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Abstract: A novel Cu1.8Se/Cu3Se2 composite photocatalyst was prepared by the simple precipitation
method. This composite possesses a wide photoabsorption until the range of near-infrared light,
and exhibits significantly enhanced photocatalytic activity for methyl orange degradation under
visible and near-infrared light irradiation compared with bare Cu1.8Se and Cu3Se2. The mechanism
of this outstanding photocatalytic behavior can be explained by the calculated energy band positions.
The efficient charge separation via a phase junction of Cu1.8Se/Cu3Se2 composite would make a great
contribution to its much-enhanced photocatalytic efficiency.
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1. Introduction

Semiconductor photocatalysis for the degradation of organic pollutants using solar light energy is
a promising approach to solving environmental issue. Since TiO2 was first reported on photocatalytic
water splitting under ultraviolet (UV) light [1], photocatalysts have been widely studied in recent
years [2–5]. Recently, photocatalysts with outstanding photocatalytic properties have been found, such
as TiO2 and ZnO in the UV spectral range [6,7], and CdS and Bi2WO6 in the visible range [8,9], and only
few semiconductors present near-infrared (NIR) photoactivity, such as Cu2(OH)PO4 and WS2 [10,11].
Nowadays, the development of effective ways to exploit near-infrared light (which accounts for
more than 50% of solar energy) and develop UV-visible-near-infrared (UV-Vis-NIR) broad light
spectrum photocatalysts is an important emerging topic [12]. Forming heterogeneous structures
with matched band potentials is one approach [13–15]. For example, Au-tipped PbSe/CdSe/CdS
core/shell/shell heterostructure nanocrystals are active NIR photocatalysts for the degradation of
methylene blue (MB) [16], and Bi2WO6/TiO2 heterojunction can harness UV, visible, and near-infrared
light, and exhibits enhanced broad-spectrum photocatalytic properties to decompose methyl orange
(MO) [17]. Thus, the design of a broad light spectrum photocatalyst with heterogeneous structure is of
great significance.

Selenides of copper are metal chalcogenide semiconductors with different compositions
(Cu2Se, Cu3Se2, CuSe, and Cu1.8Se) and various crystallographic forms, which are usually dependent
on the preparation process [18–25]. The thermal stability and band gaps of copper selenides
vary with their compositions or phases [19–21]. These semiconductors with p-type conductivity
and direct band gaps have wide applications in solar cells, superconductors, thermoelectric, and
photoelectric transformers [26–30]. Therefore, considerable progress on the study of copper selenides
has been made, and a number of methods for the synthesis of copper selenides have been explored,
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such as microwave-assisted heating, sonochemical method, hydrothermal method, and vacuum
evaporation [31–34].

Herein, we report on the aqueous precipitation synthesis of Cu1.8Se/Cu3Se2 heterogeneous
structure, bare Cu1.8Se, and Cu3Se2 based on the redox reaction between alkaline selenium solution
and cupric aqueous solution under atmospheric pressure. Compared with other reported methods, this
method established in aqueous solution is rather simple and safe. The photocatalytic degradation of
MO under visible and near-infrared (NIR) light demonstrated that Cu1.8Se/Cu3Se2 composite exhibits
much enhanced photocatalytic activity compared with bare Cu1.8Se or Cu3Se2. The mechanism of
enhanced photocatalytic activity for Cu1.8Se/Cu3Se2 composite based on the calculated energy band
positions was also proposed.

2. Results and Discussion

The composition of products was controlled by varying the addition of NaOH. As shown in
Figure 1, when 0.4 g NaOH was added, the X-ray diffraction (XRD) pattern of Figure 1a matched
the JCPDS reference file for tetragonal Cu3Se2 [PDF#65-1656]. When 4 g NaOH was included,
the diffraction profile of Figure 1b shows that the composite was composed of tetragonal Cu3Se2

[PDF#65-1656] and cubic Cu1.8Se [JCPDF 06-0680]. By increasing the addition of NaOH to 8 g, the XRD
pattern of Figure 1c indicates that all the peaks can be well indexed to cubic Cu1.8Se [JCPDF 06-0680].
No characteristic peaks of any impurities were detected in the patterns, and the high diffraction
intensity reveals that all the samples had good crystallinity. In addition, the particle sizes calculated
from Scherrer’s equation and the BET (Brunauer-Emmett-Teller) specific surface area of different
samples are shown in Table 1. There are notbig difference in their particle sizes, and Cu1.8Se displays
a larger specific surface area than Cu1.8Se/Cu3Se2 composite and Cu3Se2, which could lead to the
exposure of more active sites for the photocatalytic experiment.
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Table 1. The BET (Brunauer-Emmett-Teller) specific surface area of different samples.

Samples Cu1.8Se/Cu3Se2 Composite Cu1.8Se Cu3Se2

Size (nm) 66.3 48.6 57.8
Specific surface area (m2/g) 5.842 8.655 6.556
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The morphology and microstructure of Cu1.8Se/Cu3Se2 composite are shown in the TEM
(transmission electron microscopy) image of Figure 2c, with homogeneous size distribution of about
50–80 nm (in agreement with the calculated particle size in Table 1), and the bare Cu1.8Se (Figure 2a)
and Cu3Se2 (Figure 2b) nanocrystals (NCs) have similar morphologies. The lattice resolved HRTEM
(high resolution transmission electron microscopy) image of Cu1.8Se/Cu3Se2 composite indicates
the longitudinal fringe spacing of 0.331 nm and the horizontal fringe spacing of 0.354 nm (as seen
in Figure 2d), which is consistent with the spacing of (111) and (101) planes of cubic Cu1.8Se and
tetragonal Cu3Se2, respectively. The high-quality image of the interface between Cu1.8Se and Cu3Se2

can be observed clearly, which could be considered as a phase junction structure [35].
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Figure 2. TEM (transmission electron microscopy) images of (a) Cu1.8Se; (b) Cu3Se2;
(c) Cu1.8Se/Cu3Se2 composite; (d) HRTEM (high resolution transmission electron microscopy) of
Cu1.8Se/Cu3Se2 composite.

The UV-Vis diffuse reflection spectrum (DRS) of the as-prepared samples is shown in Figure 3a.
It can be seen that these samples present effective optical absorption from the UV light region to the
whole range of NIR light, which can be attributed to their small bandgaps. As shown in Figure 3b
(converted from the DRS spectrum according to the Kubelka–Munk function [36–38]), the bandgap
energies (Eg) of Cu1.8Se/Cu3Se2 composite, Cu3Se2, and Cu1.8Se were estimated to be around 1.42,
1.45, and 1.5 eV, respectively, which are similar to the reported bandgap [31,32]. It is worth noting that
these bandgap values are very close, and Cu1.8Se/Cu3Se2 composite has a relatively narrower band
gap and stronger light absorption than that of Cu3Se2 and Cu1.8Se.

The photocatalytic activities of these samples were evaluated by the photodegradation of MO
under visible and NIR light irradiation. As shown in Figure 4a,b, under identical experimental
conditions, the Cu1.8Se/Cu3Se2 composite exhibited strongly enhanced photocatalytic activity
compared to both bare Cu1.8Se and Cu3Se2. The photodegradation rate of MO reached 80% and
75% in the presence of Cu1.8Se/Cu3Se2 composite after 3 h of visible and NIR light irradiation,
respectively. Thus, the Cu1.8Se/Cu3Se2 composite shows relatively good visible-NIR broad light
spectrum photocatalytic property, which is comparative with that of WS2 [11] or Bi2WO6/TiO2 [17].



Nanomaterials 2017, 7, 19 4 of 11

By contrast, 50% and 46% of MO was degraded by bare Cu1.8Se, whereas only 20% and 17% of MO
was degraded by bare Cu3Se2 within the same time. Moreover, photodegradation of MO under
full solar light without optical filter was performed. As shown in Figure 4c, after 2 h of full solar
light irradiation, 82%, 52%, and 20% of the MO was degraded with Cu1.8Se/Cu3Se2 composite, pure
Cu1.8Se, and Cu3Se2 as catalysts, respectively. In addition, the stabilities of these photocatalysts are
shown in Figure 5. After four successive cycles, the photodegradation rate of MO under full solar
light slightly decreased to 70%, 42%, and 18% within 120 min for Cu1.8Se/Cu3Se2 composite, Cu1.8Se,
and Cu3Se2, respectively, indicating that these materials could be re-used without appreciable loss of
photocatalytic ability.
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Figure 3. (a) UV-visible-near-infrared (UV-Vis-NIR) diffuse reflectance absorption (DRS) spectrum
of copper selenides; (b) A plot transformed according to the Kubelka–Munk function versus energy
of light.
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under (a) visible light; (b) NIR light; (c) full solar light; (d) the degradation kinetics by means of plotting
ln(C0/Ct) versus time.
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To further understand the reaction kinetics of MO degradation under full solar light, we applied
the Langmuir−Hinshelwood model, which is well-designed for photocatalytic experiments when the
concentration of the organic pollutant is in the millimolar range [39], as expressed by

ln(C0/Ct) = kt (1)

where C0 and Ct are the concentrations of pollutant in solution at time t0 and t, respectively, and k is
the kinetic constant, which is calculated to be 0.0145, 0.0062, and 0.0018 min−1 for Cu1.8Se/Cu3Se2

composite, bare Cu1.8Se, and Cu3Se2, respectively (Figure 4d). Then, the apparent reaction rate constant
(K) was calculated to get deeper insight into the photodegradation rate per unit surface area according
to the following formula:

K = k/(mS) (2)

where k is the kinetic constant from Formula (1), m is the mass of photocatalyst (0.1 g), and S is
the specific surface area from Table 1. The apparent reaction rate constant (K) was calculated to be
0.0248, 0.0072, and 0.0027 min−1 for Cu1.8Se/Cu3Se2 composite, bare Cu1.8Se, and Cu3Se2, respectively.
In other words, the photocatalytic activity per unit surface area of Cu1.8Se/Cu3Se2 is around 3.4 and
9.1 times higher than that of bare Cu1.8Se and Cu3Se2.

On the other hand, X-ray photoelectron spectroscopy (XPS) analysis was carried out to investigate
the chemical binding states of Cu1.8Se/Cu3Se2 composite, as shown in Figure 6a,b. The Cu 2p peaks
of Cu3Se2 and Cu1.8Se/Cu3Se2 composite broaden and undergo splitting, while pronounced satellite
peaks (marked as Sat.) form due to the existence of Cu2+ vacancy [40,41]. Two strong peaks are
consistent with the literature data of Cu+ 2p3/2 and 2p1/2 [42–44]. On the sides of Cu+ 2p3/2 and
2p1/2 peaks, two low-intensity components appeared, which can be assigned to the Cu2+ oxidation
state [45,46]. As illustrated in Figure 6c, the Cu 2p3/2 and Cu 2p1/2 peaks are symmetric, narrow, and
devoid of satellite peaks, which is indicative of monovalent copper of Cu+ for bare Cu1.8Se. Therefore,
the existence of Cu3Se2 leads to the presence of Cu2+ in the Cu1.8Se/Cu3Se2 composite.
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In view of the mentioned XRD result (Figure 1b), Cu1.8Se is the main phase of Cu1.8Se/Cu3Se2

composite, resulting in the smaller relative concentration ratio of Cu2+ to Cu+ (1.04) than that (2.32)
of bare Cu3Se2. Combined with the photodegradation results (Figure 3), it could be inferred that
decreasing the concentration ratio of Cu2+ to Cu+ is conducive to enhancing photoactivity. It is worth
noting that Cu1.8Se/Cu3Se2 composite has a larger concentration ratio of Cu2+ to Cu+ (1.04) than that
(0) of bare Cu1.8Se, but the best photocatalytic activity—mainly due to the existence of phase junction
between Cu1.8Se and Cu3Se2 mentioned in the HRTEM image (Figure 2d).

The relative band positions of the two semiconductors were determined to account for the
enhanced photocatalytic activity of the Cu1.8Se/Cu3Se2 composite. The energy of conduction band
(CB) bottoms (ECB) were calculated empirically according to formula [47]

ECB = X − 0.5Eg + E0 (3)

where Eg is the band gap of the semiconductor, E0 is −4.5 eV for a normal hydrogen electrode, and
X is the electronegativity of the semiconductor, expressed as the geometric mean of the absolute
electronegativity of the constituent atoms [48]. The X values for Cu1.8Se and Cu3Se2 were calculated
to be 4.94 and 5.0 eV, respectively, and the band gaps of Cu1.8Se and Cu3Se2 are 1.5 and 1.45 eV,
respectively. On the basis of the equation above, the conduction band bottoms (ECB) of Cu1.8Se and
Cu3Se2 were calculated to be −0.31 and −0.22 eV, respectively. Correspondingly, the valence band
tops (EVB) of Cu1.8Se and Cu3Se2 are 1.19 and 1.23 eV, respectively. Thus, both the conduction band
bottom (ECB) and the valence band top (EVB) of Cu1.8Se are higher than that of Cu3Se2. The calculated
band positions of Cu1.8Se/Cu3Se2 composite was conducive to the separation and transportation of
photogenerated carriers.

As shown in Figure 7, Cu1.8Se and Cu3Se2 are easily excited by visible or NIR light,
and photoinduced electrons and holes are generated. The CB edge potentials of the two phases
enable photogenerated electrons to easily transfer from Cu1.8Se to Cu3Se2. Simultaneously, holes on
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the valence band of Cu3Se2 can be transferred to that of Cu1.8Se under the band energy potential
difference. In such a way, long-lived reactive photogenerated carriers can be yielded, and thus
enhanced charge separation efficiency through the phase junction can be achieved.
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To further confirm the effect of phase junction, the photoelectrochemical (PEC) behavior of
Cu1.8Se/Cu3Se2 composite has been explored. As shown in Figure 8, the photocurrent responses
were recorded under visible light irradiation. The electrodes (1 × 1 cm2) demonstrated photocurrent
responses around 1 µA/cm2 and 2.5 µA/cm2 for Cu1.8Se and Cu1.8Se/Cu3Se2 composite, respectively,
while the photocurrent responses of Cu3Se2 were not apparent. This result provides strong evidence
that the formation of a phase junction between Cu1.8Se and Cu3Se2 would efficiently accelerate the
separation efficiency of charge carriers. Therefore, the Cu1.8Se/Cu3Se2 composite presents highly
enhanced performance as compared to bare Cu1.8Se and Cu3Se2.Nanomaterials 2017, 7, 19 7 of 10 
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3. Materials and Methods

3.1. Preparation

All reagents were of 99.9% purity and were used without further purification. A typical synthesis
process of Cu1.8Se/Cu3Se2 composite was described as follows: 4 g NaOH, 0.76 g NaBH4, and 0.3 g
elemental Se were added to 100 mL distilled water under constant stirring. The mixture reached about
80 ◦C in a few minutes to form alkaline selenium aqueous solution. Meanwhile, 10 mL Cu(NO3)2

aqueous solution (0.5 M) was prepared, and the mixture was combined with the alkaline selenium
solution through rapid stirring. Finally, 0.1 g SDS was included as surfactant to control the morphology.
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After stirring for 8 h, the resulting products were separated by filtration, washed several times with
distilled water and absolute alcohol, and then dried at 60 ◦C for 6 h. For comparison, bare Cu3Se2 and
Cu1.8Se were also prepared by the hydrothermal method under the same conditions mentioned above
by adding 0.4 g and 8 g NaOH, respectively.

3.2. Characterization

The phase and composition of the as-prepared samples was examined with an X-ray diffractometer
(XRD, Bruker, D8 Advance, Beijing, China) using Cu Kα radiation (λ = 1.5418 Å). The morphology
and microstructures were characterized by transmission electron microscope (TEM, JEOL JEM-2100,
Beijing, China). X-ray photoelectron spectroscopy (XPS) measurements were conducted on a Thermo
XPS ESCALAB 250Xi instrument (Thermo Scientific, Shanghai, China). UV-Vis-NIR diffuser reflectance
(DRS) measurements were carried out on a UV/Vis/NIR spectrometer (PerkinElmer, Lambda
950, Shanghai, China). Specific surface area measurements were conducted by Autosorb-iQ2-Mp
(Quantachrome, Shanghai, China).

3.3. Photocatalytic Test

The photocatalytic activities of as-prepared samples were investigated by photodegradation of
MO under visible and NIR light. A 300 W xenon lamp (CEL-HXF300, Beijing, China) with cutoff filters
(420 nm, 800 nm) was used as the light source. The specific process was as follows: 0.1 g photocatalyst
was added into 100 mL MO (50 mg/L). Prior to irradiation, the slurry was continuously stirred in the
dark for 1 h to ensure an adsorption–desorption equilibrium between photocatalyst and MO. Ice-water
bath and magnetic stirring always existed to prevent thermal effect in the photocatalytic process. At a
given time interval, 3 mL suspensions were centrifuged to remove the photocatalyst. The concentration
of MO was analyzed by the UV-Vis spectrophotometer by recording the variations of the absorption
band maximum (465 nm).

3.4. Photoelectrochemical Testing

Photocurrent under visible light was measured with a standard three electrode system on an
electrochemical workstation (CHI 660, ChenHua, Shanghai, China). Ag/AgCl and Pt plate were used
as reference electrode and counter electrode, respectively, in Na2SO4 solution (0.5 mol/L) as electrolyte.
The working electrode was made by depositing photoctalyst on the FTO (fluorine-doped tin oxide)
substrate (Beijing, China).

4. Conclusions

The Cu1.8Se/Cu3Se2 heterogeneous structure prepared by the simple precipitation method
exhibits excellent photocatalytic activity in the degradation of MO under visible and NIR light
irradiation, which is 3.4 and 9.1 times higher than that of bare Cu1.8Se and Cu3Se2. We also present that
decreasing the concentration ratio of Cu2+ to Cu+ is advantageous for the enhancement of photoactivity.
The mechanism of enhanced photocatalytic activity for the Cu1.8Se/Cu3Se2 composite was investigated
based on the calculated energy band positions. The formation of a phase junction between the two
semiconductors leads to the effective separation of photogenerated electron-hole pairs, which mainly
account for the strongly enhanced photoactivity.
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