, restoration of wound healing was
observed after removing Ag NPs/CNFS and washing the wound with saline (Figure 4). Similarly, while
carbonyl proteins obtained from Ag NPs/CNFS-treated wounds were significantly higher on day
2 than the CNFS group, the wash group, which was treated with Ag NPs/CNFS and then treated
with Ag NPs/CNFS after washing the wound with saline on days 2 and 4, exhibited significantly
lower values on days 4 and 7 (Figure 7). In histological observation, 8-OHdG immunostaining in
Ag NPs/CNFS-treated wounds was significantly greater than that observed for CNFS-treated wounds
(Figure 5). Carbonyl protein levels in wounds were also significantly higher on day 2 compared
to the control (Figure 7). Thus, although Ag NPs/CNFS treatment of wounds results in delayed
repair, probably by the generation of oxidative stress, the wound repair can be restored by washing
the covered wound with saline on days 2 and 4. Thus, Ag NPs/CNFS may become accepted as an
anti-infectious wound dressing.

Several reports have emphasized the role played by oxidative stress in nanoparticle
toxicology [10,34–36]. To establish the role of oxidative stress as a decisive factor in Ag NPs/CNFS
toxicity, measurements of cell proliferation and NO/NO2 levels in vitro, and wound repair, 8-OHdG
immunostaining, and carbonyl protein levels in vivo were performed. The increase of total NO/NO2

levels treated with either Ag NPs/CNFS or Ag NPs might indicate enhanced inflammation as a source
of oxidative stress, since NO acts a second messenger in inflammatory signaling and is immediately
changed to NO2 [32]. The 8-OHdG staining indicates the hyperoxidation state of nucleic acids, allowing
the antioxidative effect to be evaluated [30]. The use of carbonyl protein as a biomarker of oxidative
stress has some advantages compared to the measurement of other oxidation products, such as the
relatively early formation and stability of carbonylated proteins [31]. The results of these oxidative
stress biomarkers indicate a close relationship between cytotoxicity and oxidative stress generated
from Ag NPs/CNFS. Thus, the proposed mechanism of the cytotoxic effects of Ag NPs is thought to
involve, in part, the induction of ROS as oxidative stress.

Finally, CNFS is commercially available, is a clinically approved biomaterial, and is used
as a wound dressing. Given the fact that obtaining clinical approval for a wound dressing is
time-consuming and costly, to exploit the function and safety of CNFS as Ag NPs-carrying wound
dressing seems a more accessible and feasible option. We examined other materials such as cotton,
cellulose sheet, collagen sponge, silk, and others on adsorption of Ag NPs. A little Ag NPs are adsorbed
to collagen sponge and silk sheet, but Ag NPs are not adsorbed to the others. In addition, a little
Ag NPs are adsorbed to chitin/chitosan with flat/smooth film-like surface [6,28]. CNFS has a weak
antimicrobial activity and the addition of Ag NPs remarkably enhance microbicidal activity [6,28].
Additionally, chitin/chitosan has been widely studied as a natural cationic biopolymer because of its
excellent biocompatibility, biodegradability, nontoxicity, antimicrobial, tissue adhesive, hemostasis,
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and wound-healing properties [19]. Thus, CNFS is an excellent carrier material for Ag NPs as
Ag NPs-carrying wound dressing.

4. Materials and Methods

4.1. Preparation of Ag NPs and Ag NPs/CNFS

To 100 mL of distilled water containing 1 g D-glucose (Wako Pure Chemical Industries, Ltd.,
Osaka, Japan), 1 g Ag NO3-containing glass powder (BSP21, Kankyo Science, Kyoto, Japan) was added
and mixed well. The mixture was autoclaved (121 ◦C, 200 kPa) for 20 min and then gradually cooled
down to room temperature. After centrifugation of the mixture at 1500 rpm for 10 min, the brown
supernatant containing Ag NPs was collected and stored at 4 ◦C.

CNFS (Beschitin W®, Unitika Ltd., Osaka, Japan) (70 mm × 55 mm, degree of deacetylation
of about 30%) was immersed in 2 mL of various concentrations of Ag NP suspension (particle size
6.53 ± 1.78 nm), washed with distilled water three times, and then dried to produce Ag NPs/CNFS.
The concentration of released Ag NPs into the medium from Ag NPs/CNFS was evaluated using
UV–Vis spectra, and a peak at 390.5 nm which was representative of the spherical Ag NPs, and silver
ions (Ag+) were measured using silver-ion detection kits (KDD Corp., Osaka, Japan).

4.2. Cell Proliferation Assay and NO/NO2 Measurement In Vitro

Human fibroblasts from Takara Bio Inc., Shiga, Japan, manufactured by PromoCell GmbH,
Heiderlerg were used in this study. The tissue used by PromoCell for the isolation of human cell
cultures was derived from donors who have signed an informed consent form, which outlines
in detail the purpose of the donation and the procedure for processing the tissue. The ethical
committee in National Defense Medical College does not require approval for usage of commercially
available human-derived cells (PromoCell, GmbH, Heidelberg, Germany). The fibroblasts were
seeded at a density of about 5 × 104 cells on a 24-well tissue culture plate (Sumitomo Bakelite Co.,
Ltd., Tokyo, Japan) and cultured in 1 mL of DMEM containing 100 U/mL penicillin G and
100 µg/mL streptomycin with or without 10% heat-inactivated fetal bovine serum (FBS) with various
concentrations of Ag NPs alone or Ag NPs/chitin (2 mg) complex for 2 days. The chitin used in
this study was prepared by mincing CNFS (diameter > 20 µm). In this experiment, the fibroblasts
could grow at almost the same growth rate for 2 days when starved of FBS, probably due to the
remaining FBS. The growth rate of fibroblast significantly decreased after 3 days or more compared to
that cultured with 10% FBS. Therefore, this experimental protocol was adopted.

The fibroblasts were also seeded at a density of about 5 × 104 cells on a 6-well tissue culture plate
(Sumitomo Bakelite Co., Ltd., Tokyo, Japan) and cultured in 3 mL of DMEM containing 10% FBS for
2 days. Ag NPs (6 µg)/CNFS (diameter: 20 mm, about 10 mg), or CNFS alone was placed on a round
cell-strainer (40 µm Nylon, BD Falcon, San Jose, CA, USA). The distance between the cell layer and cell
strainer was 2 mm (Figure 2). For the Ag NPs group, 2.3 µg of Ag NPs was added into the 2.5 mL of
medium poured onto the cell strainer. These cell cultures were incubated in 2.5 mL DMEM with FBS
and the antibiotics for 1 day.

To count live fibroblasts, 200 µL WST-1 reagent (Cell Counting Kit, Dojindo, Kumamoto, Japan)
was added into the fresh medium (2 mL), incubated for 1 h at 37 ◦C, and the optical density (OD) was
read at 450 nm on an Immuno Mini plate reader (Nunc InterMed Japan, Tokyo, Japan).

For NO/NO2 measurement, the strainers and used media were removed and the cells were
gently rinsed with phosphate-buffered saline (PBS). The cells were harvested with lysis buffer
(Affymetrix Japan K.K, Tokyo, Japan). The lysates were then centrifuged at 1000× g for 30 min, and the
protein contents in the supernatant were measured using a protein assay kit (Coomassie Protein Assay
Kit, Thermo Scientific, Waltham, MA, USA). The protein concentrations were adjusted to 10 µg/mL.
The total NO/NO2 was measured with a NO/NO2 measurement kit (R&D Systems, Minneapolis,
MN, USA).
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4.3. In Vivo Study

All animal experiments were carried out according to the protocol approved by the Animal
Experimentation Committee (authorization number: 13014) at the National Defense Medical College
(Tokorozawa, Saitama, Japan). The ambient temperature was maintained at 25 ± 2 ◦C during the
experiments. Diabetic mice (C57BLKS/J Iar +Leprdb/+Leprdb; SLC Japan Inc, Tokyo, Japan) were used
(12–16 weeks old) as a healing-impaired wound model. Before the experiments, urinary glucose and
protein in each mouse were analyzed using reagent strips (Uriace, Terumo Corporation, Tokyo, Japan),
and all of the db/db mice were diagnosed as severely diabetic.

Animals were lightly sedated in an ether-filled anesthesia box. After the sedation, intraperitoneal
anesthesia was performed. The anesthetic agent was a 5 mg/mL solution of pentobarbital sodium
(Somnopentyl®, 64.8 mg/mL; Kyoritsu Seiyaku, Tokyo, Japan) in saline, injected at an initial dose of
50 mg/kg body weight. After the hair was shaved using electric clippers, a full-thickness wound with
a diameter of 8 mm was created in two places on the back of a mouse by BIOPSY PUNCH (Kai Medical,
Tokyo, Japan). The wounds were covered with either Ag NPs/CNFS or CNFS alone, wrapped with
film (Kurerap, Kureha Corporation, Tokyo, Japan) and then fixed with an adhesive stretch bandage
(HILATE, Iwatsuki Co., Ltd., Tokyo, Japan).

4.3.1. Wound Closure Analyses

On 2, 4, 7, and 9 days after wound creation, the cover sheets were removed and digital photographs
were taken to quantify the epithelialization rates. The wound-healing rate was calculated using the
following formula: wound area (%) = unepithelialized area/original wound area × 100.

4.3.2. Histochemistry

Excised skin tissues were fixed in 4% paraformaldehyde solution at 4 ◦C for 12 h, embedded
in paraffin, and cut into 3.5 µm wide sections 2 and 4 days after wound preparation. Each section
was stained with hematoxylin and eosin (H&E). Sections were made perpendicular to both the
anteroposterior axis and the surface of the skin. Each section was stained with H&E.

For staining with 8-hydroxy-2′-deoxyguanosine (8-OHdG), skin sections were deparaffinized,
washed with distilled H2O, and incubated in 0.3% hydrogen peroxide for 15 min to suppress
endogenous peroxidase activity. After washing with PBS, blocking solution was applied to the
samples at room temperature for 10 min to adsorb nonspecific proteins. The washed samples were
treated with primary antibody (anti-8-OHdG mouse monoclonal antibody, Japan Institute for the
Control of Aging, Shizuoka, Japan) for 12 h at 4 ◦C. The washed samples were treated with secondary
antibody (anti-mouse peroxidase-conjugated second antibody, Nichirei Biosciences, Tokyo, Japan)
for 30 min at room temperature. After washing the samples, 3-3′-diaminobenzine-4HCl (DAB)
(Dako, Glostrup, Denmark) was added and the samples were stained for 5 min. The sections were
counterstained with Mayer’s hematoxylin to study tissue morphology.

4.3.3. Measurements of Carbonyl Protein

A cut conical microtube (1.5 mL) with 1 mL of PBS was placed on the wound, which was gently
washed on days 2, 4, and 7 as illustrated in Figure 6. The collected washes were then centrifuged
(3000 rpm) at 4 ◦C for 10 min, and the supernatants were subjected to measurement of protein contents
using a protein assay kit (Coomassie Protein Assay Kit, Thermo Scientific, Waltham, MA, USA).
The protein concentrations were adjusted to 10 µg/mL and carbonyl protein was determined using
a protein carbonyl assay kit (OxiselectTM Protein Carbonyl ELISA Kit, Cell Biolabs, Inc., San Diego,
CA, USA).
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4.4. Statistical Analyses

Results were given as mean ± SD. Statistical evaluations were determined using the Wilcoxon
rank sum test, Dunnett’s test, or Student’s t-test. Statistical analyses were conducted using JMP® Pro for
Windows (SAS Institute Inc., Cary, NC, USA. p-values of < 0.05 and < 0.01 were considered significant.

5. Conclusions

This study suggested that Ag NPs/CNFS has cytotoxicity identical to that of Ag NPs alone.
The proposed mechanism of the cytotoxic effects of Ag NPs is thought to involve, in part, the induction
of ROS as oxidative stress. Although continuous Ag NPs/CNFS treatment of wounds results in
delayed wound repair of healing-impaired diabetic mice, this delay can be mitigated by washing the
covered wound with saline. Thus, Ag NPs/CNFS is a promising anti-infectious wound dressing that
is applicable for healing-impaired wound repair.
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