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Abstract: Nanozyme-based colorimetric sensors have received considerable attention due to their
unique properties. The size, shape, and surface chemistry of these nanozymes could dramatically
influence their sensing behaviors. Herein, a comparative study of VO2 nanoparticles with different
morphologies (nanofibers, nanosheets, and nanorods) was conducted and applied to the sensitive
colorimetric detection of H2O2 and glucose. The peroxidase-like activities and mechanisms of VO2

nanoparticles were analyzed. Among the VO2 nanoparticles, VO2 nanofibers exhibited the best
peroxidase-like activity. Finally, a comparative quantitative detections of H2O2 and glucose were
done on fiber, sheet, and rod nanoparticles. Under the optimal reaction conditions, the lower limit of
detection (LOD) of the VO2 nanofibers, nanosheets, and nanorods for H2O2 are found to be 0.018,
0.266, and 0.41 mM, respectively. The VO2 nanofibers, nanosheets, and nanorods show the linear
response for H2O2 from 0.025–10, 0.488–62.5, and 0.488–15.625 mM, respectively. The lower limit of
detection (LOD) of the VO2 nanofibers, nanosheets, and nanorods for glucose are found to be 0.009,
0.348, and 0.437 mM, respectively. The VO2 nanofibers, nanosheets, and nanorods show the linear
response for glucose from 0.01–10, 0.625–15, and 0.625–10 mM, respectively. The proposed work will
contribute to the nanozyme-based colorimetric assay.
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1. Introduction

Natural enzymes with great catalytic capacity and high substrate specificity have attracted
much research interest in the fields of medicine, biology, and food industry. Despite these
broad developments, natural enzymes often have inherent drawbacks, such as high preparation
and purification costs, low operational stability, sensitivity of catalytic activity to environmental
conditions, and difficulty of recovery. These shortcomings are limited to its practical application [1].
Artificial mimic enzymes have the characteristics of high catalytic efficiency, stability, economy,
and large-scale preparation which has been rapidly developed in the fields of medicine, chemical
industry, food, agriculture, environmental science, and analytical chemistry [2]. Among the
various artificial mimic enzymes, nanozymes as the new-generation emzyme-mimetic have attracted
considerable interest since the ferroferric oxide nanomaterial has the catalytic properties similar
to horseradish peroxidase (HRP) [3]. Many nanoparticles have been studied as enzyme mimetics,
including ferromagnetic NPs [3–11], cerium oxide NP [12–14], metal NPs [15–23], carbon-based
nanomaterials [24–28], V2O5 nanowires [29,30], and perovskite oxide [31,32].

Vanadium dioxide (VO2) have received considerable attention for their redox activity and
layered structures, which can serve as very good intercalation materials and smart sensors [33].
The VO2 exists in multiple morphologies, such as fibers, nanorods, nanosheets, spheres, and hollow
spheres [34,35]. The shape of the nanoparticle has attracted growing interest due to its effect on the
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catalytic, optical, electronic, and magnetic properties [9,36–41]. For example, one-dimensional (1D)
nanostructures—such as nanotubes, nanorods, and nanowires—exhibit higher activity and durability,
compared with zero-dimensional (0D) nanostructures, due to possessing fewer lattice boundaries,
fewer defect sites, and longer segments of surface crystalline planes [36]. Therefore, we focused on the
effect of different morphology on the catalytic activities of VO2 nanoparticles in order to obtain more
information for their potential applications in biosensor and biocatalysts.

Herein, different morphologies VO2 nanoparticles—including fibers, sheets, and rods—were
synthesized. The catalysis activities and kinetic mechanic of various VO2 nanoparticles
were investigated upon the reaction of hydrogen peroxide with its reducing substrates
3,3′,5,5′-tetramethybenzidine (TMB). The hydrogen peroxide and glucose colorimetric sensors were
developed based on VO2 nanoparticles with different shapes. In this colorimetric assay, different
analytical parameters—such as concentrations of nanoparticles, buffer solution, and pH of the analyte
medium—were determined. Under optimal reaction conditions, the detection system of fiber-like
VO2 nanoparticles shows the most sensitive response to H2O2 and glucose than the other two
VO2 nanoparticles.

2. Results and Discussions

2.1. Characterization of VO2 Nanoparticles

The structural characterizations of the VO2 nanoparticles were done by transmission electron
microscopy (TEM) and X-ray powder Diffraction (XRD). TEM images indicate the VO2 nanoparticles
of different morphology, fibers, rods, and sheets (Figure 1). The formation of VO2 nanoparticles is
confirmed from the X-ray diffraction pattern (Figure 2). The VO2 nanoparticles with fiber, sheet,
and rod shapes have the same crystal structures as those reported in the literature [34,35], and are
monoclinic VO2 (Joint Committee on Powder Diffraction Standards card No. 31-1438 and No. 65-7960:
see Figure 2).
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2.2. Principle

In pH 4 citrate buffer solution at room temperature, VO2 nanoparticles with different
morphologies catalyzed the oxidation of a peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB)
in the presence of H2O2 to obtain the TMB oxidized product with blue color. As shown in Figure 3,
when various VO2 nanoparticles were added into the TMB/H2O2 solution, the strong absorption
peaks were obtained at 656 nm. However, there were no strong absorption peaks when the solution
did not contain H2O2 or VO2 nanoparticles. The absorbance becomes stronger due to more TMB being
oxidized with the increasing of the concentration of H2O2. The absorbance also showed a linear trend
depending on the concentration of H2O2.
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2.3. Effect of pH

The effect of pH value (pH 3.0–8.0) on absorption value with TMB was investigated in the citrate
buffer system, as shown in Figure 4. Each of the VO2 nanofibers, nanosheets, and nanorods of the
system reached their maximum peaks when the pH value was 4.0. Therefore, pH 4.0 was selected to
detect H2O2 and glucose with various VO2 nanoparticles.
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2.4. Effect of Buffers

The effect of buffers on absorption value of TMB oxide product was examined. The time response
curves of TMB with H2O2 catalyzed by VO2 with different morphologies, in pH 4.0, 0.2 M acetate,
phosphate, and citrate buffers. The results were shown in Figure 5. Up to 300 s, the VO2 nanoparticles
were more active in the citrate buffer solution. Thus, the citrate buffer solution (pH = 4.0, 0.2 M), was
chosen as the optimal reaction solution for the H2O2 and glucose colorimetric assay.
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2.5. Effect of VO2 Nanoparticle Morphologies and Concentrations

As shown in Figure 6, the absorption values at OD656nm of TMB oxide product increased gradually
with the concentration of VO2 nanoparticles. The system reached its maximum absorption value when
the concentrations of VO2 nanofibers, nanosheets, and nanorods were 10, 10, and 2 mM, respectively.
The results show that the catalytic activity of VO2 nanofibers is stronger than the other two, shown in
the Figure 6.
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concentrations on absorption value with TMB in pH 4.0 citrate buffer solution. The error bars represent
the standard deviation of three measurements.

2.6. Steady-State Kinetic Assay

For further understanding the influence of particle morphology on the catalytic mechanism of VO2

nanoparticles, the steady-state kinetic assay for VO2 nanoparticles were determined in detail. As shown
in Figure 7, the typical Michaelis-Menten curve were obtained for VO2 nanozymes. Michaelis-Menten
constant (KM) and maximum initial velocity (Vmax) were known from Michaelis-Menten curve use
a Lineweaver-Burk plot. A comparison of the kinetic parameters of VO2 nanozymes, V2O5 nanozymes,
Fe3O4 magnetic nanoparticle (MNPS), and HRP was given in Table 1. The KM of VO2 nanofibers,
nanosheets, and nanorods with TMB were 0.518, 0.111, and 0.801 mM, respectively. The Vmax of VO2

nanofibers, nanosheets, and nanorods with TMB were 9.3 × 10−5, 1.68 × 10−4, and 3.99 × 10−4 M·s−1,
respectively. The KM of VO2 nanofibers, nanosheets, and nanorods with H2O2 were 1.043, 2.924,
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and 6.469 mM. The Vmax of VO2 nanofibers, nanosheets, and nanorods with H2O2 were 4.66 × 10−4,
9.73 × 10−4, and 1.46 × 10−3 M·s−1, respectively. The KM values shows that VO2 nanosheets with
TMB as the substrate was apparently lower than VO2 nanofibers, VO2 nanorods, V2O5 nanozymes,
Fe3O4 MNPS, and HRP. It shows that the VO2 nanosheets have a higher affinity to TMB compared with
VO2 nanofibers, VO2 nanorods, Fe3O4 MNPS, and HRP. Which means that a lower TMB concentration
was required to reach the maximal activity for VO2 nanosheets. The apparent KM values of VO2

nanofibers with H2O2 as the substrate was apparently lower than VO2 nanorods, VO2 nanosheets,
Fe3O4 MNPS, and HRP. It shows that the VO2 nanofibers have a higher affinity for H2O2 compared
with VO2 nanosheets, VO2 nanorods, Fe3O4 MNPS, and HRP. That means a lower H2O2 concentration
was required to reach the maximal activity for VO2 nanofibers.
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Table 1. Comparison of the KM and Vmax of VO2 nanozymes, V2O5 nanozymes, Fe3O4 MNPS, and
HRP, respectively.

Nanozymes Substrate KM (mM) Vmax (M·S−1)

VO2 nanofibers TMB 0.518 9.3 × 10−5

VO2 nanofibers H2O2 1.043 4.66 × 10−4

VO2 nanosheets TMB 0.111 1.68 × 10−4

VO2 nanosheets H2O2 2.924 9.73 × 10−4

VO2 nanorods TMB 0.801 3.99 × 10−4

VO2 nanorods H2O2 6.469 1.46 × 10−3

V2O5 nanozymes TMB 0.738 1.85 × 10−5

V2O5 nanozymes H2O2 0.232 1.29 × 10−5

Fe3O4 MNPS TMB 0.434 10.00 × 10−8

Fe3O4 MNPS H2O2 154 9.78 × 10−8

HRP TMB 0.434 1.24 × 10−8

HRP H2O2 3.70 2.46 × 10−8

2.7. Calibration Curve for H2O2 and Glucose Detection

Under the optimal conditions (pH 4.0 citrate buffer, the concentrations of VO2 nanofibers,
nanosheets and nanorods were 2, 10, and 10mM, respectively.) the calibration curves of H2O2 were
obtained with VO2 nanoparticles different morphologies (Figure 8). The correlation between the
absorbance values and H2O2 concentration are linear over the range of 0–100 mM (nanofibers),
0–500 mM (nanosheets) and 0–500 mM (nanorods) with correlation coefficients 0.99981, 0.99364,
and 0.99222, respectively. The lower limit of detection (LOD) of the VO2 nanofibers, nanosheets,
and nanorods for H2O2 are found to be 0.018, 0.266, and 0.41 mM, respectively.
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As glucose oxidase (GOx) can catalyze the oxidation of glucose and produce H2O2, the absorption
value with TMB was changing by H2O2 in presence of VO2 nanoparticles. Because the GOx would be
denatured in pH 4.0 buffer, the glucose detection was produced in two steps: first, H2O2 was induced
by GOx oxidation of glucose and then the reaction solutions were detected by TMB/different VO2

nanoparticles system. As shown in Figure 9, the absorbtion increases gradually with the increasing of
glucose concentration. The correlation between the absorbance at 656 nm and glucose concentration are
linear over the range of 0–30 mM (nanofibers), 0–40 mM (nanosheets) and 0–40 mM (nanorods) with
the correlation coefficient of 0.98557, 0.98919, and 0.99502, respectively. The lower limit of detection
(LOD) of the VO2 nanofibers, nanosheets, and nanorods for glucose are found to be 0.009, 0.348, and
0.437 mM, respectively.

The VO2 nanofibers showed the highest peroxidase activity in the H2O2 and glucose colorimetric
assay, followed by VO2 nanosheets, and finally VO2 nanorods. Additionally, it was reported that
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the specific surface area of VO2 nanoparticles greatly influences their catalytic activities. The specific
surface area of VO2 nanofibers (185 to 122 m2 g−1) [34] is also much larger than that of other VO2

micro/nanoparticles, such as hollow microspheres (22.3 m2 g−1), nanowires (12.3 m2 g−1) [42],
nanobelts (18.6 m2 g−1) [43], nanorods (42 m2 g−1) [44], VO2 mesocrystals (28.4 m2 g−1) [45],
mesoporous VO2 nanowires (46.7 m2 g−1) [46], and 3D GO-VO2 nanosheet flowers (71.6 m2 g−1) [47].
Therefore, the VO2 nanofibers demonstrated the most sensitive response during the H2O2 and glucose
sensing. By comparing with other nanozymes to further understanding the catalytic activity of VO2

nanozymes as peroxidase mimetics, as shown in Table 2, the VO2 nanofibers have a wider linear range.
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Table 2. Comparison of different nanozymes for the detection of H2O2.

Nanozymes Linear Range Limit of Detection Reference

Fe3O4 MNPS 1–100 µM 0.5 µM [48]
HRP 1–60 µM 1 µM [49]

Pt-DNA complexes 0.979–17.6 mM 0.392 mM [50]
V2O5 nanozymes 1–500 µM 1 µM [30]
VO2 nanofibers 0.025–10 mM 0.018 mM This work
VO2 nanosheets 0.488–62.5 mM 0.266 mM This work
VO2 nanorods 0.488–15.6 mM 0.41 mM This work

3. Materials and Methods

3.1. Chemicals and Materials

All the chemicals used were of analysis grade without further purification. 3,3′,5,5′-
Tetramethylbenzidine (TMB) was obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan).
Glucose oxidase (GOx) was obtained from Aladdin Reagent Co., Ltd. (Shanghai, China). V2O5, oxalic
acid, methanol, glucose, hydrogen peroxide (H2O2, 30%), etc., were purchased from Beijing Chemical
Works (Beijing, China). The water used in the experiments was purified.

3.2. Synthesis of VO2 Nanoparticles

The synthesis of VO2 nanofiber contains two steps: synthesis of VO2 hollow sphere and the
supernatant collecting and drying. According to the literature procedure [35] synthesis of VO2 hollow
sphere, with minor adjustment. Briefly, V2O5 and oxalic acid (the ratio of molar is 1:3) were first
dissolved in 7 mL distilled water and stirred for 10 min at room temperature. Then the 23 mL
methanol was added in the solution and stirred for another 10 min. The mix solution was transferred
to a Teflon-lined autoclave with stainless steel, and heated at 200 ◦C for 24 h. The sample was cooled
down naturally. The black precipitates were filtered off and washed with distilled water and ethanol,
and then dried at 80 ◦C overnight, and finally the VO2 hollow spheres were dissolved, the supernatant
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was collected and dried. Similar procedures were adopted to prepare nanorods and nanosheets:
when the water content is 10 mL, the product is nanorods, and when the solution is completely water,
the product is just nanosheets (with water and methanol measures maintained at 30 mL).

3.3. Physical Characterization

The morphology and size of the VO2 nanoparticles were acquired using a transmission electron
microscopy (TEM) by JEM-1011 transmission electron microscopy (JEOL, Tokyo, Japan) with a working
voltage at 100 kV. The X-ray powder diffraction method was carried out in a D/max-rα power
diffractometer (Rigaku, Tokyo, Japan) using Cu-Kα monochromatic radiation (λ = 1.5418 Å).

3.4. H2O2 Detection Using VO2 Nanoparticles as Peroxidase Mimetics

To discover the peroxidase-like character of VO2 nanoparticles, the experiments were performed
as follows: 60 µL VO2 nanoparticles solution (the concentrations of nanofibers, nanosheets, and
nanorods are 2, 10, and 10 mM, respectively) in a reaction volume of 2400 µL citrate buffer solution
(pH = 4.0) and 480 µL TMB solution (1.5 mM in ethanol), followed by the addition of 60 µL H2O2

(30%). The mixed solution was reacted for 5 min at room temperature. Then used for the UV-Vis
spectrophotometer (Metash Instruments Inc., Shanghai, China) record the spectra at 656 nm for TMB.

To investigate the influence of buffer solution on the VO2 nanoparticle characteristics, the
pH—ranging from 3.0 to 8.0 of the buffer solution—was examined, under conditions identical to
these used above.

To investigate the influence of different reaction buffers on the VO2 nanoparticles characteristics,
catalytic reactions incubated in difference buffer solution—including citrate, phosphate, and
acetate—were examined, under conditions identical to these used in above. For a blank, only substrate
solution was used. All experiments were conducted at room temperature (25 ◦C).

3.5. Glucose Detection Using VO2 Nanoparticles

Glucose detection was examined as follows: (a) 200 µL of GOx (1 mg/mL) and 200 µL of glucose
of different concentrations in 400 µL of phosphate buffered saline (PBS, pH = 7.0) were incubated at
37 ◦C for 60 min; (b) 400 µL of TMB (1.5 mM in ethanol) and 50 µL of VO2 nanoparticles solution
(the concentrations of nanofibers, nanosheets, and nanorods are 2, 10, and 10 mM, respectively) in
1750 µL of citrate buffer solution (pH = 4.0) were added into the above glucose reaction solution;
(c) The mixed solutions with different concentrations of glucose were incubated for 5 min; the (d) the
UV-Vis spectrophotometer was used to record the spectra.

4. Conclusions

VO2 nanoparticles with different structures—nanofibers, nanosheets, and nanorods—have
been successfully fabricated and show peroxidase-like activities. The catalytic behaviors of VO2

nanoparticles show Michaelis-Menten kinetics and good affinity to both H2O2 and TMB. The VO2

nanoparticle-based colorimetric assay provides fast, sensitive, and low-cost H2O2 and glucose
sensors. Compared with VO2 nanorods and VO2 nanosheets, the VO2 nanofibers demonstrated
the most sensitive response during the H2O2 and glucose sensing. This investigation is significant for
vanadium-based nanozyme application in biosensor and biocatalysis.
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