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Abstract: In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic
photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been
numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile,
graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized
by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC.
Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into
the 2D PhC.
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1. Introduction

Photonic crystals (PhCs), first proposed by Yablonovitch [1] and John [2], have attracted great
attention due to their unique properties, such as the self-collimation which can be applied to confine
and guide light in photonic integrated circuits [3], the negative refraction which can be employed to
focus light on a scale less than the square of light wavelength [4]. Furthermore, similar to the energy
band gaps resulting from the electrons in a periodic potential, the photonic band gaps (PBGs) can
also be obtained in medium with spatially periodical dielectric constant [5–8]. Light with a frequency
within the PBGs is not allowed to propagate along the PhCs. However, conventional dielectric based
PhC devices [9–12], usually in micrometer scale, are challenging to obtain a further size reduction due
to the optical diffraction limit. Nevertheless, surface plasmon polaritons (SPPs), the electromagnetic
waves propagating along an interface between a metal and a dielectric, enable the confinement of
electromagnetic field to scales far below the optical diffraction limit [13]. This makes SPPs-based
components significantly smaller than the wavelength [14]. However, noble plasmonic materials
including gold and silver, are barely tunable and display enormous ohmic losses due to the evanescent
characteristic of SPPs, which greatly limit their applications in nano-optical devices.

Graphene, a two-dimensional (2D) carbon atomic crystal arranged in a honeycomb lattice [15],
has demonstrated exceptional properties in electronics and photonics [16–18], involving a number of
applications such as field-effect transistors [19–21], photodetectors [22,23] and high-speed optical
modulators [24,25], etc. Unlike the conventional plasmonics based on noble metals, graphene
supported SPPs have demonstrated extremely high confinement, highly tunability via electrical gating
and chemical doping [26–28], and relatively low loss resulting from long plasmon lifetime [29,30].

Nanomaterials 2016, 6, 166; doi:10.3390/nano6090166 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2016, 6, 166 2 of 11

These extraordinary properties make graphene a promising candidate for plasmonic material with
broad applications from terahertz to mid-infrared span [31–34].

One of the typical structures of graphene-based one-dimensional (1D) plasmonic PhCs is graphene
micro-ribbon arrays. Early in 2011, Ju et al. reported the tunability of plasmon excitations and
light-plasmon coupling at terahertz in graphene micro-ribbon arrays [35]. Then, Nikitin et al.
investigated the transmission, absorption and reflection properties of graphene micro-ribbon
arrays [36]. Bludov et al. demonstrated that polaritonic crystal can be realized with monolayer
graphene periodically modulated by gate electrode [37]. Furthermore, Yan et al. studied the
magnetoplasmons of graphene disk arrays of micrometer [38], where they found that the plasmon
lifetime in graphene can be continuously tuned via magnetic field, and the tunability of mode splitting.
In the same year, Thongrattanasiri et al. demonstrated the complete optical absorption property with
similar structure [39]. Other properties of interest including transparency and band structure are
investigated using graphene/insulator stacks [40,41]. However, all of the above mentioned research
concerned the interaction between the graphene periodical nano structures and the normal incident
light. In other words, the reported work did not analyze the density of states (DOS) properties of
the plasmonic crystals, which are significant important in the performance of the future plasmonic
emitters. Further, in plane propagation properties of plasmons along the 2D graphene plasmonic
crystal have never been reported.

In this paper, we proposed graphene-based plasmonic PhCs with ultra-small size. Both the band
structure and the DOS of 1D and 2D PhCs are numerically studied by using the finite element method
(FEM) with Comsol Multiphysics Radio Frequency (RF) Module, version 4.3b, commercial software.
Further, 2D PhC nanocavity was obtained by introducing point defect, where the optical field was
well-confined in the defect via tuning the chemical potential of graphene in the defective region.
Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into 2D
PhC. These results provide new insight into the designing of PhC devices, including PhC waveguides,
PhC nanocavities, plasmonic filter, plasmonic switch, etc.

2. Simulation Methods and Models

To investigate 1D graphene-based plasmonic PhC, double-layer graphene, constituted by two
graphene sheets with an interval of 0.3 nm, is periodically arranged along x direction to form the 1D
PhC in our model. Figure 1a displays a three-dimensional (3D) view of a schematic diagram of the 1D
PhC. In Figure 1b, we use two line segments to represent the cross section of double-layer graphene
with the same chemical potential of 0.9 eV. The bottom layer with width of 20 nm, which plays the role
of guiding SPPs, is continuously arranged. Periodically discrete graphene nanoribbons with a width of
15 nm, which can be used to tune the plasmons in the bottom layer, are employed to form the top layer.

The graphene sheet is treated as an ultra-thin film that can be characterized by surface conductivity
in our model. Therefore, the surface current density of graphene is defined as J = σgE along the
graphene sheet [42–44], where E is the electric field of the plasmon. The surface conductivity of
graphene σg, constituted by the interband electron transitions σinter and the intraband electron-photon
scattering σintra, is obtained from the Kubo formula [45–48],

σg = σintra + σinter (1)

with

σintra =
−ie2kBT

πh2(ω− i/τ)

[
µc

kBT
+ 2ln

(
1 + exp(− µc

kBT
)

)]
(2)

σinter =
−ie2

2h
ln
[

2 |µc| − h (ω− i/τ)

2 |µc| + h (ω− i/τ)

]
(3)
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where µc is the chemical potential, kB is the Boltzmann constant, T is the temperature,ω is the angular
frequency of the plasmon, and τ is the electron momentum relaxation time. In this paper, we set
T = 300 K, τ = 0.5 ps.

Nanomaterials 2016, 6, 166 3 of 11 

 

where μc is the chemical potential, kB is the Boltzmann constant, T is the temperature, ω is the angular 

frequency of the plasmon, and τ is the electron momentum relaxation time. In this paper, we set T = 

300 K, τ = 0.5 ps. 

 

Figure 1. (a) The schematic view of the one-dimensional (1D) graphene-based plasmonic photonic 

crystal (PhC), where the blue denotes the bottom sheet graphene, and the grey denotes the graphene 

nanoribbons which modifies the plasmon propagating along the bottom sheet; (b) The computational 

window of 1D graphene-based plasmonic PhC with lattice constant a = 10 nm; The perfectly matched 

layer (PML) with width of 15 nm, is set up here as a non-reflecting boundary condition. 

As for 2D plasmonic PhC, we use monolayer graphene with periodically modified chemical 

potential, to form the 2D plasmonic PhC with square lattice and lattice constant a = 20 nm. Figure 2a 

displays the 3D view of schematic diagram of 2D PhC, and as shown in Figure 2b, a circle with 

chemical potential μc1, is surrounded by the same sheet of graphene with a different chemical 

potential μc2. The graphene material can be characterized by effective index defined as neff = 𝛽/k0, 

where k0 is the wave number in free space. As for transverse magnetic (TM) mode, the propagation 

constants of SPPs supported by a single-layer graphene, can be expressed as [49–52] 

2

0

0

2
1-

g

k
 

 
   

 

 (4) 

where η0 (377 Ω) is the intrinsic impedance of the free space. As far as band structure calculations are 

concerned, it is generally sufficient to consider the wave vector k around the edge of the irreducible 

Brillouin zone (IBZ: form Г to X to M) while ignoring the inner region, which can be justified from the 

symmetry of the structure. 

Similar to the electronic density of states which experience significant modifications in a 

semiconductor, the periodic modulation of the dielectric constant results in a photonic DOS. Photonic 

DOS is defined as the number of the PhC Eigen-state inside the unit frequency range. The DOS is 

calculated by counting all allowed states within the frequency region of an infinitesimally small 

interval, which is expressed as follows [53,54]: 

    2 - n
BZ

n

N d k k     (5) 

here the multiplication by the delta-function   - n k    corresponds to making the extract of the 

Eigen-states with the same frequency. After the extraction, the integration is carried out. This means 

summation of the Eigen-states with the same frequencies within one band. After integration, the 

summation over all the bands is obtained. 

Figure 1. (a) The schematic view of the one-dimensional (1D) graphene-based plasmonic photonic
crystal (PhC), where the blue denotes the bottom sheet graphene, and the grey denotes the graphene
nanoribbons which modifies the plasmon propagating along the bottom sheet; (b) The computational
window of 1D graphene-based plasmonic PhC with lattice constant a = 10 nm; The perfectly matched
layer (PML) with width of 15 nm, is set up here as a non-reflecting boundary condition.

As for 2D plasmonic PhC, we use monolayer graphene with periodically modified chemical
potential, to form the 2D plasmonic PhC with square lattice and lattice constant a = 20 nm. Figure 2a
displays the 3D view of schematic diagram of 2D PhC, and as shown in Figure 2b, a circle with chemical
potential µc1, is surrounded by the same sheet of graphene with a different chemical potential µc2.
The graphene material can be characterized by effective index defined as neff = β/k0, where k0 is the
wave number in free space. As for transverse magnetic (TM) mode, the propagation constants of SPPs
supported by a single-layer graphene, can be expressed as [49–52]

β = k0

√
1−

(
2

η0σg

)2
(4)

where η0 (377 Ω) is the intrinsic impedance of the free space. As far as band structure calculations are
concerned, it is generally sufficient to consider the wave vector k around the edge of the irreducible
Brillouin zone (IBZ: form Г to X to M) while ignoring the inner region, which can be justified from the
symmetry of the structure.

Similar to the electronic density of states which experience significant modifications in
a semiconductor, the periodic modulation of the dielectric constant results in a photonic DOS. Photonic
DOS is defined as the number of the PhC Eigen-state inside the unit frequency range. The DOS
is calculated by counting all allowed states within the frequency region of an infinitesimally small
interval, which is expressed as follows [53,54]:

N (ω) = ∑
n

∫
BZ

d2kδ (ω−ωn (k)) (5)

here the multiplication by the delta-function δ (ω−ωn (k)) corresponds to making the extract of the
Eigen-states with the same frequency. After the extraction, the integration is carried out. This means
summation of the Eigen-states with the same frequencies within one band. After integration, the
summation over all the bands is obtained.
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Figure 2. (a) Three-dimensional (3D) view of the proposed two-dimensional (2D) graphene-based
plasmonic PhC. (b) The computational window of schematic diagram of graphene-based 2D plasmonic
PhC, where lattice constant a = 20 nm, and r = 5 nm.

3. Results and Discussion

The periodicity of PhCs results in PBGs where no electromagnetic modes are allowed to
have frequencies in the gaps. To obtain the band structure of plasmonic PhC, we need to iterate
Eigen-frequency in each k point precisely due to the frequency dependent dielectric constant which
results in the analytical solutions hardly being acquired. Figure 3 displays the band structure of 1D
plasmonic PhC, and the corresponding DOS, with frequency from 120 THz to 255 THz. There are
several PBGs from 142.9 THz to 149.9 THz, 170.2 THz to 177.1 THz, 181.5 THz to 192.9 THz and so on,
where there are almost zero photonic DOS which correspond to the absence of the Eigen-states within
corresponding frequency range.
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Figure 3. Band structure (left) and density of states (DOS) (right) of graphene-based plasmonic 1D
PhC with chemical potential of 0.9 eV, and lattice constant a = 10 nm.

Furthermore, we modify the width of graphene nanoribbon in the top layer to see how the band
structure changes. Figure 4a,b show the first two bands corresponding to the graphene nanoribbon
with width of 13 nm and 17 nm respectively. The two bands cover the frequency range from 135.5 THz
to 150.4 THz and 166.4 THz to 175.9 THz when we set the width of graphene nanoribbon as 13 nm,
which displays a large PBG of 16 THz. However, when we increase the width of nanoribbon to 17 nm,
the PBG can only cover frequency range from 163.5 THz to 164.6 THz. It can be seen that both the band
position and bandwidth can be effectively tuned via modifying the width of graphene nanoribbon.
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Figure 4. The first two bands of 1D PhC: (a) graphene nanoribbon with width of 13 nm; (b) graphene
nanoribbon with width of 17 nm.

In the same way as for 1D plasmonic PhCs, the band structure of 2D plasmonic PhCs can be
calculated for a square lattice of 2D PhC with modified chemical potential. Figure 5 displays the band
structure of graphene-based 2D plasmonic PhC with µc1 = 0.9 eV, µc2 = 0.6 eV, and the corresponding
DOS. At some specific frequencies, the band gaps are overlapped forming so-called complete PBG
with frequency range from 161.7 THz to 165.9 THz, which means that plasmons will not propagate
inside the PhC at any angle. Moreover, the DOS within PBG is almost zero, which means there is no
allowed Eigen-state in this frequency range.
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Figure 5. Band structure (left) and DOS (right) of graphene-based plasmonic 2D PhC with lattice
constant a = 20 nm. The left inset shows the Brillouin zone, with the irreducible zone from Γ to X
to M. The right inset shows a view of the periodically modified chemical potential with µc1 = 0.9 eV,
µc2 = 0.6 eV, and circular radius r = 5 nm.

As it can be seen from Figure 6 with µc1 = 0.6 eV, µc2 = 0.9 eV, within all the investigated frequency
ranges at least one Eigen-state exists, so no complete PBG appears. The first band covers the frequency
range from 142.0 THz to 169.7 THz, the second band covers the frequency range from 164.1 THz to
184.3 THz, etc. However, considering the band structure, it is demonstrated that the PhC has wide
partial PBGs at some certain propagation directions. For example, there are no Eigen-frequencies at
the point M within the frequency range from 169.7 THz to 179.7 THz, which means that the light with
frequency in this range propagating in the corresponding direction is forbidden.



Nanomaterials 2016, 6, 166 6 of 11

Nanomaterials 2016, 6, 166 6 of 11 

 

 

Figure 6. Band structure (left) and DOS (right) of graphene-based plasmonic 2D PhC with chemical 

potential μc1 = 0.6 eV, μc2 = 0.9 eV, circular radius r = 5 nm, and lattice constant a = 20 nm. 

In order to tune the partial PBG (shown in Figure 6), we modify the chemical potential of the 

circle. As it can be seen from Figure 7a,b, the partial PBGs cover the frequency range from 166.9 THz 

to 171.6 THz and 168.5 THz to 176 THz, when we set μc2 as 0.8 eV and 0.85 eV, respectively. Both the 

band position and bandwidth can be tuned distinguishedly. 

 

Figure 7. The first two bands of 2D PhC: (a) μc1 = 0.6 eV, μc2 = 0.8 eV; (b) μc1 = 0.6 eV, μc2 = 0.85 eV. 

4. Applications of Graphene Based Plasmonic Photonic Crystals (PhCs) 

As an application of graphene based plasmonic PhC proposed in this paper, the properties of 

the nanocavity formed by the point defect. To obtain PhC nanocavity, we introduce point defect into 

3 × 3 PhCs, i.e., modifying the chemical potential of the central circle in Figure 8a. Figure 8a displays 

the schematic of the nanocavity with μc1 = 0.6 eV, μc2 = 0.9 eV, and the chemical potential of the defect 

is μc3. As it can be seen from Figure 8b, the PhC nanocavity, with a light field well-confined within 

the defect region, can be realized. 

Figure 6. Band structure (left) and DOS (right) of graphene-based plasmonic 2D PhC with chemical
potential µc1 = 0.6 eV, µc2 = 0.9 eV, circular radius r = 5 nm, and lattice constant a = 20 nm.

In order to tune the partial PBG (shown in Figure 6), we modify the chemical potential of the
circle. As it can be seen from Figure 7a,b, the partial PBGs cover the frequency range from 166.9 THz
to 171.6 THz and 168.5 THz to 176 THz, when we set µc2 as 0.8 eV and 0.85 eV, respectively. Both the
band position and bandwidth can be tuned distinguishedly.
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4. Applications of Graphene Based Plasmonic Photonic Crystals (PhCs)

As an application of graphene based plasmonic PhC proposed in this paper, the properties of
the nanocavity formed by the point defect. To obtain PhC nanocavity, we introduce point defect into
3 × 3 PhCs, i.e., modifying the chemical potential of the central circle in Figure 8a. Figure 8a displays
the schematic of the nanocavity with µc1 = 0.6 eV, µc2 = 0.9 eV, and the chemical potential of the defect
is µc3. As it can be seen from Figure 8b, the PhC nanocavity, with a light field well-confined within the
defect region, can be realized.
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Figure 9a plots the resonant frequency and quality (Q) factor for the resonant modes with the
defect chemical potential µc3 from 0.085 eV to 0.25 eV. It can be seen that the resonant frequencies
are around 175 THz where the partial PBG exists (shown in Figure 5), which means that we have
successfully introduced a point defect into the earlier proposed plasmonic 2D PhC, resulting in the PhC
nanocavity. However, with the increasing of chemical potential of the point defect, the Q factor of the
nanocavity decreases from 117 to 9.6. For a given frequency, the momemtum of the plasmon supported
by graphene is dependent on the chemical potential. In the proposed nanocavity, when chemical
potential increases, it becomes close to the chemical potential outside the cavities, so the momentum
became more matched to the enviroment. The plasmon turns to escape from the cavities resulting
from the increasing radiation loss. Eventually, the Q factor dicreases. Figure 9b displays the resonant
frequency and Q factor versus the relaxation time. The resonant frequency remains around 175 THz,
but Q factor increases from 44 to 152 with the increasing relaxation time from 0.2 to 1 ps. This can
be attributed to the reduction of the Ohmic absorption of the plasmons when the relaxation time of
electron momentum increases. Note that the typical mode area of the nanocavities is in the order of
10−5(λ0)2 (λ0 is the free space wavelength), which is comparable to the counterpart of the graphene
coated InGaAs nanowire, and much smaller than the conventional cavities [31]. This nanocavity might
be a fundermental component in the future high density integrated plasmonic circuit technique.
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Figure 9. (a) Resonant frequency and Q factor as a function of chemical potential of the point defect in
2D PhC, where µc3 is from 0.085 eV to 0.25 eV with µc1 = 0.6 eV, µc2 = 0.9 eV; (b) Resonant frequency
and Q factor as a function of relaxation time with µc1 = 0.6 eV, µc2 = 0.9 eV, µc3 = 0.1 eV.
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Practically, the means of fabrication of the proposed nano-cavity can follow the method proposed
in Reference [34], where the graphene monolayer sits on a SiO2 on Si substrate. The thickness of the
SiO2 layer is periodically modified to get the chemical potential of the graphene periodical variation
when external electric field is applied. So the plasmonic crystal structure is achieved. When the
thickness of one site of SiO2 is different from the regular value, the different chemical potential is
obtained, and finally the nano-cavity is formed.

Another application of the 2D PhC is the beam splitter and bending waveguide. We introduce
a line defect into 9 × 9 PhC. Figure 10a displays the schematic of the beam splitter with µc1 = 0.6 eV,
µc2 = 0.9 eV. The path full of blue circles with chemical potential µc3 of 0.3 eV represents the line
defects which we used to realize the PhC beam splitter. Figure 10b shows the normalized magnetic
distribution of the beam splitter with operation frequency of 9.8e13 Hz, where it can be seen that light
was exactly transmitted through the routes we designed, and can also be well-confined within the
defective region.
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Figure 10. (a) Schematic of PhC beam splitter; (b) Normalized magnetic distribution of the PhC beam
splitter with µc1 = 0.6 eV, µc2 = 0.9 eV, µc3 = 0.3 eV, operation frequency of 9.8e13 Hz.

Figure 11a shows a bending waveguide with a line defect in the same crystal structure in Figure 10.
The path full of blue circles with chemical potential µc3 of 0.3 eV represents the line defects. Figure 11b
displays the normalized magnetic distribution of the bending waveguide with a frequency of 9.8e13 Hz,
where it can be seen that a 90 degree bending of waveguide with high confinement is realized by the
proposed structure.
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5. Conclusions

In summary, graphene-based 1D and 2D plasmonic PhCs are proposed, where the band structure
and the DOS are numerically investigated. Several PBGs of 1D PhC are found, and there is no
Eigen-state within the frequency range where PBGs exist. Meanwhile, we have found complete PBGs
with frequency range from 161.7 THz to 165.9 THz for 2D PhC with µc1 = 0.9 eV, µc2 = 0.6 eV, and partial
PBGs with frequency range from 169.7 THz to 179.7 THz for 2D PhC with µc1 = 0.6 eV, µc2 = 0.9 eV.
The PhC nanocavity with resonant frequency around 175 THz was realized by introducing point defect
into the 3 × 3 PhCs with an ultra-small size of 60 × 60 nm. Also, the bending wvaguide and the beam
splitter are proposed by introducing the line defect in the crystal structure. The proposed graphene
based PhC structure might find broad applications in the future high density plasmonic integrated
circuit technique.
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