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Abstract: One of the main problems for effective treatment of cancer is resistances, which often
require combination therapy—for effective treatment. While there are already some potential drug
carriers—e.g., liposomes, available for treatment—the effective loading and retention of the desired
drug ratio can be challenging. To address this challenge, we propose a new type of drug carrier:
liposome-coated metal-organic framework (MOF) nanoparticles. They combine the advantages of
liposomes with an easy and efficient loading process. In this work, we present the successful synthesis
of liposome-coated MOF nanoparticles via the fusion method. The resulting particles, once loaded,
show no premature leakage and an efficient release. Their successful loading with both single and
multiple drugs at the same time makes them an interesting candidate for use in combination therapy.
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1. Introduction

Metal-organic frameworks (MOFs) are a uniquely valuable class of materials, in that their structure
and composition can be controlled at the atomic level. As the name suggests, MOFs are made of metal
ions, or clusters (inorganic), and organic molecular building units, assembling together into crystalline
solids [1–4]. This construction from building units and the nearly endless pool of different organic
and inorganic units to choose from give MOFs their incredible chemical flexibility, and give us control
on the atomic level. Each possible building unit contributes its own properties and features, which
allows us to make MOFs that have very specific degrees of porosity (pore and window size), surface
area, functionality and biocompatibility [5,6]. All these attributes make them highly interesting to
develop nanostructured smart drug delivery systems capable of bypassing extra- and intracellular
barriers [7–18].

In the last 5 years, a number of pioneering studies have been reported that highlight the suitability
of MOF nanocarriers as a new type of platform for drug delivery [9,19–27]. So far, these reports have
mainly focused on the delivery of single active agents (e.g., one drug), whereas their application to
deliver “cocktails” of drugs is still largely unexplored [7,28].

Current chemotherapy faces the challenge that tumours quickly become resistant to a drug during
treatment. One possible solution to this problem is the administration of multiple drugs at once to
fight resistant cancer strains and prevent formation of new resistances [29–32]. This combination
therapy has proven to be more effective than single-drug therapies, but faces the challenge that each
drug has different physicochemical properties, which leads to heterogeneous pharmacokinetics and
tissue distribution.

In this respect, the use of nanocarriers opens up the possibility of co-encapsulating multiple drugs,
and thus synchronising their delivery to the cancer cells [29–31]. MOF nanoparticle platforms are
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especially interesting due to their hybrid nature, relying on the synergistic combination of inorganic
and organic chemistry [7]. This allows the creation of chemically diverse internal pore systems able
to incorporate drugs with different physicochemical properties. First pioneering studies reporting
on such MOF platforms for the delivery of several drugs are very encouraging [32–35]. One of them
even reports on an enhanced efficiency in tumour reduction due to dual drug delivery with MOF
nanoparticles [35]. While this study shows great promise, the employed nanoparticles were not fully
encapsulated. Such an encapsulation would be desirable, though, to prevent the observed drug leakage
and to enhance the stability [36,37].

In this paper, we demonstrate that MOF nanoparticles can be simultaneously loaded with multiple
drugs. Furthermore, the drug carriers can then be coated with a lipid shell acting as a temporary seal
for the encapsulated drugs, and allowing control of interactions with intracellular fluids. The successful
synthesis of liposome-coated MOF nanoparticles is based on a simple fusion method. The resulting
particles, once loaded, show no premature leakage. As opposed to a previous study [24], the MOF
nanoparticles presented here also show an efficient intracellular release. In our study we focus on
iron-based MOF nanoparticles, namely MIL-88A, which are composed of iron(III) and fumaric acid,
both naturally occurring in the body [38]. These particles were loaded with Suberoyl bis-hydroxamic
acid (SBHA) alone, or the two drugs irinotecan and floxuridine together. The two latter drugs were
chosen because past studies have shown an improved efficacy in preclinical tumour models [39],
making them interesting candidates for the use in combination therapy. Liposomes loaded with both
drugs in a 1:1 ratio are currently in an ongoing clinical trial under the name CPX-1 [40].

2. Results and Discussion

2.1. MOF Nanoparticle Synthesis and Their Lipid Coating

MIL-88A nanoparticles were synthesized using a microwave approach before being loaded and
then coated with DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) derived liposomes using the fusion
method after loading [41] (see Supplementary Materials for characterisation). The liposome-coated
MIL-88A nanoparticles, further referred to as Lip-MIL-88A, was used to carry several drugs and
investigated towards its loading capacity, release behaviour and effectiveness at loading multiple
drugs at once and thus a possible application in combination therapy.

2.2. Loading Capacity

The first step was to investigate the drug loading capacity of MIL-88A. For this purpose, MIL-88A
nanoparticles were loaded with irinotecan and floxuridine in different ratios through soaking in 1 mM
aqueous solutions of the biotherapeutics, before coating them with liposomes. These particles were
then investigated via UV/Vis spectroscopy (Figure 1) to determine the loading capacity. The absorption
maximum of irinotecan at 360 nm was used as the basis for the calculations. Particles loaded with
different ratios of irinotecan were examined and compared to the UV/Vis spectrum of a pure irinotecan
solution to calculate the amount of drug loading. For this 1 mg of MIL-88A nanoparticles were
suspended in 1 mL of a 1 mM solution of irinotecan. The amount of irinotecan in the MIL-88A
nanoparticles was quantified by UV/Vis measurements, yielding a loading capacity of 21 wt % relative
to the nanoparticle weight (205 µg) for loading only irinotecan, and 10.3 wt % (102 µg) of irinotecan
when a 0.5 mM irinotecan and 0.5 mM floxuridine solution (further referred to as 1:1) is used for the
loading. Similarly, the loading capacity of floxuridine was determined to be 3.61 wt % for a 1 mM
solution of floxuridine only and in the mixtures with irinotecan it was reduced by the respective factor
of dilution (measurements see Supplementary Materials). Thus, the nanoparticles can successfully be
loaded with both drugs at the same time yielding a ratio of the mixture as provided in the loading
solution weighted by the loading capacity of the pure drugs.
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Figure 1. UV/Vis measurements to determine the loading capacity of Lip-MIL-88A nanoparticles for 
Irinotecan. 

2.3. Fluorescence Release Experiments 

To further investigate the loading and especially the release behaviour of the Lip-MIL-88A 
particles, as well as to test for possible leakage of the cargo from the particles, fluorescence release 
experiments were performed (Figure 2). The particles were loaded with the membrane impermeable 
dye calcein as a fluorescence marker. An aqueous solution of the calcein-loaded Lip-MIL-88A was 
used as a control and a test for possible leakage. To guarantee a release, a second sample was treated 
with triton X-100 dissolving the liposome coating. In addition, artificial lysosomal fluid (ALF) [42] 
was used to simulate the environment the particles encounter in the lysosome after entering the cell. 
Finally, the uncoated particles were also measured in water. The coated particles in pure water show 
no release even after several hours, while the uncoated particles exhibit a fluorescence increase and 
thus leakage, proving the effectiveness of the liposome coating in preventing side effects caused by 
leakage. Both the triton X-100 and ALF treated samples show a clear release of the calcein from the 
particles. The large difference in the strength of the release is caused by the complete dissolution of 
the particle through the ALF in comparison to only opening the membrane in the case of triton 
X-100. This dissolution of the particles in ALF leads to a full release of the cargo inside the cell [10]. 
The difference between the uncoated particles and those treated with triton X-100 can be explained 
by the lipid coating. For the uncoated particles, a steady release of calcein is observable, as the 
calcein is released without hindrance. That the triton X-100-treated particles show a strong release in 
the beginning is most likely due to the calcein detaching from the MOF, but being contained by the 
lipid membrane, as soon as the membrane is punctured, this already-freed calcein is released at 
once, leading to the strong initial increase in fluorescence. The difference in the amount of released 
dye in saturation might be either due to more efficient encapsulation facilitated by the lipid bilayer, 
or due to triton possibly interfering with the interaction between particle and calcein leading to an 
enhanced release. The release behaviour of the investigated drugs might differ from that of calcein 
due to its carboxylate groups, which allow it to attach to the surface of the MOF, and might lead to a 
slower release. The general behaviour of the particles in the different media should, however, stay 
unaffected. 

Figure 1. UV/Vis measurements to determine the loading capacity of Lip-MIL-88A nanoparticles
for Irinotecan.

2.3. Fluorescence Release Experiments

To further investigate the loading and especially the release behaviour of the Lip-MIL-88A
particles, as well as to test for possible leakage of the cargo from the particles, fluorescence release
experiments were performed (Figure 2). The particles were loaded with the membrane impermeable
dye calcein as a fluorescence marker. An aqueous solution of the calcein-loaded Lip-MIL-88A was
used as a control and a test for possible leakage. To guarantee a release, a second sample was treated
with triton X-100 dissolving the liposome coating. In addition, artificial lysosomal fluid (ALF) [42] was
used to simulate the environment the particles encounter in the lysosome after entering the cell. Finally,
the uncoated particles were also measured in water. The coated particles in pure water show no release
even after several hours, while the uncoated particles exhibit a fluorescence increase and thus leakage,
proving the effectiveness of the liposome coating in preventing side effects caused by leakage. Both the
triton X-100 and ALF treated samples show a clear release of the calcein from the particles. The large
difference in the strength of the release is caused by the complete dissolution of the particle through
the ALF in comparison to only opening the membrane in the case of triton X-100. This dissolution of
the particles in ALF leads to a full release of the cargo inside the cell [10]. The difference between the
uncoated particles and those treated with triton X-100 can be explained by the lipid coating. For the
uncoated particles, a steady release of calcein is observable, as the calcein is released without hindrance.
That the triton X-100-treated particles show a strong release in the beginning is most likely due to the
calcein detaching from the MOF, but being contained by the lipid membrane, as soon as the membrane
is punctured, this already-freed calcein is released at once, leading to the strong initial increase in
fluorescence. The difference in the amount of released dye in saturation might be either due to more
efficient encapsulation facilitated by the lipid bilayer, or due to triton possibly interfering with the
interaction between particle and calcein leading to an enhanced release. The release behaviour of the
investigated drugs might differ from that of calcein due to its carboxylate groups, which allow it to
attach to the surface of the MOF, and might lead to a slower release. The general behaviour of the
particles in the different media should, however, stay unaffected.
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Figure 2. Fluorescence release measurement of Lip-MIL-88A in various solvents. Water (blue) and 
water with addition of Triton X-100 (red), as an additional control, as well as ALF (black), to simulate 
the environment of the lysosome. As proof that the liposomes prevent the leakage of the cargo, 
uncoated particles (green) were also measured. 

2.4. Cell Release Experiments 

To investigate the cell uptake of the nanoparticles and their drug release behaviour inside cells, 
especially if the strong release observed after exposure to ALF also takes place in the actual cell 
environment, Lip-MIL-88A particles were again loaded with calcein as a model drug and incubated 
in HeLa cells. As can be seen in Figure 3, after two days, the particles were taken up by the cells, but 
no release of the calcein could be observed yet. After three days of incubation, release of calcein from 
the particles without any outside stimulus could be observed. Thus Lip-Mil-88A avoids any dangers 
caused by potentially harmful release triggers, reducing the potential side effects. The observed 
release can be explained by the results from the fluorescence release experiments: The particles are 
taken up via endocytosis and when they are not yet in the lysosomal environment, they show no 
release. Once they are in the lysosomal environment, the particles dissolve, leading to a release of 
their cargo [10]. 

Figure 2. Fluorescence release measurement of Lip-MIL-88A in various solvents. Water (blue) and
water with addition of Triton X-100 (red), as an additional control, as well as ALF (black), to simulate
the environment of the lysosome. As proof that the liposomes prevent the leakage of the cargo,
uncoated particles (green) were also measured.

2.4. Cell Release Experiments

To investigate the cell uptake of the nanoparticles and their drug release behaviour inside cells,
especially if the strong release observed after exposure to ALF also takes place in the actual cell
environment, Lip-MIL-88A particles were again loaded with calcein as a model drug and incubated in
HeLa cells. As can be seen in Figure 3, after two days, the particles were taken up by the cells, but no
release of the calcein could be observed yet. After three days of incubation, release of calcein from the
particles without any outside stimulus could be observed. Thus Lip-Mil-88A avoids any dangers caused
by potentially harmful release triggers, reducing the potential side effects. The observed release can
be explained by the results from the fluorescence release experiments: The particles are taken up via
endocytosis and when they are not yet in the lysosomal environment, they show no release. Once they
are in the lysosomal environment, the particles dissolve, leading to a release of their cargo [10].Nanomaterials 2017, 7, 351  5 of 11 

 

 

Figure 3. Liposome-coated MIL-88A nanoparticles loaded with calcein after two (a) and three (b) 
days of incubation with HeLa cells. The cells have been marked with CellMask Orange. The scale 
bars correspond to 30 µm (a) and 20 µm (b). 

2.5. Single Drug Cytotoxicity (MTT) Assays 

The liposome-coated MIL-88A nanoparticles were loaded with SBHA, a histone deacetylase 
inhibitor, which leads to cell death, as a model drug and to further test its drug-carrying capabilities. 
The particles were then incubated in HeLa cells for 3 to 4 days and MTT-assays were performed 
(Figure 4a). The SBHA-loaded Lip-MIL-88A proved effective against the HeLa cells, showing cell 
viabilities of only 15% after 4 days of incubation. The particles proved to be able to safely deliver 
their cargo to the target cells showing an IC50 of about 15 µg/mL of SBHA loaded Lip-MIL-88A. To 
investigate if the cell deaths could be caused by leakage of SBHA from the drug carrier, the 
supernatant was collected and also investigated via MTT-assay (Figure 4b). These measurements 
show that no leakage occurred, as the cells are still viable even at high concentrations of the 
supernatant. The loading capacity of this system for SBHA was determined to be 2.90 wt % with 
respect to the particles (see Supplementary Materials). This further corroborates the general 
suitability of Lip-MIL-88A as a drug delivery vehicle. 
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2.6. Multi Drug MTT-Assays 

Next, the particles where loaded with both irinotecan and floxuridine in different ratios (Table 
1) to determine both the effectiveness of each single drug loaded on the particles and the 

Figure 3. Liposome-coated MIL-88A nanoparticles loaded with calcein after two (a) and three (b) days
of incubation with HeLa cells. The cells have been marked with CellMask Orange. The scale bars
correspond to 30 µm (a) and 20 µm (b).
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2.5. Single Drug Cytotoxicity (MTT) Assays

The liposome-coated MIL-88A nanoparticles were loaded with SBHA, a histone deacetylase
inhibitor, which leads to cell death, as a model drug and to further test its drug-carrying capabilities.
The particles were then incubated in HeLa cells for 3 to 4 days and MTT-assays were performed
(Figure 4a). The SBHA-loaded Lip-MIL-88A proved effective against the HeLa cells, showing cell
viabilities of only 15% after 4 days of incubation. The particles proved to be able to safely deliver
their cargo to the target cells showing an IC50 of about 15 µg/mL of SBHA loaded Lip-MIL-88A.
To investigate if the cell deaths could be caused by leakage of SBHA from the drug carrier,
the supernatant was collected and also investigated via MTT-assay (Figure 4b). These measurements
show that no leakage occurred, as the cells are still viable even at high concentrations of the supernatant.
The loading capacity of this system for SBHA was determined to be 2.90 wt % with respect to
the particles (see Supplementary Materials). This further corroborates the general suitability of
Lip-MIL-88A as a drug delivery vehicle.
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Figure 4. (a) MTT assay of HeLa cells incubated with Lip-MIL-88A nanoparticles loaded with SBHA
after three and four days of incubation. (b) MTT assay of HeLa cells incubated with the supernatant of
the Lip-MIL-88A suspension after four days. The error bars represent the standard deviation.

2.6. Multi Drug MTT-Assays

Next, the particles where loaded with both irinotecan and floxuridine in different ratios (Table 1)
to determine both the effectiveness of each single drug loaded on the particles and the effectiveness of
the mixtures. For this purpose, particles loaded with pure irinotecan and floxuridine and different
ratios of both (1:3, 1:1 and 3:1, with the ratios referring to the molar ratios of the drugs in the loading
solution) were incubated with cells. The MTT assays show that both irinotecan and floxuridine could
be successfully loaded into the Lip-MIL-88A, leading to a significantly reduced cell viability of 34.6%
with an IC50 of 4 µg/mL for the irinotecan-loaded version. Floxuridine had a significantly lower
efficiency, which did not even reach a 50% reduction of cell viability within the measured amounts of
particle administration. The mixtures of them were also tested (Table 1), with the 3:1 ratio showing
the best results achieving a low cell viability similar to irinotecan alone. All tested ratios aside from
pure floxuridine reduce the cell viability to 30–40% at the highest tested concentration of 140 µg/mL,
while pure floxuridine only manages to reach a reduction to 60% at this particle concentration. This is in
accordance to the 1:3 irinotecan:floxuridine ratio being the least effective of the investigated mixtures.

Table 1. Comparison of the different MIL88A loadings and their IC50 values.

Irinotecan 3:1 Iri Floxu 1:1 1:3 Iri Floxu Floxuridine

Cell viability at 140 µg/mL (%) 34.6 28.6 30.6 37.9 60.5
Ic 50 (µg/mL) 40 80 80 80 120
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Figure 5. (a) MTT-assay of Lip-MIL-88A particles loaded with different ratios of irinotecan/floxuridine
incubated in HeLa cells for three days. The error bars represent the standard deviation. (b) MTT-assay
of the supernatant of Lip-MIL-88A particles loaded with different ratios of irinotecan/floxuridine after
incubation in HeLa cells for three days. The error bars represent standard deviations.

To rule out leakage of the drugs as the responsible factor for the observed reduction in cell viability,
the particles were stored in PBS for several days before the supernatant was collected and tested for its
toxicity (Figure 5b) showing no significant decrease in cell viability. With this, we can exclude drug
leakage from the particles as the reason for the observed cell death. Thus, the liposome-coated MOF
nanoparticles can serve as a drug delivery system for dual therapy preventing leakage and taking
advantage of the delivery of two different drugs. Although the combinations of drugs yield lower
efficiencies than irinotecan alone due to the lower efficiency of floxuridine, the option of dual drug
delivery with these nanoparticles shows great promise in the fight against resistances via combinatorial
drug application.

3. Conclusions

In conclusion, the Lip-MIL-88A platform is a promising tool for use as a platform for combination
therapy. It could readily take up a significant amount of biologically active agents (20 wt %) and
showed a promising release of its cargo. Due to the liposome coating, no leakage of the cargo could
be observed. In cell experiments, Lip-MIL-88A nanoparticles were readily taken up by cells and
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showed a significant intracellular release after three to four days of incubation. Different drugs
(SBHA, irinotecan and floxuridine) were successfully loaded into the particles, and the drug delivery
system enables intracellular release profiles. The successful and uncomplicated loading, as well as
the effective intracellular release of drugs compared to normal liposome loading procedures, is a
promising start for future applications in combination therapy and could as such contribute to improve
cancer chemotherapy.

4. Materials and Methods

All chemicals were purchased from Sigma Aldritch (St. Louis, MO, USA) unless noted otherwise.

4.1. UV/Vis Measurements

The UV/Vis measurements were performed on a Lambda 1050 UV/Vis/NIR spectrometer form
Perkin Elmer (Waltham, MA, USA). The software used to record the measured spectra was Perkin
Elmer UVWinLab (Waltham, MA, USA). For the measurements, the loaded coated particles were
dissolved in ALF to facilitate the release of all their cargo. 1 mL of this solution was then diluted with
2 mL H2O yielding a total of 3 mL and measured in a quartz cuvette. For the pure drugs, 1 mL of the
aqueous solution was diluted with 1 mL H2O and 1 mL ALF.

4.2. Fluorescence Microscopy

The fluorescence microscope images were recorded with a Zeiss Observer SD (Jena, Germany)
spinning disk confocal microscope using a Yokogawa (Musashino, Japan) CSU-X1 spinning disc unit
and an oil objective with 63× magnification and BP 525/50 and LP 690/50 filters. The setup was
heated to 37 ◦C and a CO2 source was provided to keep the atmosphere at 5% CO2. For both excitation
of the calcein and the cell marker a laser with a wavelength λ = 488 nm was used. The images were
processed with the Zen software by Zeiss to optimize contrast.

4.3. Fluorescence Spectroscopy

The fluorescence spectroscopy experiments were recorded with a MD-5020 setup from PTI
Photon Technology International (Birmingham, UK). The software Felix32 was used for recording and
evaluating the measured data. For the experiments hollow caps were filled with 50 µL of a 1 mg/mL
particle stock solution. Depending on the experiment, 100 µL of water or ALF or 90 µL water and
10 µL 20% triton X-100 solution were added, before the caps were sealed with a dialysis membrane
and placed into cuvettes filled with water together with a stirring rod. The measurement temperature
was 37 ◦C, with an excitation wavelength of 495 nm and an emission wavelength of 512 nm.

4.4. Cell Culture

All cell experiments were prepared in a Hera-Safe cell culture unit from Heraeus (Hanau, Germany).
The cells were incubated at 37 ◦C/5% CO2 in Hera Cell incubators also from Heraeus. Cells were grown
in Dulbecco’s modified eagle medium (DMEM) with 10% fetal bovine serum (FBS) and 1% PenStrep.
These chemicals were purchased from Thermofisher Scientific (Waltham, MA, USA).

4.5. MTT Assays

The MTT-assays were performed with a Spectra Fluor Plus from Tecan (Männedorf, Switzerland)
and were then evaluated with Excel 2010 and Origin. 5000 cells were seeded per well and incubated
together with 100 µL DMEM (10%FBS, 1% PenStrep) for 1 day before the particles were added.
Each concentration was tested on three different days and on each day in triplicate. After the allotted
incubation time the plates were washed with Hank’s Balanced Salt solution (HBSS) to remove dead
cells, before the MTT reagent diluted in DMEM (0.5 mg/mL) was added. After two hours of incubation
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the MTT reagent solution was removed from the cells, and the cells were frozen at −80 ◦C for 0.5 h.
Before the measurement 100 µL dimethyl sulfoxide (DMSO) were added to each well.

4.6. Synthesis of the Uncoated and Coated MIL-88A Nanoparticles

4.6.1. Synthesis of MIL-88A NPs

MIL-88A nanoparticles were synthesized in a microwave assisted approach based on the results
of Chalati et al. [38]. In this synthesis route, an aqueous solution of FeCl3·6H2O (1.084 g, 4.01 mmol)
and fumaric acid (485 mg, 4.18 mmol) are given to water (20 mL, Milli-Q). The reaction mixture was
stirred until the metal salt was completely dissolved. The reaction mixture was then given into a Teflon
tube (80 mL) and placed into a microwave oven (Synthos 3000, Anton-Paar, (Graz, Austria)) along
with 3 additional vessels. Two of these vessels are filled with water (20 mL, Milli-Q), the third vessel is
filled with an aqueous FeCl3 (20 mL, 1.084 g, 4.01 mmol) and is used to monitor the reaction progress.
The vessels were heated under stirring with the sequence shown in Table 2.

Table 2. Microwave heating program for the MIL-88(A) NPs synthesis.

Heating Dwelling Cooling

30 s 5 min 45 min
To 80 ◦C 80 ◦C To room temperature

To remove residual reactants, the sample was subsequently washed via centrifugation (7840 rpm,
20 min) and redispersion of the pellet in ethanol (20 mL). This washing cycle was repeated 3 additional
times. To also remove bulk material formed during the reaction, the dispersion was then centrifuged
3 times (3 min, 3000 rpm) and the pellet fraction of the product discarded.

4.6.2. Preparation of the Liposome Coating Solution

A 1 mg/mL PBS solution of DOPC was prepared and extruded through an extruder with a 100 nm
pore sized membrane 11 times for cleaning.

4.6.3. Preparation of the Loaded and Coated Particles

1 mg of MIL-88A NPs were suspended in 1 mL of a 1 mM solution of calcein, suberohydroxamic
acid (SBHA), irinotecan or floxuridine and incubated overnight for loading. Next, they were centrifuged
for 5 min at 14,000 rpm, to discard the supernatant and the pellet was dissolved in 0.2 mL of the liposome
coating solution and 0.2 mL water and incubated for 2 h. The particles were then centrifuged (5 min at
14,000 rpm) and redispersed in 1 mL PBS after washing several times.

For the preparation of the particles loaded with both irinotecan and floxuridine the MIL-88A
particles were immersed in mixtures of 1 mM irinotecan and floxuridine solutions in the desired ratios,
before following the same coating and washing procedure as outlined above.
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