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Abstract: In this publication we show that the procedure to synthesize nanocrystals and the
post-synthetic nanocrystal ligand sphere treatment have a great influence not only on the immediate
performance of hybrid bulk heterojunction solar cells, but also on their thermal, long-term, and air
stability. We herein demonstrate this for the particular case of spherical CdSe nanocrystals,
post-synthetically treated with a hexanoic acid based treatment. We observe an influence from
the duration of this post-synthetic treatment on the nanocrystal ligand sphere size, and also on
the solar cell performance. By tuning the post-synthetic treatment to a certain degree, optimal
device performance can be achieved. Moreover, we show how to effectively adapt the post-synthetic
nanocrystal treatment protocol to different nanocrystal synthesis batches, hence increasing the
reproducibility of hybrid nanocrystal:polymer bulk-heterojunction solar cells, which usually suffers
due to the fluctuations in nanocrystal quality of different synthesis batches and synthesis procedures.

Keywords: bulk heterojunction solar cells; hybrid solar cells; nanocrystals; quantum dots; conjugated
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1. Introduction

Solar cells possessing a photoactive layer made out of semiconducting nanocrystals (NCs) and a
conjugated polymer blend are called hybrid bulk heterojunction (BHJ) solar cells. Their photoactive
layer typically possesses a thickness of around 100 nm, and is deposited from a NC/polymer
dispersion [1]. A typical device structure is shown in Figure 1a. Within the photoactive layer,
the polymer is mostly utilized as donor material for the electrons arising from the photo-induced
excitons, while the NCs serve as electron acceptors and extraction material. Already the seminal
work of Greenham et al. [2] published in 1996 has acknowledged the crucial negative impact of
the insulating NC synthesis ligands on the solar cell performance, and a post-synthetic pyridine
treatment of NCs was reported to improve overall solar cell performance. Since then, hybrid BHJ
solar cells have undergone a remarkable development over the years (see Figure 1b), now exceeding
efficiencies of 4% [3–6]; the currently best hybrid solar cells using NCs of different shapes have
in common the usage of the low-bandgap polymer PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-
cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]) and of CdSe as NC material.
Moreover, the best solar cells of the respective NC shape (spherical [6], elongated [5], multibranched [4])
all utilize the attachment of a thiol group to the CdSe NC surface. Thereby, high open circuit voltages
of 0.71–0.74 V are achieved, leading to power conversion efficiencies (PCE) of 4.05%–4.7%.
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Figure 1. (a) Working principle and device structure shown on the cross-sectional and on the top view 
of the investigated hybrid bulk heterojunction (BHJ) solar cell with the active area size of 0.07 cm2. (b) 
Power conversion efficiencies of selected hybrid BHJ solar cells published over the years from 
nanocrystals (NCs) of different shape: quantum dots (QD) [2,3,6–12], nanorods (NR) [5,10,13–15], 
multipods (MP) [4,10,16–19,20]. 

Nevertheless, despite almost reaching the PCEs of (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-
cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]) (PCPDTBT):fullerene-based BHJ solar 
cells, which are up to 5.24%–5.5% [21,22], the utilization of NCs as electron acceptors has the 
aforementioned disadvantage of requiring post-synthetic NC treatment to reduce and or exchange 
the initial synthesis ligands. This treatment, however, may result in the partial destruction of the NC 
surface [23]—leading to increased charge recombination—and to the formation of NC aggregates, 
which might introduce shortcuts over the thin active layer. Hence, several publications on hybrid 
BHJ solar cells report the filtration of the post-synthetically treated NC dispersion, in order to remove 
large NC aggregates [4,20]. The approach we follow is to avoid NC aggregation within the process of 
post-synthetic NC treatment prior to incorporation into the polymer:NC blend dispersion. We 
achieve this by a gradual reduction of the NC ligand sphere [11,15,24] through a protonation step of 
the hexadecylamine (HDA) capping ligands with hexanoic acid (HA) and their subsequent solvation 
with the polar solvent methanol. We observed an influence from the post-synthetic treatment 
duration on the NC ligand sphere size (see Figure 4). Therefore, we believe that we are able to 
minimize the post-synthetically induced number of NC surface defects, which is supported by the 
excellent ideality factor of 1.22–1.33 for our CdSe/PCPDTBT solar cells [6], which is relatively close to 
unity compared to other hybrid BHJ solar cells [25–28], even when compared to organic BHJ 
photovoltaic cells [29,30]. 

2. Results and Discussion 

2.1. NC Synthesis 

CdSe QDs, capped with HDA and trioctylphosphine oxide (TOPO) ligands, were synthesized 
according to Yuan et al. [31]. An exemplary transmission electron microscopy (TEM) picture of the 
spherical CdSe NCs with a typical diameter of about 6.5 nm as well as the ultraviolet-visible (UV-Vis) 
absorption and photoluminescence (PL) spectrum are given in Figure 2. 

In order to increase the NC size uniformity, the precursor concentration was increased from a 
100:1:1 (hexadecylamine/trioctylphosphine oxide):(cadmium-stearic acid):(trioctylphosphine-selenid) 
(HDA/TOPO:Cd-SA:TOP-Se) molar ratio to a 100:2:2 ratio [24]. Furthermore, to study the influence 
of unintentionally occurring fluctuations of practically utilized precursor ratios for the NC synthesis, 
the Cd:Se precursor ratio was varied from 3:2, over 2:2, to 2:3. The parameters of PL intensity, PL 
peak position, and full width at half maximum (FWHM) were measured and compared to aliquots 
taken during the NC synthesis at different reaction times and are depicted in Figure 3. 

From the parameters of the CdSe quantum dots (QDs)—determined from extracted samples 
during 2 different syntheses for each precursor ratio—shown in Figure 3, one can observe that indeed 
a lower minimal FWHM is observed when using higher precursor concentrations. Moreover, a 
tendency of lower minimum FWHM is also observed for the increased Se precursor concentration; 
this synthesis furthermore exhibits a higher PL quantum yield in the synthesis brightpoint (point 

Figure 1. (a) Working principle and device structure shown on the cross-sectional and on the top view
of the investigated hybrid bulk heterojunction (BHJ) solar cell with the active area size of 0.07 cm2.
(b) Power conversion efficiencies of selected hybrid BHJ solar cells published over the years from
nanocrystals (NCs) of different shape: quantum dots (QD) [2,3,6–12], nanorods (NR) [5,10,13–15],
multipods (MP) [4,10,16–20].

Nevertheless, despite almost reaching the PCEs of (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-
cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]) (PCPDTBT):fullerene-based BHJ
solar cells, which are up to 5.24%–5.5% [21,22], the utilization of NCs as electron acceptors has the
aforementioned disadvantage of requiring post-synthetic NC treatment to reduce and or exchange
the initial synthesis ligands. This treatment, however, may result in the partial destruction of the NC
surface [23]—leading to increased charge recombination—and to the formation of NC aggregates,
which might introduce shortcuts over the thin active layer. Hence, several publications on hybrid
BHJ solar cells report the filtration of the post-synthetically treated NC dispersion, in order to remove
large NC aggregates [4,20]. The approach we follow is to avoid NC aggregation within the process of
post-synthetic NC treatment prior to incorporation into the polymer:NC blend dispersion. We achieve
this by a gradual reduction of the NC ligand sphere [11,15,24] through a protonation step of the
hexadecylamine (HDA) capping ligands with hexanoic acid (HA) and their subsequent solvation with
the polar solvent methanol. We observed an influence from the post-synthetic treatment duration
on the NC ligand sphere size (see Figure 4). Therefore, we believe that we are able to minimize the
post-synthetically induced number of NC surface defects, which is supported by the excellent ideality
factor of 1.22–1.33 for our CdSe/PCPDTBT solar cells [6], which is relatively close to unity compared
to other hybrid BHJ solar cells [25–28], even when compared to organic BHJ photovoltaic cells [29,30].

2. Results and Discussion

2.1. NC Synthesis

CdSe QDs, capped with HDA and trioctylphosphine oxide (TOPO) ligands, were synthesized
according to Yuan et al. [31]. An exemplary transmission electron microscopy (TEM) picture of the
spherical CdSe NCs with a typical diameter of about 6.5 nm as well as the ultraviolet-visible (UV-Vis)
absorption and photoluminescence (PL) spectrum are given in Figure 2.

In order to increase the NC size uniformity, the precursor concentration was increased from a
100:1:1 (hexadecylamine/trioctylphosphine oxide):(cadmium-stearic acid):(trioctylphosphine-selenid)
(HDA/TOPO:Cd-SA:TOP-Se) molar ratio to a 100:2:2 ratio [24]. Furthermore, to study the influence of
unintentionally occurring fluctuations of practically utilized precursor ratios for the NC synthesis, the
Cd:Se precursor ratio was varied from 3:2, over 2:2, to 2:3. The parameters of PL intensity, PL peak
position, and full width at half maximum (FWHM) were measured and compared to aliquots taken
during the NC synthesis at different reaction times and are depicted in Figure 3.

From the parameters of the CdSe quantum dots (QDs)—determined from extracted samples
during 2 different syntheses for each precursor ratio—shown in Figure 3, one can observe that indeed a
lower minimal FWHM is observed when using higher precursor concentrations. Moreover, a tendency
of lower minimum FWHM is also observed for the increased Se precursor concentration; this synthesis
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furthermore exhibits a higher PL quantum yield in the synthesis brightpoint (point where the PL
intensity reaches its maximum during synthesis). These observations confirm the findings firstly
described by Qu et al. [32]. The properties of CdSe QDs in their brightpoint of different precursor
concentrations—utilized for BHJ hybrid solar cell fabrication—are summarized in Table 1.
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Figure 2. (a) Transmission electron microscopy (TEM) image of CdSe nanocrystals (NCs) used
for the investigation from a 100:3:2 (hexadecylamine/trioctylphosphine oxide):(cadmium-stearic
acid):(trioctylphosphine-selenid) ((HDA/TOPO):(Cd-SA):(TOP-Se)) ratio, synthesized for 30 min at 300 ˝C
by wet-chemical hot injection NC synthesis with an average diameter of 6.5 nm. (b) Ultraviolet-visible
(UV-Vis) absorption spectrum (blue line) and photoluminescence spectrum of CdSe nanocrystals (NCs)
synthesized by a hot injection method recorded at an excitation of 575 nm (red line).
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Figure 3. Different Cd:Se precursor ratios and concentrations—full width at half maximum (FWHM),
photoluminescence (PL) peak position, and PL intensity evolution during the NC syntheses.

Table 1. Cd:Se precursor ratios, position of the photoluminescence (PL) brightpoint during the
nanocrystal (NC) synthesis; average spectral PL peak position, PL full width at half maximum
(FWHM), and average PL quantum yield (QY) of utilized quantum dots (QDs); and average
power conversion efficiency (PCE) of hybrid bulk heterojunction poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-
cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]:CdSe (BHJ PCPDTBT:CdSe) QD
solar cells found for the optimal post-synthetic hexanoic acid washing time of CdSe QDs.

Cd:Se
Precursor Ratio

Brightpoint
(min)

PL Peak
Position (nm)

FWHM
(nm)

PL QY
(%)

Optimal HA
Washing Time (min)

PCE with Optimal NC
Treatment Time (%)

3:2 17 647 ˘ 7 30.7 ˘ 0.8 24 ˘ 5 21 2.4 ˘ 0.10
2:2 21 650 ˘ 3 27.0 ˘ 0.7 25 ˘ 5 18 2.8 ˘ 0.18
2:3 60 646 ˘ 5 32.2 ˘ 0.9 37 ˘ 8 60 1.7 ˘ 0.04

2.2. Post-Synthetic NC Treatment

As mentioned before, CdSe QDs were taken from the PL brightpoint, since we expect an optimal
NC quality in this point, according to Qu et al. [32]. A hexanoic acid-based treatment was applied
on CdSe QDs synthesized at three different Cd:Se ratios as described in the methods section. As we
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have presented in previous publications [11,15,33], the NC possesses a sphere of weakly associated
ligands, which crystallize after the cool-down of the synthesis reaction around the initial ligand layer
chemisorbed to the NC surface. To demonstrate the physical influence of the post-synthetic treatment
on the CdSe QDs, the PL intensity and the ligand sphere size were determined for different hexanoic
acid (HA) washing times (Figure 4). The peak PL intensity was determined from PL spectroscopy
measurements of re-dispersed CdSe QDs, while the ligand sphere size was determined by measuring
the hydrodynamic QD diameter (corresponding to the ligand sphere size [34]) by dynamic light
scattering (DLS) of the same samples.
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Figure 4. Red squares: Development of PL intensity over the HA washing time for CdSe QDs
synthesized in hexadecylamine/trioctylphosphine oxide (HDA/TOPO) (100:3:2, 30 min at 300 ˝C).
Blue dots: Respective development of the hydrodynamic diameter together with the standard deviation
for CdSe QDs measured by dynamic light scattering (DLS). For both, the half-life τ in min is given for
the respective fitted exponential decay.

It can be seen that both the hydrodynamic diameter and the PL intensity seem to decrease
exponentially with increasing HA washing time, corresponding to the facile removal of the outer,
weakly associated ligand shell. The DLS measurements of untreated QD samples show a relatively
wide value distribution, which might also partially result from QD aggregation to superstructures.
Nevertheless, from the DLS measurements we can draw the conclusion that the NC ligand sphere
diameter is decreasing with increasing HA washing time, while from the PL intensity measurements
one can assume that the original ligand passivation of the NC surface is either reduced or changed (i.e.,
by a ligand exchange with HA and/or MeOH).

2.3. Optimal Initial Solar Cell Performance

Using CdSe QDs taken from the brightpoint of the respective NC synthesis (i.e., from 21 min
synthesis time for the 100:2:2 ratio, 16 min for 100:3:2, and 60 min for 100:2:3), hybrid BHJ Solar cells
were fabricated and characterized according to the methods section. In order to obtain the best solar
cell performance, the optimal post-synthetic NC treatment time had to be found (see Figure 5).

From these experiments the post-synthetic NC treatment times, resulting in the optimal hybrid
solar cell power conversion efficiency (PCE), were determined for 3 differently synthesized QDs.
A summary of the optimal NC treatment time based on the experiments presented in Figure 5, the resulting
average optimal PCE and the initial properties of the utilized QDs are presented in Table 1.

The parameters summarized in Table 1 show that there is a correlation in between the initial PL
QY of CdSe QDs, and the required post-synthetic treatment time for creating the most efficient hybrid
solar cell: a high PL QY requires a long post-synthetic NC treatment time. Furthermore, one can see
that low PL FWHM leads to high PCEs for BHJ hybrid solar cells. Hence, the PL QY is an indicator of
the required post-synthetic treatment time but not for the achievable solar cell performance. This is
determined—given that the post-synthetic treatment is optimized—by the FWHM for comparable NC
sizes, as they were in this investigation. Lower FWHM results in a higher PCE, and higher FWHM
results in a lower PCE. This is reasonable, since a low FWHM presumably corresponds to a high
intrinsic uniform NC quality.
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Figure 5. Dependency of open-circuit voltage (VOC), fill factor (FF), short-circuit current density (JSC)
and PCE on the HA washing time at 105 ˝C for hybrid BHJ solar cells containing CdSe NCs taken
from the respective PL brightpoint of the NC hot-injection syntheses performed at 300 ˝C with a
100:3:2, 100:2:2, and 100:2:3 ratio of (HDA/TOPO):(Cd-SA):(TOP-Se). The results are obtained from
two synthesis batches for each ratio and from 60 solar cells, which were thermally post-annealed until
reaching their optimal performance.

2.4. Influence of the Post-Synthetic NC Treatment on the Device Annealing Time, and Guidance for
NC Treatment

To obtain the optimal solar cell performances presented in the prior paragraph, besides the
optimal NC treatment time, an optimal time for the thermal solar cell annealing is also necessary.
This optimal annealing time is however different for different NC post-synthetic treatment times as
shown in Figure 6.

When taking a closer look at this behavior (see Figures 7 and 8), one can even identify indications
for finding the optimal NC treatment time with a reduced number of initial experiments.
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As depicted in Figure 7, the short-circuit current density and the open-circuit voltage are already
relatively high, near the optimal HA treatment time, even before the thermal annealing step. This is
since the series resistance—representing the active layer resistivity and to a lesser extent also the
contact resistances [35]—has its lowest values for longer HA washing times (see Figure 8). The reason
for this is probably the decreasing NC ligand sphere diameter, measured during the first 15 min of the
NC treatment (see Figure 4), leading to an increased conductivity of the QD phase within the active
layer and a more intimate NC packing, improving electron hopping processes.

The parallel resistance, which is an indicator for the active layer morphology (e.g., formation of
“dead zones” from which no electrons can be extracted, and also to trap-assisted recombination [36]),
tends to steadily increase with increased NC washing time, pointing towards an improved active layer
morphology (i.e., finer phase segregation and better charge extraction pathways). For post-synthetic
NC treatment times exceeding the optimal duration, the parallel resistance tends to remain high in the
resulting solar cells, but series resistance greatly increases, supposedly due to destruction of the NC
surface by the washing procedure.

After performing a thermal annealing step on a hotplate inside a nitrogen filled glovebox for
10 min at 145 ˝C, a strong increase in JSC (and accordingly a decrease in RS) is observed especially
for shorter washed QDs, which is probably mostly attributed to the enhanced intermolecular
polymer-chain packing according to organic BHJ solar cell literature [36], but here a thermally
induced in situ reduction of the NC ligand shell might also play a role. The series resistance for
the longest washed NCs, however, strongly profits (despite still being of relatively high values) from
thermal annealing, which might arise from a partial re-passivation of the NC surface. On the other
side, the parallel resistance generally only appears to change after thermal annealing for solar cells
containing shortly washed QDs, which we attribute to a higher morphological stability of the active
layer of solar cells containing stronger ligand shell-size reduced QDs.

Briefly, after performing a first thermal annealing step on the solar cell, one can conclude whether
one has to add to the NC washing time, or further reduce it for the next solar cell. This is, since the JSC
increase is stronger after annealing for short-time-washed NCs, accompanied with a typical strong
increase of RP. Moreover, solar cells containing short-time-washed NCs exhibit a higher VOC after the
same thermal annealing, compared to long-time-washed NCs containing cells.

2.5. Influence of NC Treatment on Solar Cell Long-Term Performance Stability

As we have previously shown, the post-synthetic NC treatment influences the immediate solar
cell performance and the thermal stability of BHJ hybrid solar cells. As we will subsequently show,
the post-synthetic NC treatment also influences the long-term performance of solar cells. Figure 9
shows the behavior of BHJ hybrid solar cells containing shorter (10 min and 12 min) and longer washed
(21 min) CdSe QDs before being incorporated into the active layer.
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& blue squares), 12 min (green spherical points), and 21 min (orange & red rhombic points), stored in
the dark inside a glovebox and periodically illuminated by a sun-simulator (AM 1.5 G spectrum) and
characterized inside the same glovebox.

As a result, we observe improved performance stability for solar cells containing
longer-time-washed QDs, with a decrease of the PCE from 2.4% to 1.6% (´33%) compared to a
decrease from 2.1% to 0.55% (´74%), during 2 years of investigation. The series resistance RS increases
only slightly for long-time-washed NCs, but continuously increases for solar cells with shorter washed
NCs. Possible explanations for this behavior would be the facilitated oxygen penetration through
a supposedly less dense active layer for solar cells with higher ligand content, leading to increased
oxidation of the CdSe QDs and of the polymer. However, the diffusion of ligands towards the
electrodes, forming there an insulating layer would also be a possible explanation for the increasing
RS. RP and VOC are already low for long-time-washed NCs, possibly due to more shunts within the
active layer by presumably more aggregated NCs, and induced surface defects introduced by long NC
washing, hence increasing charge recombination processes.

It is also worth mentioning that the short-circuit current has shown a clear dependency on the
oxygen concentration, which fluctuated during the first 19 months around 25 ppm O2 with extremes
of 0 ppm and 36 ppm, before the glovebox was continuously flushed with nitrogen for the following
5 months (the H2O concentration was of <5 ppm at all time). We have observed JSC to decrease
with increasing oxygen concentration inside the glovebox, and JSC to be recovered after the oxygen
concentration has decreased. This observed reversibility does not occur immediately, but rather slowly
(within several days). Hence, the origin of JSC recovery might be due to oxygen depletion within the
active layer by O2 diffusion.
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2.6. Influence of NC Treatment on the Solar Cell Performance Stability in Air

We have also performed a short investigation of the influence the difference in NC treatment
time has on the stability of non-encapsulated glass/ITO/PEDOT:PSS/PCPDTBT:CdSe/Al solar cells
taken into air and measured under AM 1.5G illumination. Three different solar cells were used
herein. The CdSe QDs utilized in this investigation received a HA-based treatment for 15 min (short
washed) and 22 min (long washed). To this comparison, also an organic PC61BM:PCPDTBT solar cell,
with the active layer composed out of a 2.5:1 weight ratio between PC61BM (Phenyl C61 butyric acid
methyl ester, Sigma-Aldrich, Saint Louis, MS, USA, >99.5%) and PCPDTBT was added to specifically
investigate the influence of the NCs.

According to Figure 10, a decreasing JSC is observed for both hybrid and organic solar cells when
taking the devices from the glovebox out into air. Possible reasons for the reduced JSC are the (partially)
reversible uptake of oxygen within the polymer phase [37], the oxidation of the aluminum cathode [38],
and the uptake of water into the hygroscopic Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic
acid) (PEDOT:PSS) layer [39,40]. We also observe that the JSC decrease is more similar to the organic
solar cell, when utilizing long-washed NCs; this might be due to the fact that the oxygen diffusion
within the higher-density NC ligand depleted active layer is slowed down. The VOC shows a strong
increase for hybrid solar cells containing short washed NCs, while a VOC increase is seen much later
with long washed NCs, and not at all for organic solar cells—as has already been reported for organic
solar cells [40,41]. Hence, we assume that the VOC increase in air is connected to the utilization of NCs,
and possibly due to adsorption of H2O onto CdSe NCs.
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Figure 10. Development by time of short circuit current densities, series resistances, open circuit
voltages, and parallel resistances for hybrid BHJ CdSe/PCPDTBT solar cells with short-time HA
washed and long-time HA washed NCs, and for an organic BHJ PC61BM/PCPDTBT solar cell for
comparison when taken into air. Since the JSC of the solar cell containing short washed QDs displayed
a fast initial decrease from its original value, an extrapolated graph has been added to guide the eye.

3. Methods

3.1. Post-Synthetic NC Treatment

The post-synthetic NC treatment was performed in the following way: a portion of the synthesis
product containing 1 mg of CdSe QDs was dissolved in 2.5 mL hexanoic acid (ě99.5%, Sigma-Aldrich,
Saint Louis, MS, USA), stirred for several minutes in a snap-cap glass tube at 110 ˝C on a hot plate.
Subsequently a double volume (compared to HA) of methanol (anhydrous, 99.8%, Sigma-Aldrich,
Saint Louis, MS, USA) was added to reduce the QD concentration to 1/3rd of its initial value.
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The stirring was continued with the added methanol at 110 ˝C for half the stirring time compared to
that in pure HA. Then, the dispersion was centrifuged by an Eppendorf MiniSpin® plus centrifuge
(Eppendorf AG, Hamburg, Germany) for 1 min at 14.5 krpm with the rotor-pre heated in a furnace to
90 ˝C in order to hinder the re-crystallization of the ligands. Afterwards the QDs were redispersed in
chloroform (CHCl3) with a concentration of 2 mg/mL and stirred at 105 ˝C for 1 min. Consequently,
triple the volume of methanol was added, and the NCs were further stirred for 3 min at 105 ˝C
for precipitation. Afterwards, the NCs were collected by centrifugation for 30 s at 14.5 krpm.
Chlorobenzene (anhydrous, 99.8%, Sigma-Aldrich, Saint-Louis, MS, USA) was then added to obtain
a CdSe QD dispersion of 24 mg/mL. Hence, when mentioning the HA washing times throughout
this publication, one must also consider the rest of the NC washing protocol subsequently executed,
which additionally includes half the HA washing time with added MeOH, 1 min stirring in CHCl3,
and finally 3 min stirring in MeOH. For example, 20 min of HA washing means: 20 min HA plus
10 min MeOH, centrifugation, redisperison, 1 min CHCl3 plus 3 min MeOH, centrifugation, and final
redispersion in chlorobenzene (CB).

3.2. Solar Cell Fabrication

The obtained CdSe QD/CB dispersion was mixed in a weight ratio of 88:12 (QD:polymer) with a
20 mg/mL solution of PCPDTBT (Mn = 10–20 kDa, 1-Material, Dorval, Canada) in CB. The final ink
was spun cast by a WS400-6NPP-Lite spin coater from Laurell Technologies (North Wales, PA, USA
with 800 rpm for 30 s followed by a 60 s drying step at 1800 rpm, resulting in an active layer thickness
of about 80 nm. The spin coating was done on a structured ď10 Ωsq ITO substrate from Präzisions
Glas & Optik GmbH (Iserlohn, Germany), which was treated for 5 min with oxygen plasma and spin
coated with Baytron AI4083 PEDOT:PSS from HC Starck GmbH (Goslar, Germany) at 2000 rpm for 30 s
and dried for 20 min at 160 ˝C, to form a 70 nm thick hole blocking layer. After thermal evaporation
of an 80 nm aluminum layer as electrode, the cells were thermally annealed for different times at
145 ˝C on a hot plate. The solar cells were usually annealed for 10 min and subsequently characterized.
This procedure was repeated until the solar cell PCE started to decrease.

3.3. Solar Cell Characterization

The solar cells were characterized inside a nitrogen filled glovebox by a computer controlled
Keithley 2602A source-meter (Keithley Instruments, Solon, OH, USA). The cells were individually
illuminated by a LS0400 LOT-Oriel sun simulator (LOT-QuantumDesign GmbH, Darmstadt, Germany),
housing a xenon lamp and using an AM 1.5G filter. The light intensity is adjusted by a calibrated
silicon reference solar cell to match 100 mW/cm2.

3.4. Dynamic Light Scattering (DLS)

DLS measurements were performed with a Zetasizer Nanosizer ZS of Malvern Instruments Ltd
(Malvern, UK). The investigated QDs were dispersed in chloroform to obtain a dispersion with an
absorbance of 0.1 A.U. at the first excitonic peak. For the measurements a Hellma® fluorescence cuvette
out of Suprasil® quartz glass (Hellma, Müllheim, Germany) was utilized.

4. Conclusions

The optimal NC treatment time before integration into BHJ hybrid solar cells can be determined
by systematic analysis of the resulting solar cell device performances. NCs of higher PL QY require a
longer post-synthetic NC treatment time. The optimal thermal annealing time for solar cell devices
is different for different NC treatment times, and provides crucial information for tuning the NC
treatment time in the right direction. Hybrid BHJ solar cells containing stronger ligand sphere reduced
QDs exhibit an improved performance stability in the long term and in air. Further investigations
would have to be conducted into the influence of the post-synthetic NC treatment on the active layer
morphology and on the induced trap density on the NCs and inside the solar cell. We have shown
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in this publication that the QD synthesis procedure can lead to decisive influences on the optimal
post-synthetic NC treatment before integration into hybrid BHJ solar cells and determine the overall
solar cell performance. This might be one reason for the widely scattered results of groups working in
this field and for QD batch to batch variations, since properties of nanomaterials are often determined
by surface properties such as surface defects or ligand attachment and arrangement, which are hard to
control and cannot be determined by TEM and UV-Vis spectroscopy, which are the methods of choice
for QD characterization. We also believe that our findings for CdSe QDs are also of general importance
for other QD systems and for the development of respective post-synthetic treatment protocols before
integration into various applications.
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Abbreviations

The following abbreviations are used in this manuscript:

NC Nanocrystal
BHJ Bulk heterojunction

PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7-(2,1,3-
benzothiadiazole)])

PEDOT:PSS (Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid))
PCE Power conversion efficiency
QD Quantum dot
NR Nanorod
MP Multipod
HDA Hexadecylamine
TOPO Trioctylphosphine oxide
HA Hexanoic acid
PL Photoluminescence
Cd-SA Cadmium-stearic acid
TOP-Se Trioctylphosphine-selenid
UV-Vis Ultraviolet-visible
FWHM Full width at half maximum
CB Chlorobenzene
MeOH Methanol
DLS Dynamic light scattering
A.U. Absorbance units
ITO Indium tin oxide
QY Quantum yield
VOC Open-circuit voltage
FF Fill factor
JSC Short-circuit current density
RS Series resistance
RP Parallel resistance
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