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Abstract: To improve the activities of non-noble metal catalysts is highly desirable and valuable to
the reduced use of noble metal resources. In this work, the supported nickel (Ni) and nickel-platinum
(NiPt) nanocatalysts were derived from a layered double hydroxide/carbon composite precursor.
The catalysts were characterized and the role of Pt was analysed using X-ray diffraction (XRD),
high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy
(EDS) mapping, and X-ray photoelectron spectroscopy (XPS) techniques. The Ni2+ was reduced to
metallic Ni0 via a self-reduction way utilizing the carbon as a reducing agent. The average sizes
of the Ni particles in the NiPt catalysts were smaller than that in the supported Ni catalyst. The
electronic structure of Ni was affected by the incorporation of Pt. The optimal NiPt catalysts exhibited
remarkably improved activity toward the reduction of nitrophenol, which has an apparent rate
constant (Ka) of 18.82 ˆ 10´3 s´1, 6.2 times larger than that of Ni catalyst and also larger than most of
the reported values of noble-metal and bimetallic catalysts. The enhanced activity could be ascribed
to the modification to the electronic structure of Ni by Pt and the effect of exposed crystal planes.
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1. Introduction

Aromatic nitro compounds are widely generated as byproducts in various industries, including
in the production of pigments, pesticides and medicines [1]. 4-nitrophenol (4-NP) is among the most
common aromatic nitro compounds, and is harmful to the environment [2]. 4-aminophenol (4-AP), the
reduction product of 4-NP, is an important intermediate for the manufacture of dyes, agrochemicals,
and pharmaceuticals [3–5].

Various methods to synthesize 4-AP have been reported, such as multi-step iron-acid reduction of
4-NP, catalytic reduction of nitrobenzene, and electrochemical synthesis [6–8]. Among these methods,
catalytic reduction is an alternative green process for 4-AP production because it does not generate a
large amount of un-reusable Fe–FeO sludges and acid/alkali effluents [9]. It is well known that diverse
noble metal such as palladium, platinum, and gold catalysts have been widely used in the catalytic
reactions due to their high catalytic activities [10–13]. However, the high cost and scarcity in nature
limit their practical applications. Therefore, non-noble metal catalysts have been paid more attention
because of their abundance and reduced cost [14]. As we know, the reduction rates of 4-NP to 4-AP
over non-noble metal catalysts are far slower than noble metal ones [15]. Therefore, it is desirable to
improve the catalytic activities of the supported non-noble metal catalysts.
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Among non-noble metals, nickel nanoparticles (Ni NPs) have drawn much attention because
of their easy availability, relatively high catalytic activity, and magnetic separation feature [16,17].
Moreover, the unique physical and chemical properties can be introduced by adding a small amount
of second elements such as Pd, Pt, Ir, or Ru to Ni catalysts. These elements are dispersed on the surface
of Ni to form bimetallic catalysts and the interactions at the metal–metal interface lead to the improved
performance of Ni catalysts [18–21]. Thus, a promising endeavor is to explore a combination of noble
metal, e.g., Pt and Ni NPs to enhance the catalytic activity. In addition, the Ni-based catalysts can be
easily separated from the reaction medium by application of an external magnetic field.

In the previous work, we prepared supported Ni catalysts via self-reduction of hybrid
NiAl-layered double hydroxide/carbon (NiAl-LDH/C) composites [22]. The composites were
assembled via crystallization of LDH in combination with simultaneous carbonization of glucose
under hydrothermal conditions. The resulting carbon acted as a reducing agent to convert nickel oxide
to metallic nickel upon calcination. The as-synthesized Ni nanoparticles had small crystallite sizes
and high dispersions in the support owing to the confined effects of LDH and carbon. Inspired by this
finding, we extended this method to prepare Pt-modified Ni catalysts. The glucose-derived carbon in
the composites led to in situ reduction of chloroplatinic acid anions upon hydrothermal carbonization
and thus introduced Pt to the Ni catalysts. The catalytic activities of the resultant Pt-modified Ni
catalysts for liquid-phase reduction of 4-NP to 4-AP were investigated under mild reaction conditions.
The optimal NiPt catalysts exhibited larger apparent rate constant (Ka) than most of the reported
values of noble-metal and bimetallic catalysts.

2. Results and Discussions

2.1. Characterization of Materials

The XRD patterns of LDH, hybrid LDH/C and Pt@LDH/C composites were shown in Figure 1a.
The pattern of LDH sample exhibited the characteristic (003), (006), (009), (110), and (113) reflections,
corresponding to layered hydrotalcite-like compounds [23]. The intensive reflections revealed the
highly crystalline nature of the product. In contrast, the patterns of LDH/C and Pt@LDH/C composites
presented broadened reflections at the same 2θ positions as those of LDH. It was noted that no graphite
or other forms of carbon phases were detected, suggesting that carbon products mostly existed in
amorphous form. The broader and weaker reflections for LDH/C and Pt@LDH/C were caused by
both the dilution effect of the resultant carbon component in the composites and the reduced crystalline
feature of LDH phase. No reflections associated with metal Pt or other Pt species were observed in
Pt@LDH/C. This finding could be ascribed to the high dispersion of the Pt nanoparticles of small
sizes and/or the very low loading [24]. It was believed that the aromatization and carbonization of
glucose yielded amorphous carbon under the present hydrothermal treatment [25], and the resultant
carbon was assembled with LDH crystallites during the crystallization of LDH, thereby leading to the
formation of hybrid composites.

The effects of calcination temperatures on the phase structure were also studied. Figure 1b
showed XRD patterns of Pt@LDH/C precursor calcined at 500 ˝C, 600 ˝C, and 700 ˝C in a flowing
N2 atmosphere. It was known that the layered structure of LDH collapses and is converted into
mixed-oxide phases when heating above 450 ˝C [26]. For NiPt-0.6% (500) and NiPt-0.6% (600) samples,
the XRD patterns exhibited the co-existence of Ni and NiO phases. Furthermore, the relative intensity
from the reflections of NiO decreased with increasing calcination temperature. After elevating the
temperature to 700 ˝C, only the contributions from metallic Ni were observed, which can be indexed
to the face-centered cubic (fcc) Ni phase (JCPDS No. 87-0712). The three peaks centered at 2θ = 44.4˝,
51.7˝ and 76.5˝ corresponded to the characteristic (111), (200) and (220) planes of Ni phase. The results
indicated that the complete phase transformation from NiO to Ni occurred at this temperature.
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Figure 1. X-ray diffraction (XRD) patterns of (a) layered double hydroxide (LDH), LDH/carbon (C),
and Pt@LDH/C; (b) NiPt catalysts obtained at different calcination temperatures; and (c) the Ni and
NiPt catalysts with different Pt loadings.

The LDH-derived metal oxides could be reduced into metal via self-reduction by carbon in the
LDH/C composite, leading to the tranformation of Ni2+ to Ni0. The main reactions can be expressed
as follows:

NiO`C psq Ñ Ni`CO pgq (1)

NiO`CO pgq Ñ Ni`CO2 pgq (2)

During heating, LDH was transformed into mixed oxides (crystalline NiO and amorphous
alumina). After reduction, the residual carbon acted not only as the support but also as the dispersing
matrix, which prevented Ni particles from agglomeration. Figure 1c showed the XRD patterns of
NiPt catalysts with different Pt loadings. These XRD patterns of the Ni and NiPt samples were
hardly distinguishable, which could indicate that the Pt species were highly dispersed in the NiPt
catalysts [27].

TEM observations were carried out to investigate the morphologies and microstructures of
NiPt catalysts with different Pt loadings (Figure 2). TEM-derived histograms of the Ni particle size
distributions were presented. The TEM images indicated that the Ni nanoparticles were well dispersed
on the support and the size slightly decreased from 12.1 to 11.0 nm when the nominal Pt content
was increased to 0.6% compared to the pristine Ni. When the Pt content was increased to 1.0%, the
Ni nanoparticles had smaller size (~9 nm) and narrower size distributions (Table 1). The Ni loading
reached as high as 36%–39% whereas no obvious aggregates were observed, suggestive of excellent
metal dispersion. The Pt particles could not be found in the TEM images owing to the low loading.
The Pt loading measured was lower than the nominal value, possibly due to the metal leaching during
the hydrothermal reactions (Table 1). One can find that these catalysts had similar specific surface
areas, which indicated that the surface area could not be the dominant factor to adjust the catalytic
properties [28].

Table 1. Metal loadings, sizes and specific surface areas of the supported catalysts.

Catalyst Pt wt % 1 Ni wt % D (nm) 2 Specific Surface Area (m2 g´1) 3

Ni 0 35.85 12.1 244.6
NiPt-0.2% 0.167 38.75 12.1 271.8
NiPt-0.6% 0.347 36.98 11.0 266.0
NiPt-1.0% 0.537 39.55 9.0 267.4

1 Pt content measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES); 2 The mean size
of Ni nanoparticles (NPs) based on TEM analysis; 3 Specific surface area calculated by a Brunauer-Emmett-Teller
(BET) method.
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Figure 2. Transmission electron microscopy (TEM) images and size distributions of the supported Ni
and NiPt catalysts with different Pt loadings (a) and (b) Ni; (c) and (d) NiPt-0.2%; (e) and (f) NiPt-0.6%;
(g) and (h) NiPt-1.0%.

To further reveal the microstructures of the Ni and Pt NPs, high-resolution transmission electron
microscopy (HRTEM) observations were conducted. As shown in Figure 3a, the lattice spacing of the
supported Ni NPs was measured to be 0.203 nm, consistent with the d-value of plane (111) of cubic
phase Ni. Regarding NiPt-0.2% and NiPt-1.0% catalysts, the Ni NPs had the same d-spacing of 0.203
nm (Figure 3b,d), and the Pt NPs exhibited a d-spacing of 0.230 nm, corresponding to plane (111) of Pt.
The adjacent interface could be observed between plane Ni (111) and Pt (111). As to NiPt-0.6% catalysts,
the d-spacing of 0.170 nm for Ni NPs and 0.193 nm for Pt NPs were observed, which corresponded to
Ni (200) and Pt (200), respectively (Figure 3c). It was interesting that the interface formed between Ni
(111) and Pt (111) or Ni (200) and Pt (200). Such interface of different planes of Ni and Pt NPs could
affect the catalytic properties. It is known that the catalytic reduction usually depends on the sizes,
shapes, and/or exposed planes of the active metal NPs [23,29]. The differences in exposed planes and
interfaces of NiPt catalysts could lead to distinct activities towards the reduction reaction. Energy
dispersive X-ray spectroscopy (EDS) mapping analyses of NiPt-0.6% exhibited C, O, Al, Ni, and Pt
elements (Figure 3e). It was seen that C, O and Al were homogeneously distributed in the whole
matrix. The Ni components were highly dispersed on the matrix and as well the small amount of Pt.

X-ray photoelectron spectroscopy (XPS) measurements were used to analyze the chemical states
of the metal species in the catalysts. The XPS spectra of Pt and Ni core levels were shown in Figure 4.
The Pt4f spectra could be deconvoluted into two peaks due to the spin-orbit splitting. One was at
70.9–71.4 eV, and the other was at 74.2–75.0 eV, which could be assigned to metallic Pt0 species [30,31].
As to NiPt-1.0% sample, the Pt4f peaks showed a 0.5–0.8 eV shift towards a higher binding energy
compared to the other two NiPt catalysts (Table 2). This was an indication that the electronic structures
of Pt were affected by the surrounding Ni NPs owing to the strong interactions between them [32].
The Ni2p spectra were deconvoluted into three contributions at ~853.3, ~856.8, and ~862.5 eV in the
Ni2p3/2 region, which were assigned to the metallic Ni0, the Ni2+ species in NiO and the satellite,
respectively [33]. The existence of Ni2+ species could be due to the easy oxidation of metallic Ni,
which inevitably contact with the air during the sample preparation and settlement [22]. Compared
to the Ni catalysts, the binding energy of Ni0 and Ni2+ (Ni2p3/2) in the NiPt-0.2% had a little shift of
0.1–0.2 eV towards a lower value. The binding energy shifted ~0.4 eV with the increasing Pt content in
the NiPt-0.6% and NiPt-1.0% samples (Table 2). The binding energy of metallic Ni shifted to a lower
value after a small amount of Pt was incorporated. It is a hint that the electronic structures of Ni were
affected by Pt, suggesting the strong interactions between the two metal components. The binding
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energy at 68.9 eV could be the contribution from Ni3p [34,35]. The Ni3p peak overlapped with the
Pt4f7/2 peak, which provided further evidence for the existence of interactions between Ni and Pt.
The binding energy at 74.8 ˘ 0.1 eV was assigned to Al2p core level, which came from the Al2O3

matrix in the catalysts [36]. XPS characterization verified that the interactions between Ni and Pt were
enhanced with the increasing content of Pt.
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Figure 3. High-resolution transmission electron microscopy (HRTEM) images of the supported
catalysts: (a) Ni; (b) NiPt-0.2%; (c) NiPt-0.6%; (d) NiPt-1.0%; (e) Energy dispersive X-ray spectroscopy
(EDS) mapping of the catalyst NiPt-0.6%.

Table 2. XPS binding energy of the Ni, Pt and Al core levels in the supported catalysts.

Catalysts
2p3/2 (eV) 2p1/2 (eV) 4f7/2 (eV) 4f5/2 (eV)

Ni3p Al2p
Ni0 Ni2+ NiSat. Ni0 Ni2+ NiSat. Pt0

Ni 853.3 856.8 862.5 870.9 874.4 880.5 - - - 74.8
NiPt-0.2% 853.2 856.6 862.1 870.1 874.4 880.2 70.9 74.2 68.1 74.9
NiPt-0.6% 852.8 856.4 862.1 870.1 874.1 880.3 70.9 74.4 67.7 74.7
NiPt-1.0% 852.7 856.3 862.0 870.0 874.0 880.1 71.4 75.0 68.4 74.9
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Figure 4. X-ray photoelectron spectroscopy (XPS) spectra of Pt and Ni core levels in the supported
catalysts: (a) NiPt-0.2%; (b) NiPt-0.6%; (c) NiPt-1.0% and (d) Ni.

2.2. Evaluation of the Catalytic Activity

The catalytic activities of the as-prepared Ni and NiPt (0.2%, 0.6%, and 1.0%) catalysts were
evaluated using a probe reaction, i.e., the reduction of 4-NP into 4-AP. The reduction was conducted in
an aqueous solution of 4-NP with the addition of NaBH4 as a reducing agent. The Ultraviolet-visible
(UV-VIS) absorption spectra were recorded with time to monitor the transformation from 4-NP to
4-AP due to their distinct absorption positions. The original adsorption of 4-NP peaked at 317 nm
(Figure 5a). The absorption shifted to 400 nm when the freshly prepared aqueous solution of NaBH4

was added, and the color of the solution immediately changed from the pristine light yellow to bright
yellow (the inset of Figure 5a). This redshift was ascribed to the rapid formation of 4-nitrophenolate
ions in alkaline solution upon the addition of NaBH4 [37]. When the NiPt-0.6% catalysts were added to
the solution, the bright yellow solution faded and became colorless in tens of seconds. The absorption
at 400 nm sharply decreased, and the absorption at 300 nm from 4-AP appeared [38]. The evolution
of absorbance spectra with time clearly showed the conversion from 4-NP to 4-AP in the presence of
NiPt-0.6% catalysts (Figure 5b). The reduction was completed within around 100 seconds according to
the decreasing absorbance at 400 nm and the increasing absorbance at 300 nm, corresponding to the
deletion of 4-NP and the formation of 4-AP, respectively.

The Ni and NiPt catalysts were compared based on the concentration changes of 4-NP as a
function of time (Figure 5c). The reaction would not happen in the absence of catalysts. It was
observed that the decrease in the concentration of 4-NP over the catalysts followed the order:
NiPt-0.6% > NiPt-0.2% > NiPt-1.0% > Ni. The concentration of 4-NP decreased to 10% of the initial
value within 120 seconds over NiPt-0.6% catalysts. It was noted that the optimal catalysts were
NiPt-0.6% rather than NiPt-1.0% with a higher Pt content. This suggested that the activity of Ni
catalysts could be enhanced by incorporating an appropriate amount of Pt. The excessive amount
of Pt had a negative effect on the catalytic activity in the reduction of 4-NP to 4-AP. These findings
were in agreement with the catalytic behaviors of AuCu alloy reported in a recent literature [39].
In that work, the reaction pathway for reduction of nitroaromatics to anilines was adjusted by tailoring
the compositions of bimetallic nanocatalysts. A similar volcano curve associated with the yield of
aniline was observed with the change of Cu contents. The volcano curve behavior indicated that the
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chemical compositions of the bimetallic nanocatalysts were important parameters for affecting the
catalytic activity.
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the addition of NaBH4 and (iii) after the addition of NiPt-0.6% catalyst; (b) time-dependent UV-VIS
absorption spectra of the reduction of 4-NP over the NiPt-0.6% catalyst in aqueous solution at room
temperature; (c) reduction of 4-NP over different catalysts as a function of time; (d) apparent rate
constants (Ka) of the reactions in the presence of supported catalysts.

The reduction rate of 4-NP was independent of the concentration of reducing agent (NaBH4) since
the initial concentration of NaBH4 greatly exceeded that of 4-NP (~100 times). Thus, the reduction
process could be described with pseudo-first-order kinetics with respect to the concentration of
4-NP [40]:

´ ln pCt{C0q “ Kat (3)

where C0 and Ct (unit in mM) were the concentrations of 4-NP at the beginning and at a certain
time, respectively. Figure 5d showed the apparent rate constants (Ka) for different catalysts, which
were calculated according to equation 3. The values of Ka for NiPt-0.2%, NiPt-0.6%, and NiPt-1.0%
catalysts were 0.01077, 0.01882, and 0.00468 s´1, respectively, all of which were higher than that of
the Ni catalysts (0.00306 s´1). This could be caused by the strong interactions between Ni and Pt. The
electronic structures of Ni were modified by incorporation of Pt, which was consistent with the recent
report on Ir-promoted Ni catalysts for hydrogenation reaction [18]. As to the different activities of
NiPt catalysts, it might be due to the different exposed crystal planes of Ni NPs and Pt NPs. As shown
in Figure 2c, the NiPt-0.6% catalysts showed the Ni (200) plane besides the Ni (111) one. The crystal
plane-dependent activity has been confirmed in metal-supported oxide catalysts [41]. Further studies
on the correlations were required by constructing a less complicated model catalyst.

In addition, the Ka values of various catalysts were compared in Table 3. It was seen that
the NiPt-0.6% catalyst showed much larger Ka value than the reported nickel catalysts [4,6,14].
Importantly, this catalyst exhibited higher activity than noble-metal and bimetallic ones such as
DPNs (dendritic Pt nanoparticles) [11], reduced graphene oxide (RGO)/PtNi [35], Pt/γ-Al2O3 [40]
and Ni-Pt [42]. The comparisons further verified the superior catalytic activity of the optimal NiPt
catalysts for 4-NP reduction and highlighted the very limited use of noble-metal Pt in the as-prepared
high-performance catalysts.
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Table 3. Comparisons of the apparent rate constant (Ka) for 4-NP reduction over various catalysts.

Catalysts Reaction Conditions 1 Ka
2/10´3 s´1 References

NiPt-0.6% (Ni: 36.98 wt % Pt: 0.347 wt %) 15.5 mg, 2 mM, 25 ˝C, 0.25 M 18.82 This work
Pd0.05/G 4 mg, 0.3 mM, 25 ˝C, 0.1 M 36.5 [1]
Ir/IrOx -, 20 mM, 25 ˝C, 0.2 M 2.57 [2]

230 nm Ni/SiO2 MHMs (Ni: 14.6 wt %) 3 mg, 5 mM, 25 ˝C, 0.2 M 4.5 [4]
Ni NPs 3 mg, 0.1mM, 20 ˝C, 0.2 M 2.7 [6]

Pd-Fe3O4 (1.2 wt %) 10 mg, 21.56 mM, 25 ˝C, 0.1 MPa - [7]
DPNs -, 2 mM, 25 ˝C, 0.3 M 0.75 [11]

Ni/TiO2 400 mg, -, 100 ˝C, 1.5 MPa - [14]
Ni/SiO2@Au MHMs 4 mg, 5 mM, 25 ˝C, 0.2 M 10 [15]

RGO/PtNi (25:75) 3 mg, 5 mM, 25 ˝C, 1.5 M 1.12 [35]
TAC-Ag-1.0 0.004 mg, 0.103 mM, 25 ˝C, 0.3 M 5.19 [38]

Au-Cu alloy NP 50 mg, -, 60 ˝C, - - [39]
Pt/γ-Al2O3 (2.7 wt %) 0.5 mg, 1 mM, 22 ˝C, 0.1M 0.53 [40]

Ni-Pt (96:4) 0.004 mg, 0.085 mM, 25 ˝C, 0.012 M 1.93 [42]
AuNPs/SNTs 8 mg, 0.12 mM, 25 ˝C, 0.005 M 10.64 [43]

AuNP/CeO2 (Au: 0.031 mg) 10 mg, 0.12 mM, 25 ˝C, 0.005 M 2.25 [44]
1 Reaction conditions follow the order of amount of catalyst, the initial concentration of 4-NP, temperature, H2
pressure/the concentration of NaBH4; 2 Ka: Apparent rate constant.

Generally, the formation of a bimetallic structure can change the electronic states of metals,
particularly the d-band center of the involved metal atoms, which is highly relevant to their catalytic
activity [45]. The variations of the d-band in metals have been theoretically studied using density
functional theory (DFT) computations assuming some specific extended-surface models [46,47].
Recently, the theory has also been applied to bimetallic systems to correlate the changes in the
electronic states with the catalytic activities in a variety of reactions [48]. With regard to the NiPt NPs
studied in this work, Ni was reduced in situ and enriched on the surface from a hybrid of LDH/carbon
precursor. The pristine Ni NPs showed the activity towards the reduction of 4-NP. Upon introducing
Pt to the Ni catalysts, the local electronic structures of the Ni were affected, and the electron density on
the Ni was changed, which was dependent on the bimetallic compositions [42]. It was found that the
NiPt-0.6% catalysts had higher activity than the NiPt-1.0% with a larger content of Pt. It could be due
to the different exposed crystal planes of Ni NPs (Figure 2c).

On the other hand, small nanoparticles and excellent dispersions resulted in high activity in many
cases [49,50]. The sizes of nickel crystallites as estimated by TEM decreased with increasing amount
of Pt. No obvious agglomeration of Ni NPs was observed although the Ni loading was very high
(36%–39%). This highlighted the advantages of the precursor method from LDH/carbon hybrid owing
to the lattice anchoring effect of metal ions in the layers of LDH [22,25]. The Pt-modified Ni NPs were
more active for adsorbing and cleaving H2 molecules than the pristine Ni NPs during reduction of
4-NP, owing to a higher electron density of NiPt active sites [51]. The produced active hydrogen atoms
reacted with 4-NP on the active sites to generate 4-AP. A reaction pathway was shown in Figure 6.
First, NaBH4 rapidly reacted with water to release H2, in which the sodium metaborate (NaBO2)
was formed as a byproduct. Then, the H2 split H–H bond into H atoms, which adsorbed on the
surface of metal nanoparticles. There was no doubt that the increase in chemisorbed H atoms on NiPt
nanoparticles could improve the reducibility. It was accepted that the more hydrogen adsorbed, the
higher the catalytic activity exhibited [18]. The negatively-charged hydrogen in the metal–hydrogen
bond attacked the positively charged nitrogen within the nitro group of 4-NP. Subsequently the nitro
group was reduced to the nitroso group intermediate, followed by the reaction of two hydrogen
atoms to form hydroxylamine. Finally, the hydroxylamine was further reduced to amino group to
obtain 4-AP.
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Figure 6. Reaction pathways for the reduction of 4-NP to 4-AP: (a) NaBH4 hydrolyzed to release H2;
(b) H2 molecules split to H atoms on the surface of metal NPs and reacted with 4-NP; (c) H atoms
reacted with the nitrosophenol intermediate to form hydroxylamine; (d) hydroxylamine was further
reduced to the final product 4-AP. H–M–H represents the split of H2 molecules on the surface of
metal NPs.

The native magnetic property of the nanocatalysts caused by Ni made them economically and
easily separated after reactions using an external magnet (Figure 7), and the catalysts were conveniently
recycled and reused in a fresh solution.Nanomaterials 2016, 6, 103 9 of 13 
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addition of the catalyst; (c) the suspension solution after reaction; (d) separation of solid catalysts with
a magnet.

3. Experimental Section

3.1. Materials

Hexachloroplatinic acid (H2PtCl6¨ 6H2O, 99.9%) was purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Glucose anhydrous and NaBH4 were purchased from Kermel
Chemical Reagent Co., Ltd. (Tianjin, China). 4-nitrophenol, received from Macklin Biochemical Co.,
Ltd. (Shanghai, China), was used without further purification. Other chemicals and reagents were all
analytical reagent grade and used as received without further purification. Deionized water was used
throughout the process.
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3.2. Synthesis of NiAl-LDH Precursor

A mixture of Ni(NO3)2¨ 6H2O and Al(NO3)3¨ 9H2O were dissolved in 30 mL of deionized water
to form a clear salt solution ([Ni2+] = 0.2 M, [Al3+] = 0.1 M). The salt solution was rapidly poured into
a 30 mL NaOH and Na2CO3 solution ([OH´] = 1.6[Ni2+ + Al3+], [CO3

2´] = 2[Al3+]) within several
tens of seconds under vigorous stirring. The mixture solution was further stirred for 10 min at room
temperature. The resulting suspension was then centrifuged and re-dispersed in deionized water
for five cycles to obtain LDH precipitate. The resulting precipitate was transferred and dispersed
into a Teflon-lined autoclave (100 mL total volume), and 80 mL of deionized water was added to it.
The autoclave was then tightly sealed and maintained at 150 ˝C for 10 h. The resulting bluish green
suspension was directly vacuum-freeze-dried overnight to collect the solid NiAl-LDH powder.

3.3. Synthesis of LDH/Carbon Composites and Supported NiPt Catalysts

A certain amount of H2PtCl6¨ 6H2O was added to 30 mL of glucose (C6H12O6) solution
([C6H12O6] = 2.5[Ni2+ + Al3+]). The precipitate obtained via the above-mentioned room-temperature
co-precipitation was dispersed in the mixture solution. The resultant solution was transferred into
an autoclave with the same fill volume and maintained at the same temperature (150 ˝C) for the
same period of time (10 h). Subsequently, the product was centrifuged and washed with deionized
water and ethanol five times. Finally, the precipitate was freeze-dried overnight to obtain LDH/C
composites and Pt/LDH-C. The resulting composites were loaded into an alumina boat and calcined
in a tube furnace in a flowing N2 atmosphere. The furnace was heated to a preset temperature at a
rate of 5 ˝C/min, and the temperature was maintained for 2 h. After the reaction, the furnace was
naturally cooled to room temperature. The obtained black product was denoted as NiPt-x, where x is
the theoretical loading percentage of Pt (wt %).

3.4. Characterizations

UV-VIS absorption spectra were recorded using a (TU-1810 spectrometer, Purkinje, Inc., Beijing,
China. TEM and high-resolution TEM (HRTEM) images were obtained using a JEM-2100 microscope
(JEOL, Tokyo, Japan) with an Oxford INCA detector (Oxford-instruments, Shanghai, China) operating
at 200 kV. The compositions of the as-prepared catalysts were determined through inductively coupled
plasma-atomic emission spectroscopy (ICP-AES) (ICPS-7500 Spectrometer, Shimadzu, Inc., Beijing,
China) Powder XRD analyses were performed using a Bruker D8 Advanced diffractometer (Bruker,
Beijing, China) with Cu Kα radiation, and the scanning angle 2θ ranged from 5˝ to 80˝. XPS
measurements were performed using a VG ESCALAB250 (Thermo Fisher Scientific, MA, USA) with
Al Kα radiation (hν = 1486.6 eV). The specific surface areas were measured via N2-adsorption at 77 K
using a static volumetric Quantachrome Autosorb-1C-VP Analyser (Quantachrome, Shanghai, China).
The specific surface area was calculated using a Brunauer–Emmett–Teller (BET) method.

3.5. Catalytic Evaluation

Catalytic reduction reactions of 4-nitrophenols were conducted at room temperature (25 ˝C) in the
presence of NiPt catalysts with varying Pt content. Typically, aqueous solutions of 4-NP (2 mM) and
NaBH4 (0.25 M) were freshly prepared. NiPt catalyst in the amount of 15.5 mg was dispersed into 40 mL
of 4-NP and NaBH4 mixture solutions under continuous stirring. To evaluate the reaction progress,
approximately 1 mL of solution was taken out of the reaction mixture at specified time intervals and
subsequently diluted 20 times with deionized water. This step was followed by recording of the
UV-VIS spectra of the solution to examine the concentration of 4-NP by monitoring the adsorption
peak at 400 nm.
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4. Conclusions

The supported NiPt nanocatalysts were synthesized by an in situ reduction strategy from
Pt@LDH/carbon composites precursor. The precursor method ensured the formation of nanosized
(~10 nm) and aggregate-free Ni NPs. The incorporation of Pt to the pristine Ni catalysts led to the
enhanced activity towards the reduction of 4-NP to 4-AP because the modification of Pt affected the
electronic structures of Ni. The optimal NiPt catalysts with an appropriate amount of Pt showed
excellent activity in the reduction of 4-NP. The apparent rate constant (Ka) reached 18.82 ˆ 10´3 s´1,
which was 6.2 times higher than that of Ni catalysts and much higher than most of reported catalysts
in the literaures. The present method for bimetallic catalysts could be extended to other compositions
owing to the adjustable components in LDHs to improve the catalytic activity of the monometallic
ones and simultaneously to minimize the utilization of noble metals.
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