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Abstract: Lithium metal oxide nanoparticles were synthesized by induction thermal plasma.
Four different systems—Li–Mn, Li–Cr, Li–Co, and Li–Ni—were compared to understand formation
mechanism of Li–Me oxide nanoparticles in thermal plasma process. Analyses of X-ray diffractometry
and electron microscopy showed that Li–Me oxide nanoparticles were successfully synthesized in
Li–Mn, Li–Cr, and Li–Co systems. Spinel structured LiMn2O4 with truncated octahedral shape
was formed. Layer structured LiCrO2 or LiCoO2 nanoparticles with polyhedral shapes were also
synthesized in Li–Cr or Li–Co systems. By contrast, Li–Ni oxide nanoparticles were not synthesized
in the Li–Ni system. Nucleation temperatures of each metal in the considered system were evaluated.
The relationship between the nucleation temperature and melting and boiling points suggests that
the melting points of metal oxides have a strong influence on the formation of lithium metal oxide
nanoparticles. A lower melting temperature leads to a longer reaction time, resulting in a higher
fraction of the lithium metal oxide nanoparticles in the prepared nanoparticles.

Keywords: thermal plasmas; lithium metal oxide; nanoparticle formation mechanism

1. Introduction

Nanoparticles have become widely utilized due to their enhanced and unique properties relative
to bulk materials. The preparation of nanoparticles can be classified into physical and chemical
methods. The physical methods include mechanical milling [1,2], laser ablation [3–5], and other aerosol
processes with energy sources to provide a high temperature. Among these methods, attractive material
processing with thermal plasmas have been proposed for the nanoparticles production. This is because
thermal plasmas offer unique advantages; high enthalpy to enhance reaction kinetics, high chemical
reactivity, rapid quenching rate in the range of 103–6 K/s, and selectivity of atmosphere in accordance
with the required chemical reactions. Thermal plasmas are capable of evaporating large amount
of raw materials, even with high melting and boiling temperatures [6–9]. Furthermore, high-purity
nanoparticles can be synthesized in an induction thermal plasma because thermal plasma can be
generated in a plasma torch without internal electrodes [10,11]. These advantages of thermal plasmas
have brought about advances in plasma chemistry and plasma processing [12–15].

Lithium metal oxides have attracted many researchers because of their unique properties as cathode
for lithium-ion batteries [16–18], CO2 sorption material [19], and other magnetic, electrochemical
materials. Layer structured LiCoO2 is widely employed as cathodes in commercial battery applications,
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in spite of its toxicity and high cost. To solve the economic and environmental problems, alternatives
of LiCoO2 have been intensively explored. One of the alternatives is spinel-structured LiMn2O4, which
provides a promising high-voltage cathode material for lithium-ion batteries owing to their high
theoretical energy density, low cost, and eco-friendliness [18,20–22]. LiNiO2 is also a candidate due to
its excellent cycle life, with negligible capacity fading etc. [17,23]. The liquid phase method is generally
used in the synthesis of lithium metal oxide nanoparticles; however, productivity of the nanoparticles
in the liquid phase method is insufficient for industrial application. Therefore, the synthesis method of
lithium oxide nanoparticles with a high productivity is strongly demanded.

Thermal plasmas are expected to be promising energy sources to fabricate nanoparticles at high
productivity from micron-sized powder as raw materials. Here, one-step synthesis of lithium-metal
oxide nanoparticles with induction thermal plasma is studied. The purpose of the present study
is to synthesize the lithium metal oxide nanoparticles via the induction thermal plasma and to
investigate the formation mechanism of lithium-metal oxide nanoparticles. Different lithium metal
systems—Li–Mn, Li–Cr, Li–Co, and Li–Ni—were compared to understand the formation mechanism.

2. Results and Discussion

2.1. Experimental Results

Figure 1 shows X-ray diffraction spectra of the prepared nanoparticles by the induction thermal
plasma in different systems—Li–Mn, Li–Co, Li–Cr, and Li–Ni. In the case of the Li–Mn system,
main diffraction peaks correspond to spinel-structured LiMn2O4, while diffraction peaks of Mn3O4

are also found. In cases of Li–Co and Li–Cr, layer-structured LiCoO2 and LiCrO2 were found
as well as their oxides. In the Li–Ni case, Li0.4Ni1.6O2 and unreacted Li2CO3 were confirmed.
These results clearly show the strong influence of the constituent metals on the formation of lithium
oxide nanoparticles. Moreover, Figure 2 indicates composition of the prepared nanoparticles analyzed
from X-ray diffractometry (XRD) spectra. These compositions of the prepared nanoparticles were used
to evaluate the ratio of metal that reacted with Li. Evaluated reaction ratio will be discussed in the
following section.
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Figure 1. X-ray diffractometry (XRD) spectra of as-prepared nanoparticles by induction thermal plasma
in different systems, Li–Mn, Li–Co, Li–Cr, and Li–Ni.
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Figure 2. Composition of prepared nanoparticles by induction thermal plasma in different systems,
Li–Mn, Li–Co, Li–Cr, and Li–Ni.

Morphologies and particle sizes of the prepared nanoparticles were observed via transmission
electron microscopy (TEM). Figure 3 shows the representative TEM images and the particle size
distributions of the nanoparticles in different systems. Many spherical particles with 60 nm in mean
diameter are observed in the Li–Ni system. In the cases of Li–Mn, Li–Co, and Li–Cr, most of the particles
with 50–80 nm in mean diameters have polyhedral shapes including quadrangular, pentagonal, and
hexagonal shapes. In particular, many particles with a hexagonal shape can be found as shown in
Figure 3a. Hence, the spinel-structured LiMn2O4 is considered to have a hexagonal shape because
LiMn2O4 is a major product in the Li–Mn system, according to XRD results.
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Figure 3. (a) Representative transmission electron microscopy (TEM) image and particle size distribution
of prepared nanoparticles by induction thermal plasma in Li–Mn system; (b) that in Li–Cr system;
(c) that in Li–Co system; (d) that in Li–Ni system.

Scanning electron microscopy (SEM) observation was carried out to clarify morphology of
LiMn2O4 more specifically than TEM observation. Figure 4 shows the representative SEM image
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of the prepared nanoparticles in the Li–Mn system. Many particles have truncated an octahedral
shape as shown in Figure 4. Previous research on morphology of ferrite nanoparticles synthesized
by the induction thermal plasma reported that the spinel-structured nanoparticles had a truncated
octahedral shape [24]. The spinel-structured nanoparticles synthesized in thermal plasma have a
truncated octahedral shape, although the stable structure of the spinel-structured particles are generally
considered to be of an octahedral shape. The reason for this truncation is currently under investigation.
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2.2. Nanoparticle Formation Mechanism

Homogeneous nucleation temperatures of metals considered in the present study were estimated
based on nucleation theory considering non-dimensional surface tension [25]. The homogeneous
nucleation rate J can be expressed as

J “
βijn2
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c

Θ
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where S is the saturation ratio and ns is the equilibrium saturation monomer concentration at
temperature T. β is the collision frequency function. The dimensionless surface tension is given
by the following equation:

Θ “
σs1

kT
(2)

where σ is the surface tension and s1 is the monomer surface area. The surface tension and the
saturation ratio have a dominant influence on determining the nucleation rate. Stable nuclei are
observed experimentally when the nucleation rate is over 1.0 cm´3¨ s´1. Hence, the corresponding
value of the saturation ratio is defined as the critical saturation ratio. The detailed procedure to estimate
the nucleation rate and corresponding nucleation temperature can be found in previous works [10,25].

The relationship between the calculated nucleation temperature and the boiling and melting points
is summarized in Figure 5. Because of the unknown properties of metal oxides, only melting point
oxides are plotted for metal oxides. These temperatures indicate that the melting points of the oxides
are higher than the nucleation temperatures of pure metals in each Li–Me system. Therefore, nucleation
of metal oxides is considered to occur at first. Li oxide and metal vapors co-condense onto the nuclei
just after the nucleation starts.



Nanomaterials 2016, 6, 60 5 of 9

Nanomaterials 2016, 6, 60 5 of 9 

 

Figure 5. Relationship between nucleation temperature and melting and boiling points of considered 

metals and metal oxides. 

The above mechanism can be proposed as a common mechanism for all considered Li–Me 

systems because the relationship between the nucleation temperature and the melting and boiling 

temperature of their oxides shows the same trend. However, experimental results show a different 

ratio of metal reactive with Li to total metal. In the cases of Li–Cr and Li–Mn, high ratios of the 

reactive metals were obtained, while a low ratio was obtained in Li–Ni system. Then, melting points 

of each oxide in different system were focused because the reaction rate of metal oxide particles and 

the condensed lithium would drastically decrease after complete solidification of the growing 

particles. 

Figure 6 shows the relationship between the lowest melting temperature of metal oxides for each 

Li–Me system and the reaction ratios. The results suggest a lower melting point of oxide leads to a 

higher reaction ratio. This can be explained by the different reaction time during the nanoparticle 

formation process. Figure 7 summarizes the formation mechanism of Li–Me oxide nanoparticles. A 

lower melting point of oxide leads to a longer residence time of growing particles in a liquid-like state, 

resulting in the longer reaction time with condensed lithium oxide. Consequently, a higher reaction 

ratio can be obtained in the Li–Me system, as in that of Li–Mn and Li–Cr. On the other hand, a shorter 

residence time of the growing particles in a liquid-like state leads to a shorter reaction time, resulting 

in a lower reaction ratio. These results suggest that the melting point of metal oxide has a strong 

influence on the reaction with lithium oxide. 

 

Figure 6. Relationship between lowest melting points of metal oxides and the reaction ratios for each 

Li–Me system. 

0 500 1000 1500 2000 2500 3000 3500

Temperature [K]

Li

Li
2
O

Mn

MnO
2

Mn
2
O

3

Mn
3
O

4

MnO

Cr

Cr
2
O

3

CrO
2

Co

Co
3
O

4

CoO

Ni

NiO

Nucleation temperature

Melting point

Boiling point

0

0.1

0.2

0.3

0.4

0.5

0.6

500 1000 1500 2000 2500R
a

ti
o

 o
f 
M

e
ta

l 
R

e
a
c
te

d
 w

it
h

 L
it
h

iu
m

to
 T

o
ta

l 
M

e
ta

l 
[-

]

Temperature [K]

Mn

Cr

Co

Ni

Figure 5. Relationship between nucleation temperature and melting and boiling points of considered
metals and metal oxides.

The above mechanism can be proposed as a common mechanism for all considered Li–Me systems
because the relationship between the nucleation temperature and the melting and boiling temperature
of their oxides shows the same trend. However, experimental results show a different ratio of metal
reactive with Li to total metal. In the cases of Li–Cr and Li–Mn, high ratios of the reactive metals
were obtained, while a low ratio was obtained in Li–Ni system. Then, melting points of each oxide in
different system were focused because the reaction rate of metal oxide particles and the condensed
lithium would drastically decrease after complete solidification of the growing particles.

Figure 6 shows the relationship between the lowest melting temperature of metal oxides for each
Li–Me system and the reaction ratios. The results suggest a lower melting point of oxide leads to
a higher reaction ratio. This can be explained by the different reaction time during the nanoparticle
formation process. Figure 7 summarizes the formation mechanism of Li–Me oxide nanoparticles.
A lower melting point of oxide leads to a longer residence time of growing particles in a liquid-like
state, resulting in the longer reaction time with condensed lithium oxide. Consequently, a higher
reaction ratio can be obtained in the Li–Me system, as in that of Li–Mn and Li–Cr. On the other hand,
a shorter residence time of the growing particles in a liquid-like state leads to a shorter reaction time,
resulting in a lower reaction ratio. These results suggest that the melting point of metal oxide has
a strong influence on the reaction with lithium oxide.
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Figure 6. Relationship between lowest melting points of metal oxides and the reaction ratios for each
Li–Me system.



Nanomaterials 2016, 6, 60 6 of 9
Nanomaterials 2016, 6, 60 6 of 9 

 

Figure 7. Conceptual diagram of formation mechanism of Li–Me oxide nanoparticles in induction 

thermal plasma. 

The above mechanism can explain the obtained results well, although this is still only a 

hypothesis. Further experimental and theoretical investigation will be required to understand the 

formation mechanism of complicated oxide nanoparticles in thermal plasmas. 

3. Experimental Section 

3.1. Experimental Setup and Conditions 

A schematic illustration of the experimental setup for Li–Me oxide nanoparticle fabrication is 

presented in Figure 8a. This equipment is composed of the plasma torch, the reaction chamber where 

the nanoparticles are synthesized, and the filter unit. Figure 8b shows the enlarged illustration of the 

plasma torch. High temperature plasma of more than 10,000 K was generated in the plasma torch by 

induction heating at 4 MHz. The input power was controlled at 20 kW. Ar was used for the carrier 

gas of the raw powder at 3 L/min and inner gas at 5 L/min. A mixture of argon and oxygen were used 

for the plasma forming gas at 60 L/min. Mixture of Li2CO3 with 3.5 μm in diameter and metal or metal 

oxide with 3–10 μm in mean diameter were injected from the powder feeder by Ar carrier gas. 

Different metals including Mn, Cr, Co, and Ni were compared to investigate the formation 

mechanism of Li–Me (Mn, Cr, Co, and Ni) nanoparticles. The composition ratio of Li2CO3 to metal 

was 0.5. The powder feed rate was fixed at 400 mg/min. These experimental conditions are listed in 

Table 1. 

 

Figure 8. Schematic illustration of induction thermal plasma system for nanoparticles fabrication (a) 

and enlarged illustration of plasma torch (b). 

Figure 7. Conceptual diagram of formation mechanism of Li–Me oxide nanoparticles in induction
thermal plasma.

The above mechanism can explain the obtained results well, although this is still only a hypothesis.
Further experimental and theoretical investigation will be required to understand the formation
mechanism of complicated oxide nanoparticles in thermal plasmas.

3. Experimental Section

3.1. Experimental Setup and Conditions

A schematic illustration of the experimental setup for Li–Me oxide nanoparticle fabrication is
presented in Figure 8a. This equipment is composed of the plasma torch, the reaction chamber where
the nanoparticles are synthesized, and the filter unit. Figure 8b shows the enlarged illustration of
the plasma torch. High temperature plasma of more than 10,000 K was generated in the plasma
torch by induction heating at 4 MHz. The input power was controlled at 20 kW. Ar was used for the
carrier gas of the raw powder at 3 L/min and inner gas at 5 L/min. A mixture of argon and oxygen
were used for the plasma forming gas at 60 L/min. Mixture of Li2CO3 with 3.5 µm in diameter and
metal or metal oxide with 3–10 µm in mean diameter were injected from the powder feeder by Ar
carrier gas. Different metals including Mn, Cr, Co, and Ni were compared to investigate the formation
mechanism of Li–Me (Mn, Cr, Co, and Ni) nanoparticles. The composition ratio of Li2CO3 to metal
was 0.5. The powder feed rate was fixed at 400 mg/min. These experimental conditions are listed in
Table 1.

Prepared nanoparticles were collected from the filter and the inner wall of the reaction chamber.
Unevaporated raw materials were not confirmed according to SEM observation of the collected
particles. This fact implies that the fed raw materials were completely evaporated in the high
temperature region of the thermal plasma and converted into nanoparticles during the quenching
process. Therefore, the mole fractions of the Li–Me oxides indicated in Figure 2 correspond to the
yields of the Li–Me oxide in this nanoparticle fabrication process by the induction thermal plasma.
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Table 1. Typical experimental conditions.

Plasma Conditions

Input power 20 kW
Frequency 4 MHz
Pressure 101.3 kPa

Sheath gas Ar: 57.5 L/min O2: 2.5 L/min
Inner gas Ar: 5 L/min

Carrier gas Ar: 3 L/min
Discharge time 5 min

Feed rate 400 mg/min

Raw Materials

System Li–Mn Li–Cr Li–Co Li–Ni
Raw powders Li2CO3, MnO2 Li2CO3, Cr Li2CO3, Co Li2CO3, Ni
Li/Me ratio 0.5

3.2. Characterization of Prepared Nanoparticles

The phase identification of the prepared nanoparticles was determined by X-ray diffractometry
(XRD, Multiflex, Rigaku Co., Tokyo, Japan), operated with Cu Kα source (λ = 0.1541 nm). The diffraction
data was collected using a continuous scan mode with a speed of 2 degree/min in the region of
10–90 degrees with a step size of 0.04 degrees. The accelerating voltage and applied current was 40 kV
and 50 mA, respectively. The quantitative analysis of the composition of the prepared nanoparticles was
conducted based on the whole-powder-pattern-decomposition (WPPD) method with the assumption
that no amorphous particles were included in the prepared nanoparticles.

The particle morphology and size distribution of the prepared nanoparticles were observed
by TEM (JEM-2100HCKM, JEOL Ltd., Tokyo, Japan), operated at an accelerating voltage of 200 kV.
The TEM specimens were prepared by dispersing the as-prepared nanoparticles in ethanol and placing
a few drops of the dispersion on a carbon-grid. Furthermore, the 3D particle morphology was observed
by field emission (FE)-SEM (SII TES+ Zeiss ULTRA55, Carl Zeiss, Oberkochen, Germany).

4. Conclusions

Lithium metal oxide nanoparticles were synthesized in induction thermal plasma and formation
mechanism was investigated. Obtained remarks are as follows:
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(a) Lithium metal oxide nanoparticles were synthesized in different Li–Me (Mn, Cr, Co, and Ni)
systems. In the case of Li–Mn, Li–Cr, and Li–Co, lithium-metal oxide nanoparticles were
successfully synthesized, while Li–Ni oxides were not synthesized in the Li–Ni system.

(b) The spinel-structured LiMn2O4 with a truncated octahedral shape was synthesized in Li–Mn
system, although the stable shape of the spinel structure was an octahedral shape.

(c) The relationship between nucleation temperature and boiling and melting points of the considered
metals and their oxides suggests the following formation mechanism: Metal oxide starts to
nucleate at first. Then, vapors of metal and lithium oxide co-condense on the metal nuclei with an
oxidation reaction.

(d) Melting point of metal oxides is an important factor in determining the final product of the Li–Me
composite. A lower melting point of metal oxide leads to a longer reaction time, resulting in
higher yields of the Li–Me composite.

(e) Nanomaterial fabrication with induction thermal plasma enables the production of high-purity
nanoparticles of Li–Me oxide at high productivity.
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