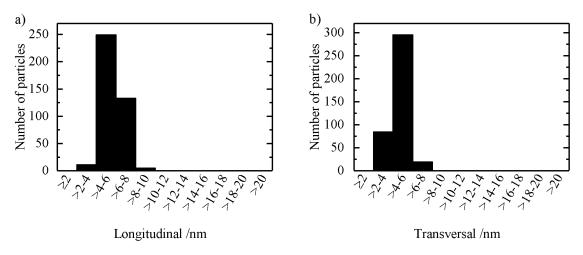
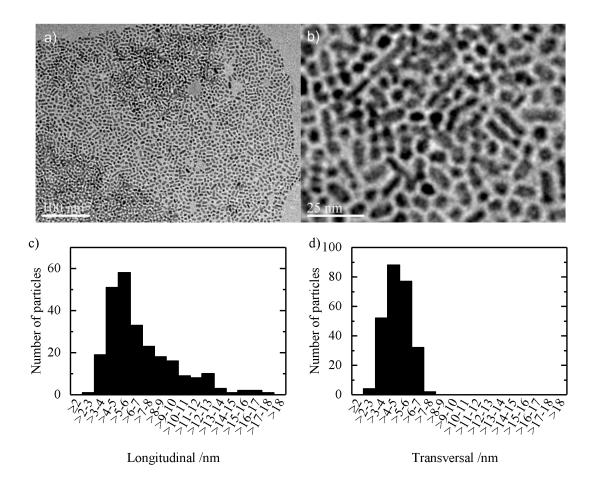
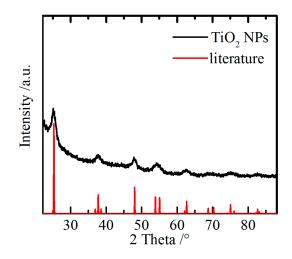
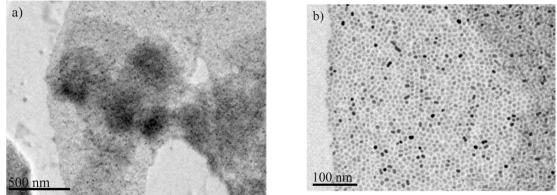
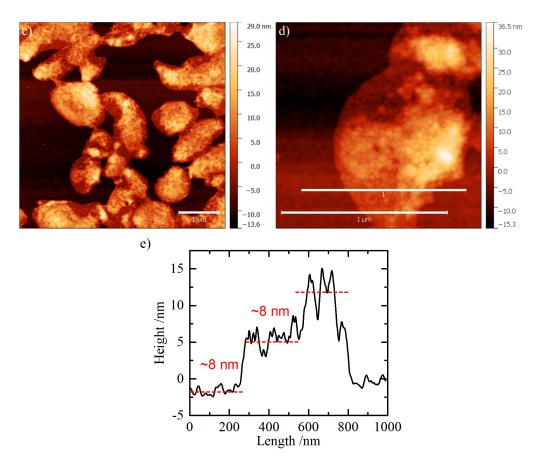
Resistive Switching of sub-10 nm TiO₂ Nanoparticle Self-Assembled Monolayers

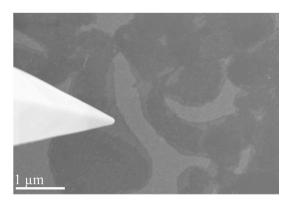
Dirk Oliver Schmidt ^{1,2}, Nicolas Raab ^{3,4}, Michael Noyong ^{1,2}, Venugopal Santhanam ⁵, Regina Dittmann ^{3,4} and Ulrich Simon ^{1,2,*}

Supporting Information

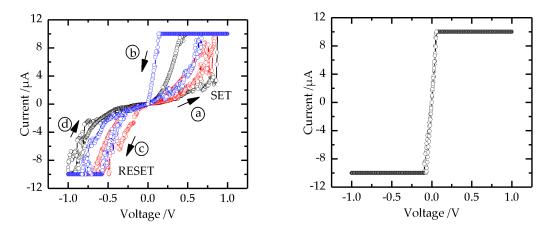





Figure S1. Histograms of the synthesized TiO2 NPs' longitudinal and transversal (a, b).




Figure S2. Exemplary TEM images of the synthesized TiO₂ NPs (a, b) and corresponding histograms of NPs' longitudinal (7.9 \pm 2.2) nm and transversal (4.8 \pm 0.8) nm (c, d), resulting in a mean particle diameter of (6.3 \pm 1.9) nm. Powder XRD patterns of the NPs (black) and literature anatase data (red) (e) [38].

A self-assembled TiO₂ NP film was formed consisting of particles with a mean longitudinal of (9.5 ± 1.1) nm and mean transversal of (7.5 ± 0.9) nm and a spherical NP to non-spherical shaped NP ratio of 13:1. For TEM investigations, a small part of the self-assembled NP film was transferred onto a carbon coated TEM grid. The images revealed that mono-, bi- and multilayers were present as well as voids without any NPs (Figure S 3). For the one-step transfer method, the Pt/Ir substrate was gently brought into contact with the self-assembled film floating on the water surface (see Figure 2 d I and II in the main text) as compared the carbon grid. After evaporation of water residues, the TiO₂ NP films were discernible in AFM images and multiple layers with various height differences were visible on the Pt/Ir surface (Figure S 4 c, d). A height profile was recorded along the white line in Figure S 4 d revealing a stepwise variation in height of approximately 8 nm. This height difference corresponds to the mean dimensions of the TiO₂ NPs of the mean longitudinal (9.5 ± 1.1) nm and mean transversal (7.5 ± 0.9) nm. Therefore, we assume that the first height step corresponds to a TiO₂ NP monolayer, the second step to a TiO₂ bilayer and so on.



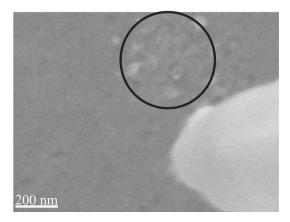

Figure S3. Exemplary TEM images of the self-assembled TiO₂ NP film (a, b). Tapping mode AFM images of the TiO₂ NP film transferred to a Pt/Ir surface by the one-step method. (c, d). Corresponding height profile (e) taken along the white line in (d) showing height differences of approximately 8 nm.

Figure S4. SEM image without enhanced contrast of a TiO₂ NP film on the Pt/Ir surface and on the left-hand side the Pt/Ir coated tip electrode is visible.

Figure S5. Three consecutive switching cycles recorded on a TiO₂ NP monolayer (a) and subsequent permanent LRS (b).

Figure S6. SEM image of a TiO₂ NP layer after a SET process. The tip was lifted off the TiO₂ NP layer, revealing a morphology change of the layer.