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Abstract: Plasmon-assisted energy conversion is investigated in a comparative study of dye-sensitized
solar cells (DSCs) equipped with photo-anodes, which are fabricated by forming gold (Au) and
silver (Ag) nanoparticles (NPs) on an fluorine-doped tin oxide (FTO) glass surface by means of
dry plasma reduction (DPR) and coating TiO2 paste onto the modified FTO glass through a screen
printing method. As a result, the FTO/Ag-NPs/TiO2 photo-anode showed an enhancement of its
photocurrent, whereas the FTO/Au-NPs/TiO2 photo-anode showed less photocurrent than even a
standard photo-anode fabricated by simply coating TiO2 paste onto the modified FTO glass through
screen printing. This result stems from the small size and high areal number density of Au-NPs on
FTO glass, which prevent the incident light from reaching the TiO2 layer.

Keywords: plasmonic; dry plasma reduction; Ag nanoparticles; Au nanoparticles; dye-sensitized
solar cells

1. Introduction

Dye-sensitized solar cells (DSCs) can achieve comparatively high conversion efficiency levels at a
low fabrication cost [1]. In general, a DSC has a working electrode (WE) in the form of a nano-crystalline
TiO2 electrode modified with a dye and fabricated on a transparent conducting oxide (TCO), an iodide
electrolyte solution and a platinum (Pt) counter electrode (CE). The WE has the greatest potential to
improve the efficiency of a DSC, with the efficiency defined as the light-harvesting efficiency, due to its
monolayer of adsorbed dye molecules [2]. In order to improve the photocurrent, tremendous efforts
have been made, including efforts to control the thickness of the TiO2 layer [3], synthesize new dyes [4]
or use a scattering layer [5]. A major problem, however, is the attachment of less dye, reducing the
short-circuit current density [6]. One approach to solve this problem is based on a plasmonic structure,
such as silver nanoparticles (Ag-NPs) [6,7], gold nanoparticles (Au-NPs) [8] or gold nanorods [9]. Thus
far, plasmonic structures have been prepared by sputtering combined with annealing [6], soaking in a
colloidal silver solution for as many as 15 hours [7] or with a plasmonic paste [8,9]. These techniques,
however, require toxic chemicals for the synthesis process, high temperatures for annealing, extended
times for soaking or a vacuum chamber for sputtering, all indicating that developing an economic
continuous process remains a challenge [10].

In order to overcome these process restrictions, we developed a new process of efficiently
synthesizing supported metal-NPs by means of dry plasma reduction (DPR) [10–12]. More importantly,
the developed method can operate at temperatures close to room temperature under atmospheric
pressure and without using toxic chemicals. In this communication, we use the DPR method to
synthesize Au-NPs and Ag-NPs on fluorine-doped tin oxide (FTO) glass substrates. The main goal
of this study is to improve photocurrent generation in DSCs by studying the plasmon enhancement
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effect. This work is not only for developing a simple strategy of realizing how to improve photovoltaic
properties of the DSC using NPs-coated FTO, but also for testing a potential concept of other applications,
such as the optical devices, chemical catalysts and biological sensors.

2. Results

The overall DPR fabrication process is thoroughly described in our previous study [10]. Figure 1a,b
shows the morphologies of the Ag-NPs and Au-NPs on the FTO glass substrates. As can be seen,
Ag-NPs and Au-NPs with a few nanometers in size can clearly be observed to be uniformly formed
on the FTO glass surfaces without any aggregation via the DPR process. This uniform and dense
distribution of NPs provides high optical transmittance in the NPs on the FTO glass. As shown
in Figure 1a,b, the Ag-NPs appear larger than the Au-NPs, while the areal number density of the
Ag-NPs is lower than that of Au-NPs on the FTO glass. This is also supported by the Transmission
Electron Microscopy (TEM) images of the Ag-NPs/Cu grid (Figure S1a, Supplementary Materials) and
Au-NPs/Cu grid samples (Figure S1b, Supplementary Materials). Figure S1a shows a TEM image of
Ag-NPs immobilized on a Cu grid. The average size of the Ag-NPs was measured and found to be
6–7 nm. Figure S1b presents a TEM image of Au-NPs immobilized on a Cu grid. The average size of
the Au-NPs was in the range of 2–7 nm, typically 3 nm and quite small and highly mono-dispersed.
Note that the particle sizes have been estimated through the ImageJ program. The average sizes
of the Ag-NPs and Au-NPs on the Cu grid are slightly larger than that of the Pt-NPs on the Cu
grid [10]. The size difference between the NPs corresponding to the different metal precursors on the
Cu grids is likely due to the different electrostatic energy levels of the metal NPs. The physiochemical
conversions of HAuCl4 and AgNO3 into metallic Au and Ag, respectively, were further confirmed
by X-ray photoelectron spectroscopy (XPS) (Supplementary Materials, Figures S2 and S3). As shown
in Figure S2, the binding energy levels of the Au 4f7/2 and Au 4f5/2 electrons are 83.9 and 87.7 eV,
respectively. This is consistent with Au metal, which indicates that the Au-NPs/FTO sample exists in
a metallic state [13]. Additionally, after DPR, the Cl element composition was completely absent in the
XPS spectrum (Supplementary Materials, Table S1). Hence, HAuCl4 was completely converted into
metallic Au through the DPR process. It was also confirmed that Au-NPs were completely crystallized.
The binding energy levels of the Ag 3d5/2 and Ag 3d3/2 electrons are 368.2 and 374.2 eV, respectively
(Supplementary Materials, Figure S3), consistent with Ag metal and indicating that the Ag-NPs/FTO
samples are in a metallic state [14]. Identical to the Cl element composition in H2PtCl6 [10] and
HAuCl4, the N element composition in AgNO3 was also completely absent after DPR (Supplementary
Materials, Table S2).
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Figure 1. (a) High-Resolution Scanning Electron Microscopy (HRSEM) image of Ag-nanoparticles
(NPs) on an fluorine-doped tin oxide (FTO) glass substrate; and (b) HRSEM image of Au-NPs on an
FTO glass substrate.
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Figure 2 shows a comparison of the performance capabilities of the three DSCs with different
working electrodes (WEs). The DSC with FTO/Ag-NPs/TiO2 as the WE shows an energy conversion
efficiency of 7.49 (˘0.14)%, which is better than those of the DSCs with the FTO/TiO2 and
FTO/Ag-NPs/TiO2 WEs, videlicet 6.54 (˘0.15)% and 6.27 (˘0.11)%, respectively, as listed in
Table 1. Regardless of the illumination condition, the open-circuit voltages, Voc, of the DSCs with
FTO/Ag-NPs/TiO2 and FTO/Au-NPs/TiO2 as the WEs are slightly higher than that of the DSC with
FTO/TiO2 as the WE. This phenomenon is understood by considering that the Ag-NPs and Au-NPs
are linked together with titania, causing a shift of the conduction band edge of titania to the negative
side [15] and further increasing the gap between the Fermi level of the photoelectrode and the redox
potential under illumination, which is the definition of photovoltage [16]. The short-circuit current,
Jsc, of the DSC with the FTO/Ag-NPs/TiO2 WE, however, is slightly higher than that of the DSC
with FTO/TiO2 as the WE due to the low electron transfer at the TiO2/dye/electrolyte interface [9],
which was confirmed again by incident photon-to-current efficiency (IPCE) measurements and the
electrochemical impedance spectroscopy (EIS) results below. In contrast, the Jsc of the DSC with
FTO/TiO2 as the WE is slightly higher than that of the DSC with FTO/Au-NPs/TiO2 as the WE due
to the higher Schottky barrier in the interfacial region of Au (5.1–5.5 eV) and TiO2 (4.0 eV), with a
slight difference between the work function of Ag (4.12 eV) and the electron affinity of TiO2 (4.0 eV).
There were some conflicts between our results and those by Lin et al. [6] for FTO/Ag-NPs/TiO2 and by
Zhang et al. [8] for FTO/Au-NPs/TiO2. The differences in the NP size and the dense distribution were
used to explain these phenomena. Indeed, the larger size and highly dense distribution of Ag-NPs
mean that they could not preferentially attach to specific sites on the TiO2 surface, resulting in a
decrease of the catalytic activity. In contrast, the small size and highly dense distribution of Au-NPs
on FTO glass would prevent the incident light from reaching the TiO2 layer. The fill factor (FF) of
the DSC with the FTO/Ag-NPs/TiO2 WE (67.60% ˘ 0.68%) is higher than those of the DSCs with
the FTO/TiO2 WE (61.71% ˘ 1.16%) and the FTO/Au-NPs/TiO2 WE (60.60% ˘ 1.02%) due to the
low internal resistance of the cell [17]. This becomes clear when examining EIS results, as shown in
Figure 3.
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Table 1. Photoelectric performance of the three cells shown in Figure 2. Jsc: The short-circuit
current; Voc: the open-circuit voltages; FF: Fill Factor; η: efficiency; FTO: fluorine-doped tin oxide;
NPs: nanoparticles.

Working Electrode Jsc
(mA¨ cm´2)

Voc
(mV)

FF
(%)

η

(%)

FTO/TiO2 12.83 ˘ 0.21 820.00 ˘ 5.00 61.71 ˘ 1.16 6.54 ˘ 0.15
FTO/Ag-NPs/TiO2 13.49 ˘ 0.16 821.66 ˘ 11.5 67.60 ˘ 0.68 7.49 ˘ 0.14
FTO/Au-NPs/TiO2 12.34 ˘ 0.67 826.67 ˘ 7.63 60.60 ˘ 1.02 6.27 ˘ 0.11Nanomaterials 2016, 6, 70 4 of 9 
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Figure 3. (a) Nyquist plots of three DSCs equipped with different working electrodes; and (b) The
electrochemical impedance spectroscopy (EIS) Bode plots of three DSCs equipped with different
working electrodes. Z”: imaginary part of impedance; Z’: real part of impedance; CPE1: the constant
phase element at counter electrode/electrolyte interface; CPE2: the constant phase element at working
electrode/electrolyte interface; Rh: Ohmic internal resistance; Rct1: charge-transfer resistance at
counter electrode/electrolyte interface; Rct2: charge-transfer resistance at working electrode/electrolyte
interface; W1: Warburg impedance.

Figure 3a presents three Nyquist plots of DSCs with FTO/TiO2, FTO/Ag-NPs/TiO2 and
FTO/Au-NPs/TiO2 WEs. Table 2 shows the estimated charge transfer resistance values on both
the CE and WE, as well as the constant phase element (CPE) parameters for the interfaces of both the
CE and WEs. For the purpose of comparing only the WEs, we fabricated three CEs using the same
materials and method. As shown in Table 2, none of the parameters pertaining to the CE interface
showed a significant difference with regard to the three DSCs. However, there was a distinct difference
in Rct2 among DSCs with different WEs, as shown in Table 2. The Rct2 value of the FTO/Ag-NPs/TiO2

sample was low, at 3.93 Ω¨ cm2, while those of the FTO/TiO2 and FTO/Au-NPs/TiO2 samples were
4.24 Ω¨ cm2 and 5.23 Ω¨ cm2, respectively. For our Au-NPs immobilized on FTO, there is direct contact
between the Au and the electrolyte, with the surface of the Au-NPs serving as a recombination site for
the photogenerated electrons and triiodide ions, resulting in an increase in the charge transfer resistance
in comparison to the FTO/TiO2 WE [8]. It is known that a lower Rct2 of a cell means faster redox
kinetics of I3

´/I´ pairs at the photoanode/dye/electrolyte interface [18]. Hence, the electron transfer
from the electrolyte to the oxidized dye became rapid, suggesting an efficient injection of electrons to
TiO2 and transfer across the film to the outer circuit, reducing the rate of electron recombination [18].
This positive factor results in a high IPCE and higher power conversion efficiency. Furthermore, the
reduction of the total internal resistance due to the decrease in Rct2 is the cause of the increase in the fill
factor of the DSCs [17], which confirms the increase in the conversion efficiency, as previously shown.
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Table 2. Impedance parameters of three DSCs with FTO/TiO2, FTO/Ag-NPs/TiO2 and FTO/Au-NPs/
TiO2 working electrodes (WEs), as estimated from the impedance spectra and equivalent circuit
shown in Figure 3a. Rh: Ohmic internal resistance; Rct1: charge-transfer resistance at counter
electrode/electrolyte interface; Rct2: charge-transfer resistance at working electrode/electrolyte
interface; W1: Warburg impedance; CPE1: the constant phase element at counter electrode/electrolyte
interface; CPE2: the constant phase element at working electrode/electrolyte interface. Note that
CPE = (CPE-T)´1(jw)´(CPE-P), in which j2 = ´1, w = frequency, CPE-T and CPE-P are frequency-
independent parameters of the CPE. Ws = R ˆ tanh([j ˆ T ˆ w]P)/(j ˆ T ˆ w)P, where R is real part of
impedance; T is the diffusion interpretation of Warburg element and it is given by T = L2/D in which L
is effective diffusion thickness and D is diffusion coefficient of particles; P = 0.5.

Working Electrode Rh
(Ω¨ cm2)

Rct1
(Ω¨ cm2)

CPE1-T
(µF¨ cm´2) CPE1-P

Rct2
(Ω¨ cm2)

Ws CPE2-T
(µF¨ cm´2) CPE2-P

R T P

FTO/TiO2 2.59 1.81 35.5 0.90 4.24 2.08 0.42 0.5 2410 0.90
FTO/Ag-NPs/TiO2 2.58 1.85 36.9 0.89 3.93 1.73 0.43 0.5 2470 0.90
FTO/Au-NPs/TiO2 2.56 1.89 36.1 0.90 5.23 1.74 0.40 0.5 2450 0.90

For more information about the electron recombination lifetime of the photo-injected electrons
during the photovoltaic process (τe = 1/2πf max; f max is the maximum frequency of the peaks in the
intermediate frequency region of EIS [19,20]), EIS Bode plots were devised. We found that the highest
and lowest f max values were obtained with DSCs based on FTO/Ag-NPs/TiO2 and FTO/Au-NPs/TiO2

WEs, respectively. Therefore, the shortest and longest τe distances were obtained for DSCs based
on FTO/Ag-NPs/TiO2 and FTO/Au-NPs/TiO2 WEs, respectively. It is well known that a longer τe

indicates greater effective inhibition of electron recombination during the electron transfer process
across WE films. Furthermore, a shorter τe results in higher photoelectron collection efficiency at
the FTO substrate and higher Jsc values of devices. These results are in good agreement with the
current-voltage (J-V) results.

Figure 4a shows the absorption spectra of only NPs layer-coated FTO glass substrate with respect
to wavelength. As can be observed, the absorption spectra of AuNPs-coated FTO glass substrate
becomes almost zero within the range of wavelength from 300 to 800 nm. It was close to the absorption
of FTO glass substrate. The results indicate that the plasmonic effect of AuNPs incorporated on FTO
glass substrate could be neglected. However, the surface plasmonic absorption of AgNPs was clearly
presented in about 400 nm. The absorption peak of the AgNPs/FTO glass was shifted compared to
the AgNPs/FTO glass in other studies [6,21] due to the broad size distribution with large AgNPs.
The radiant light can be enhanced after being effectively coupled with plasmon absorption in the
range of 300–600 nm due to the increase of the optical density around AgNPs [9]. According to that,
there were more photons, which was usually absorbed by the dye molecules placed in the vicinity of
AgNPs [21–23], resulting in the improvement of the device performance.

In order to investigate the effect of plasmonic structure on the enhancement of the photocurrent
density of devices, we conducted IPCE measurements. The results are given in Figure 4b. As can be
seen, the IPCE of the DSC fabricated with the FTO/Ag-NPs/TiO2 WE was higher than those of the
DSC based on the FTO/TiO2 WE and the FTO/Au-NPs/TiO2 WE over the visible wavelength range.
The current value calculated from the overlap integral of the IPCE spectrum agrees well with the Jsc

derived from the J–V characteristics. It is well-known that the IPCE is composed of the light-harvesting
and charge collection efficiencies, the efficiency of the electron injection from the excited dye into the
TiO2 and the efficiency for the dye regeneration. In this study, identical compounds were used to
fabricate all devices, except the WEs. Therefore, the effect of the efficiency for the dye regeneration
was excluded in this work. It is reported that the plasmonic enhancement is estimated through the
improvement of optical density near the metal surface. Thus, more photons could be harvested by dye
located in the vicinity of the NPs, resulting in the increase of IPCE [21–23]. As we mentioned above,
the plasmon effect of AuNPs/FTO glass substrate was not significant. Thus, IPCE of DSC fabricated
on AuNPs/FTO was similar to that of DSC assembled on FTO glass substrate. In contrast, the IPCE
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of the device based on AgNPs/FTO glass substrate became higher than those of other two DSCs
due to the transverse plasmon absorption at around 400 nm. The result is in good accordance to
Ultraviolet–visible spectroscopy (UV-Vis) data and J–V results.Nanomaterials 2016, 6, 70 6 of 9 
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3. Materials and Methods

3.1. Materials

H2PtCl6¨ xH2O (ě37.5% Pt basic), AgNO3 (>99%) and iso-propyl alcohol (IPA) (99.5%) were
obtained from Sigma-Aldrich (St. Louis, MO, USA). HAuCl4¨ 3H2O was purchased from Aldrich. FTO
glass as a conductive transparency electrode was purchased from Solaronix, Aubonne, Switzerland
(~8 Ω/square). These substrates were used after cleaning them by sonication in acetone (Fluka).
The nonporous TiO2 paste and ruthenium-based dye (N719) used in the study were purchased from
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Solaronix, Aubonne, Switzerland. The dye was adsorbed from a 0.3 mM solution in a mixed solvent
of acetonitrile (Sigma-Aldrich) and tert-butyl alcohol (Sigma-Aldrich) (St. Louis, MO, USA) with a
volume ratio of 1:1. The electrolyte was a solution of 0.60 M 1-methyl-3-butylimidazolium iodide
(Sigma-Aldrich), 0.03 M I2 (Sigma-Aldrich), 0.10 M guanidinium thiocyanate (Sigma-Aldrich) and
0.50 M 4-tert-butylpyridine (Sigma-Aldrich) in a mixed solvent of acetonitrile (Sigma-Aldrich) and
valeronitrile, with a volume ratio of 85:15.

3.2. Synthesis of Au and Ag on FTO Glass Substrates

Two solutions containing 10 mM HAuCl4¨ 3H2O in IPA and 10 mM AgNO3 in IPA were initially
prepared. Separately, 8 µL of a precursor solution were deposited onto 2 ˆ 2 cm2 specimens of FTO
glass, and the solvent was allowed to evaporate at 70 ˝C for 10 min. The specimens were then reduced
using Ar plasma under atmospheric pressure at a power of 150 W, a gas flow rate of 5 litter per minute
(lpm), a treatment time of 15 min and a substrate moving speed of 5 mm/s [10]. The morphologies
of the Ag-NPs and Au-NPs on the FTO glass substrates were observed by high-resolution scanning
electron microscopy (HRSEM). For the TEM measurements, we separately synthesized Ag-NPs and
Au-NPs on Cu grids under the same plasma conditions used earlier.

3.3. Preparation of the Working Electrodes

Three WEs were prepared on FTO, Ag-NPs/FTO and Au-NPs/FTO glass substrates. The area
of TiO2 mesoporous layer and that of the TCO were 0.7 ˆ 0.7 cm2 and 2 ˆ 2 cm2, respectively.
These WEs were fabricated through the following procedure. A transparent film of 20-nm TiO2

particles (Solaronix, Switzerland) was coated onto the substrates by screen printing (200 T mesh),
kept in a clean box for 3 min so that the paste could relax to reduce surface irregularities and
then dried for 3 min at 125 ˝C. This screen-printing procedure (coating, storing and drying) was
repeated until the thickness of the working electrode was approximately 12 µm. The electrodes
coated with the TiO2 paste were gradually heated under an air flow at 325 ˝C for 5 min, at 375 ˝C
for 5 min, at 450 ˝C for 15 min and finally at 500 ˝C for 15 min under ambient conditions [10].
After cooling to 80 ˝C, the TiO2 electrodes were immersed in a 0.3 mM Di-tetrabutylammonium
cis-bis(isothiocyanato)bis(2,2’-bipyridyl-4,4’-dicarboxylato)ruthenium(II) (N719) dye solution in a
mixture of acetonitrile (Sigma-Aldrich) and tert-butyl alcohol (Aldrich) (volume ratio of 1:1) and kept
at room temperature for 24 h to complete the sensitizer uptake process.

3.4. Preparation of the Counter Electrodes

Pt CEs were also prepared through DPR, as described in our previous study [10].

3.5. Assembly and Measurement of the DSCs

The assembly and characterization of the DSCs were carried out as described in our previous
study [10].

4. Conclusions

Au-NPs and Ag-NPs were successfully immobilized on FTO glass substrates by means of DPR,
with the results showing homogeneous size dispersity. HRSEM and TEM images showed that the areal
number density of Au-NPs/FTO was higher than that of Ag-NPs/FTO glass, while Au-NPs/FTO
glass was smaller than that of Au-NPs/FTO glass. The DSC with FTO/Ag-NPs/TiO2 as the WE
demonstrated energy conversion efficiency of 7.49 (˘0.14)%, which was better than those of DSCs with
FTO/TiO2 and FTO/Ag-NPs/TiO2 WEs, viz. 6.54 (˘0.15)% and 6.27 (˘0.11)%, respectively.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/6/4/70/s1.
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The following abbreviations are used in this manuscript:

DSC dye-sensitized solar cell
NPs nanoparticles
FTO fluorine-doped tin oxide
TCO transparent conducting oxide
CE counter electrode
WE working electrode
DPR dry plasma reduction
IPA iso-propyl alcohol
EIS electrochemical impedance spectroscopy
IPCE incident photon-to-current efficiency
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