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Abstract: Gold-nanoparticle (Au-NP) non-volatile memories (NVMs) with low-damage CF4 plasma
treatment on the blocking oxide (BO) layer have been investigated to present the gate injection of
the holes. These holes, injected from the Al gate with the positive gate bias, were explained by
the bandgap engineering of the gradually-fluorinated BO layer and the effective work function
modulation of the Al gate. The Si–F complex in the BO layer was analyzed by X-ray photoelectron
spectroscopy (XPS), while the depth of fluorine incorporation was verified using a secondary ion
mass spectrometer (SIMS). In addition, the valence band modification of the fluorinated BO layer
was examined by ultraviolet photoelectron spectroscopy (UPS) to support the bandgap engineering.
The reactive power of the CF4 plasma treatment on the BO layer was modified to increase the electric
field of the BO layer and raise the effective work function of the Al gate, leading to the hole-injection
from the gate. The injected holes are trapped at the interface between the gold-nanoparticles (Au-NPs)
and the tunneling oxide (TO) layer, resulting in superior data retention properties such as an extremely
low charge loss of 5.7% at 104 s and a nearly negligible increase in charge loss at 85 ◦C of the
CF4-plasma-treated Au-NP NVMs, which can be applied in highly reliable consumer electronics.

Keywords: gold nanoparticle (Au-NP); non-volatile memory (NVM); CF4 plasma; blocking oxide;
bandgap engineering; gate injection; data retention

1. Introduction

Over the past few years, the demand for portable electronic devices has increased rapidly due to
the growth of the Internet of Things (IoT); therefore, a high-density unit is necessary in the development
of floating gate (FG), non-volatile memories (NVMs) [1,2]. However, as the devices scale, the charges
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stored in the FG are easily lost through the thin tunneling oxide (TO) layer, leading to severe reliability
issues [3]. To overcome these issues, discrete-charge storage concepts have been introduced in this
generation [4,5]. Among these alternative memories, nanocrystal (NC) memories are being extensively
investigated. The memories can store charges in isolated nanoparticles (NPs) to suppress lateral
migration and enhance data retention behavior [6]. The materials used as NPs can be classified into
three major categories: semiconductors, high-k dielectrics, and metals. Initially, Si and Ge were used as
NPs because of their antecedence in the semiconductor industry [7,8]. Later, Gd2O3-NC memories
were realized, in which crystalline Gd2O3-NC dots are surrounded by amorphous Gd2O3 dielectrics
to ensure an energy band offset, enabling charge storage [9,10]. To improve the performance of
NC memories, metal NPs, which can have a high density of states (DOS) around the Fermi-level,
high particle scalability, and a wide range of accessible work functions, have been employed [11].
There are lots of metal NPs, such as Ag, Au, Pt, W, Co, Ni, NiSi2, Ni1−xFex, Hf, TiN, and Al metal
NPs, being used for the non-volatile memory (NVM) applications [3]. This approach is to engineer
the depth of the potential well (deff) at the storage nodes, achieving the asymmetrical barrier between
the substrate and the storage nodes for the easy programming and good data-retention properties.
For example, NVMs with gold nanoparticles (Au-NPs) have been fabricated with superior reliabilities
owing to their large work function, low reactivity, high dot density, and uniform dot distribution [12].
Nevertheless, all NVMs with metal NPs presented the storage of electrons, which were injected from
the substrate.

Recently, it has been demonstrated that gate-injected NVMs exhibit superior reliability properties
compared to substrate-injected ones because of less operating damage to the TO layer [13].
The bandgap-engineered oxide layers—oxide-nitride-oxide (ONO) stacked layers—on top of the
charge-trapping layer have been used to realize the carrier injection from the poly-Si gate.
The fabrication of the ultra-thin ONO stacked layers (1.3 nm/2.1 nm/1.7 nm) is too complicated
to control their quality and ensure uniform operation in all devices. Previously, NH3 plasma
treatment has been performed on the TO layer, creating a gradually-nitrided TO layer that forms
a built-in electric field and enhances the injection of electrons from the Si substrate [14]. In this work,
we propose a novel technique to achieve the Au-NP NVMs with gate-injected holes by using the
low-damage CF4 plasma treatment on the blocking oxide (BO) layer. The material characterizations
of scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM),
X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometer (SIMS), and ultraviolet
photoelectron spectroscopy (UPS) were employed to analyze the film composition, device structure,
and energy band diagram of the memory devices. For the CF4-plasma-treated Au-NP NVMs,
holes were injected from the Al gate with the positive gate bias (Vg), which can be explained by the
bandgap engineering of the gradually-fluorinated BO layer and the effective work function modulation
of the Al gate. Furthermore, the devices have been found to exhibit superior data retention properties,
suitable for highly reliable future NVM applications.

2. Materials and Methods

2.1. Sample Preparation

The Al/SiO2/Au-NPs/SiO2/n-Si structure with low-damage CF4 plasma treatment on the BO
layer was fabricated to form the Au-NP NVMs. The n-type Si (100) wafers were first cleaned using
the standard Radio Corporation of America (RCA) clean. Next, a 6-nm-thick SiO2 layer was grown
on the wafers in a horizontal furnace at 950 ◦C for 5 min in an O2 gas ambient as the TO layer. Then,
a 2-nm-thick Au film was deposited by a thermal evaporator at 10−6 Torr with a pure Au bullet (99.99%
purity). Subsequently, each sample was subjected to rapid thermal annealing (RTA) at 700 ◦C for
30 s to form Au-NPs. After the Au-NPs had formed, a 20-nm-thick SiO2 layer was deposited via
plasma-enhanced chemical vapor deposition (PECVD) as the BO layer, where the samples were kept in
a SiH4 and N2O ambient at a radio frequency (RF) power of 50 W with gas flow rates of 5 and 200 sccm,
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respectively. Thereafter, a low-damage CF4 plasma treatment was performed in a PECVD system with
a quartz filter, filtering high-energy electrons, ions, and ultra-violet (UV) radiation to reduce plasma
damage on the BO layer [15]. The chamber was first evacuated to 10−6 Torr and gradually heated
to 300 ◦C. Then, the CF4 gas ambient of 50 sccm was flowed into the chamber to keep the pressure
at 500 mTorr. The system at RF powers of 20, 30, and 50 W was performed on the BO layer for 30 s
and labeled as 20 W, 30 W, and 50 W, respectively. Additionally, a sample without the treatment was
also fabricated for comparison and labeled as w/o. Then, a RTA was performed at 700 ◦C for 30 s
to activate the fluorine ions. Finally, a 300-nm-thick Al film was deposited by a thermal evaporator
at 10−6 Torr with a pure Al bullet (99.999% purity), and a gate was photo-lithographically defined
and then etched. The entire fabrication process of the Au-NP NVMs with low-damage CF4 plasma
treatment on the BO layer is illustrated in Figure 1.
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vapor-deposition (PVD)-deposited Au film; (d) rapid thermal annealing (RTA) to form Au-NPs; (e) 
plasma-enhanced chemical vapor deposition (PECVD)-deposited SiO2 film; (f) low-damage CF4 
plasma treatment; (g) RTA to activate fluorine ions; and (h) Al contact formation to fabricate Au-NP 
NVMs. 

2.2. Characterization 

To understand the incorporation of fluorine atoms in the BO layer, its elemental composition 
was obtained using SIMS (ION-TOF GmbH, Münster, Germany) depth profiling. Moreover, the 
chemical bonding of the CF4-plasma-treated SiO2 layer was examined using XPS (Waters Corp., 
Milford, MA, USA) analysis. The dot size and density of Au-NPs were observed by SEM (JEOL Ltd., 
Tokyo, Japan). Further, the stacked films of the devices with Au-NPs were confirmed by HRTEM 
images using a scanning transmission electron microscope (STEM) system (Thermo Fisher Scientific 
Inc., Hillsboro, OR, USA). Besides, the ionization energy of the BO layer with low-damage CF4 plasma 
treatment was obtained via UPS (RBD Instruments, Inc., Bend, OR, USA). For the electrical 
characterization of the CF4-plasma-treated Au-NP NVMs, the current density versus voltage (J-V) 
and high-frequency (1 MHz) capacitance versus voltage (C-V) curves were measured using Keithley 
4200-SCS semiconductor characterization system (Tektronix, Inc., Beaverton, OR, USA), and the gate 
pulse was supplied by Keithley 4225-PMU ultra-fast IV unit (Tektronix, Inc., Beaverton, OR, USA) to 
operate the devices. 

3. Results and Discussion 

3.1. Material Analysis 

Figure 2a shows the cross-sectional structure and HRTEM image of the Au-NP NVMs. The 
HRTEM image with a lower magnification was also presented in Figure S1 of the Supplementary 
Materials to show more Au-NPs on the SiO2 layer. The Au-NPs are formed by a dewetting process of 

Figure 1. Fabrication procedures of the gold-nanoparticle (Au-NP) non-volatile memories (NVMs) with
low-damage CF4 plasma treatment on the blocking oxide (BO) layer. (a) n-type Si (100) wafers with standard
Radio Corporation of America (RCA) clean; (b) thermally grown SiO2 film; (c) physical-vapor-deposition
(PVD)-deposited Au film; (d) rapid thermal annealing (RTA) to form Au-NPs; (e) plasma-enhanced
chemical vapor deposition (PECVD)-deposited SiO2 film; (f) low-damage CF4 plasma treatment; (g) RTA
to activate fluorine ions; and (h) Al contact formation to fabricate Au-NP NVMs.

2.2. Characterization

To understand the incorporation of fluorine atoms in the BO layer, its elemental composition was
obtained using SIMS (ION-TOF GmbH, Münster, Germany) depth profiling. Moreover, the chemical
bonding of the CF4-plasma-treated SiO2 layer was examined using XPS (Waters Corp., Milford, MA,
USA) analysis. The dot size and density of Au-NPs were observed by SEM (JEOL Ltd., Tokyo, Japan).
Further, the stacked films of the devices with Au-NPs were confirmed by HRTEM images using
a scanning transmission electron microscope (STEM) system (Thermo Fisher Scientific Inc., Hillsboro,
OR, USA). Besides, the ionization energy of the BO layer with low-damage CF4 plasma treatment was
obtained via UPS (RBD Instruments, Inc., Bend, OR, USA). For the electrical characterization of the
CF4-plasma-treated Au-NP NVMs, the current density versus voltage (J-V) and high-frequency (1 MHz)
capacitance versus voltage (C-V) curves were measured using Keithley 4200-SCS semiconductor
characterization system (Tektronix, Inc., Beaverton, OR, USA), and the gate pulse was supplied by
Keithley 4225-PMU ultra-fast IV unit (Tektronix, Inc., Beaverton, OR, USA) to operate the devices.

3. Results and Discussion

3.1. Material Analysis

Figure 2a shows the cross-sectional structure and HRTEM image of the Au-NP NVMs.
The HRTEM image with a lower magnification was also presented in Figure S1 of the Supplementary
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Materials to show more Au-NPs on the SiO2 layer. The Au-NPs are formed by a dewetting process of
a deposited Au film. There are some literatures illustrating the major driving forces that contribute to
the dewetting process of Au-NPs [16–22]. The process is achieved through the melting of the Au film
and the relaxation of the Au film stress on the SiO2 layer, which is limited by the surface mobility of Au
atoms. Some long-range forces such as the dispersion force and the electrical double layers will also
affect the nanoparticle (NP) size and location distributions. To reduce the elastic energy induced by the
film stress during the deposition and thermal processes, the Au film tends to break into some islands
along the initial film thickness perturbation. The final geometry depends on the balance between these
driving forces mentioned above. Thus, the formation of Au-NPs on the SiO2 layer is realized and the
dot size and density are established. It is reported that the thickness of the deposited Au film and the
following rapid thermal process (RTP) can be controlled to modify the Au-NP size and density on the
SiO2 layer [23–26] and to present good reliability properties of the Au-NP NVMs [27]. In the work,
to obtain suitable memory characteristics, the Au film of 2 nm was deposited and the following RTA of
700 ◦C for 30 s was performed to achieve the Au-NP density of 1.2 × 1012 cm−2 and the average Au-NP
diameter of approximately 8.4 nm, as shown in the SEM image of Figure S2 of the Supplementary
Materials, which is almost the same as that seen in the HRTEM image (Figure 2a). Generally speaking,
the specimen for the cross-sectional HRTEM is widely prepared by using the focus ion beam (FIB)
because of the ease of obtaining the sample at a specific site with a constant thickness [28]. However,
it is difficult to control the amount of remaining nanoparticles for the specimen preparation of the
Au-NP NVMs. The different amounts of the remaining Au-NPs at the specimen surface are responsible
for the different contrasts of the Au-NPs observed in the cross-sectional HRTEM image. The image
also confirmed the film thicknesses of the TO and BO layers for the further study of carrier injection.
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Figure 2. (a) Cross-sectional structure and high-resolution transmission electron microscopy (HRTEM)
image of the Au-NP NVMs; (b) secondary ion mass spectrometer (SIMS) depth profiles of the
CF4-plasma-treated Au-NP NVMs; (c) X-ray photoelectron spectroscopy (XPS) spectra of Si 2p and
F 1s of the BO layer and (d) ultraviolet photoelectron spectroscopy (UPS) spectra of the SiO2 thin
films with and without the treatment at 20 W. The energy from the valence band to vacuum level
(Evac_vb) of the SiO2 films with and without the CF4 plasma treatment at 20 W was found to be
9.13 and 9.35 eV, respectively.
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Figure 2b presents the SIMS depth profiles of the Au-NP NVMs with different reactive powers of
the low-damage CF4 plasma treatment on the BO layer. With the increase in reactive power of CF4

plasma, more fluorine ions were incorporated in the BO layer, diffusing deep into the film. In general,
when the impurities diffuse in a film the impurity concentration would decrease from the surface
to the bulk without any fluctuation. However, if there are stacked films, the impurities such as the
fluorine ions will pile up at the interface of the films, as proposed by Chang et al. [29]. In Au-NP NVMs,
there are lots of Au-NPs embedded within the SiO2 film. Thus, the fluorine ions will accumulate at
the interface between the Au-NPs and the SiO2 film, leading to the intensity fluctuation of fluorine,
as shown in Figure 2b. When the CF4 plasma power increases to 50 W, more fluorine ions are generated
and the position of the maximum fluorine intensity shifts toward the interface between the Au-NPs
and the TO layer. To understand the chemical reaction between the CF4 plasma and the BO layer,
the XPS spectra of Si 2p and F 1s of the BO layer with and without the treatment at 20 W were analyzed
(Figure 2c). The BO layer without treatment depicted a pure SiO2 layer with a Si 2p spectrum at 103.4 eV.
On the other hand, for the BO layer with the CF4 plasma treatment at 20 W, three additional spectra at
100.3, 101.45, and 102.6 eV were obtained, indicating the Si–F, Si–F2, and Si–F3 bonds, respectively [30].
The fluorine-rich chemistry in SiO2 film with a complex reaction product can be observed at the F 1s
spectrum of 687.25 eV for the CF4-plasma-treated sample [31]. Figure 2d shows the UPS spectra of the
SiO2 thin films with and without the low-damage CF4 plasma treatment at 20 W. Following sputtering
the SiO2 film surface to remove the hydrocarbon contamination with Ar+ ions at 4 keV for 2 min,
UPS was carried out using a UV He lamp (21.2 eV) in an ultra-high vacuum chamber. A broad
spectral feature representative of the valence band (Ev) of the SiO2 films was observed at a much lower
binding energy [32]. Linear extrapolation of the left of the peak curve made it possible to estimate
the valence-band maximum (VBM) level energy. The photoemission threshold (Es) was evaluated by
a linear fit of the beginning of the right defined by the secondary electron peak. Thus, the energy from
the valence band to vacuum level (Evac_vb) can be calculated by the following equation [33]:

Evac_vb = hν − (ES − VBM) (1)

where hν is the incident He. Thus, the Evac_vb of the SiO2 films with and without the CF4 plasma
treatment was determined to be 9.13 and 9.35 eV, respectively, indicating a light increase in the Evac_vb
of the SiO2 films with the treatment.

3.2. Electrical Characteristics

For the CF4-plasma-treated Au-NP NVMs, the flat-band voltage (VFB) might be modified and
can be calculated using the C-V curves, as shown in Figure S3 of the Supplementary Materials.
The VFB values of the samples with the low-damage CF4 plasma treatment on the BO layer are roughly
−1 V, which is larger than that obtained from the w/o sample. The VFB shift can be ascribed to the
passivation of the defects within the PECVD oxide layer by the CF4 plasma treatment [34]. In addition,
compared to the w/o sample, the capacitances of the Au-NP NVMs with the low-damage CF4 plasma
treatment on the BO layer are lower, leading to a lower dielectric constant of the fluorine-doped SiO2

layer, as proposed by T. Usami et al. [35]. For the Au-NP NVMs after programming, the shift of the
C-V curves towards the positive and negative directions indicates that electrons and holes, respectively,
are stored in Au-NPs [36]. The C-V curves of devices with different pulse widths of the programming
voltage (Vg − VFB) of 20 V are shown in Figure S4 of the Supplementary Materials. The VFB shifts
of the devices with Vg − VFB of 8 to 20 V were extracted from the C-V curves, and are presented in
Figure 3. In Figure 3a, we can observe that the VFB shifts towards the positive direction for the w/o
sample, due to the electron injection from the n-type Si substrate into the Au-NPs. On the other hand,
for the CF4-plasma-treated Au-NP NVMs, negative VFB shift is achieved (Figure 3b), implying the hole
injection from the Al gate into the Au-NPs. With the increase in the programming pulse biases and
widths, the shift of the VFB is larger. Moreover, for the devices with a larger plasma treatment power
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of 30 W, a more negative VFB shift is obtained (Figure 3c). This is because more holes are injected and
stored in the Au-NPs. However, if the CF4 plasma reactive power is more than 50 W, a decrease in VFB

shift is observed (Figure 3d), which will be discussed later. Furthermore, the erasing characteristics
of Au-NP NVMs with and without low-damage CF4 plasma treatment on the BO layer were also
investigated, as shown in Figure S5 of the Supplementary Materials.
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Figure 3. Programming characteristics of (a) w/o; (b) 20 W; (c) 30 W; and (d) 50 W samples with
different pulse widths of Vg − VFB of 8, 10, 12, 14, 16, 18, and 20 V. The pulse widths were in the range
of 1 µs to 1 s. The VFB shift towards the positive and negative directions was observed for the Au-NP
NVMs without and with low-damage CF4 plasma treatment on the BO layer, respectively.

3.3. Carrier Injection Mechanisms

To realize the carrier injection mechanisms of Au-NP NVMs with and without the low-damage
CF4 plasma treatment on the BO layer, the effective work function of the Al gate was extracted using
Equation (2) [37]:

VFB =
(ϕm,Al − ϕn-Si)

q
+

Qox

Aεox
× tox (2)

where ϕm,Al is the effective work function of the Al gate with the low-damage CF4 plasma treatment
on SiO2 layer, ϕn-Si is the n-type silicon work function of 4.43 eV, Qox is the oxide charges of the SiO2

layer, tox is the thickness of the SiO2 layer, A is the area of the devices, εox is the dielectric constant of
the SiO2 layer, and q is the electron charge of 1.6 × 10−19 C. Figure 4a shows the VFB versus capacitance
equilibrium thickness (CET) characteristics of the Al/SiO2/n-Si devices with the low-damage CF4

plasma treatment on SiO2 layer. The SiO2 films with thicknesses of 4.5, 6.0, and 7.5 nm were deposited
by the PECVD system. After the device fabrication, the CETs of the SiO2 layers with and without the
low-damage CF4 plasma treatment were obtained from the C-V curves, as shown in Figure S6 of the
Supplementary Materials. By extrapolating the curves to the y-axis, the effective work functions of
the Al gate on the low-damage CF4-plasma-treated SiO2 layer were extracted, as shown in Figure 4b.
For the device without treatment, the effective work function of the Al gate is 4.1 eV, which is the same
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as that proposed by M. K. Achuthan and K. N. Bhat [38]. In addition, the effective work function of the
Al gate on the low-damage CF4-plasma-treated SiO2 layer increases significantly to more than 5.0 eV,
caused by the metal-induced gap states (MIGS) of the Al gate on the fluorinated SiO2 layer because of
the large electronegativity of fluorine atoms [39].
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Figure 4. (a) Capacitance equilibrium thickness (CET) versus flat-band voltage characteristics of
the Al/SiO2/n-Si structures with and without low-damage CF4 plasma treatment on SiO2 layers.
The schematic Al/SiO2/n-Si structures of different SiO2 film thicknesses were shown in the inset figure.
The extracted effective work functions of the Al gate (ϕm,Al) with and without low-damage CF4 plasma
treatment on SiO2 layers were shown in (b).

As a result of the large effective work function of the Al gate, the carrier injection mechanisms
of the CF4-plasma-treated Au-NP NVMs are changed, as illustrated in the schematic energy band
diagrams of Figure 5. For the w/o sample (Figure 5a), the substrate injection of electrons dominates at
positive gate bias, leading to the positive VFB shift shown in Figure 3a. In contrast, the gate injection
of holes is dominant for the devices with the low-damage CF4 plasma treatment on the BO layer
(Figure 5b–d), contributing to the negative VFB shift shown in Figure 3b–d. According to Gauss’
Law, the displacement field (D) must be continuous at the TO and BO interface [40]. Thus, the lower
dielectric constant of the CF4-plasma-treated BO layer results in a higher electric field on the gate bias.
Because fluorine atoms are incorporated more and diffused deeper into the BO layer with the increase
of the CF4 plasma reactive power, the electric field strength in the BO layer increases. Therefore,
in Au-NP NVMs with a higher reactive power of CF4 plasma treatment, some holes are trapped at
the interface between the Au-NPs and the TO layer [41], as shown in Figure 5c. Yeo et al. proposed
the high MIGS at the Au and SiO2 interface owing to the dipole formation [42], which can be used
for charge storage. If the CF4 plasma reactive power increases to more than 50 W, the electric field
in the BO layer will be high enough to generate some hot holes that can potentially pass through
the TO layer (Figure 5d), contributing to the decrease in VFB shift shown in Figure 3d. Previously,
we have proposed that the hole injection from the gate into the Au-NPs can be obtained by using
the thick, stacked HfO2/Gd2O3/SiO2 oxide layers to prevent the injection of electrons from the
substrate under the positive gate bias [41]. However, the data retention characteristics of the memory
with Au and Gd2O3 bi-nanocrystals (BNCs) were not good enough (~30% at 104 s) because of the
serious interaction between the electrons and holes stored at the Gd2O3-nanocrystals (Gd2O3-NCs)
and Au-NPs, respectively.
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programming. Electrons and holes were injected from n-type Si substrate and Al gate, respectively,
for the Au-NP NVMs without and with low-damage CF4 plasma treatment on the BO layer.

3.4. Data Retention Behaviors

Figure 6a shows the data retention characteristics of the Au-NP NVMs with the low-damage CF4

plasma treatment on the BO layer. All samples were first programmed at 16 V to achieve a flat-band
voltage shift (∆VFB) of 1 V. The charge loss is defined by the formula [9]

Charge loss (%) =

(
Vp − Vr

Vp − V0

)
× 100% (3)

where V0 is the VFB of the fresh sample, Vp is the VFB of the sample being programmed, and Vr is the
VFB of the programmed sample measured after a certain retention time. In this figure, lower charge
loss is achieved in Au-NP NVMs with CF4 plasma treatment on the BO layer compared to those
without treatment. The reduced charge loss can be explained by the holes with high effective mass
stored in Au-NPs. With the increase of the CF4 plasma reactive power, the charge loss can be further
reduced to lower than 5% at 104 s, which is ascribed to the holes trapped at the interface between
the Au-NPs and the TO layer, as shown in Figure 5c. However, for the 50 W sample, an increase
in charge loss is observed, for which the plasma damage induced by the high reactive power is
responsible. To deeply understand the mechanism of the low charge loss of the CF4-plasma-treated
Au-NP NVMs, the data retention properties are evaluated at different programming voltages of the
w/o, 20 W, and 30 W samples, as shown in Figure 6b–d, respectively. The C-V curves of the w/o and
20 W samples at low and high programming voltages under data retention measurement are displayed
in Figure S7 of the Supplementary Materials. It can be observed that for the w/o sample, the charge
loss is still high, even at the programming voltage of 20 V, whereas for the 20 W sample, the charge
loss is significantly reduced with the increase in programming voltage due to the holes trapped at



Nanomaterials 2017, 7, 385 9 of 12

the interface between the Au-NPs and the TO layer by the high electric field [41], as illustrated in the
schematic energy band diagrams of the inset figures of Figure 6c. For the 30 W sample, because the
holes are already trapped at the interface between the Au-NPs and the TO layer by the low electric
field (Figure 5c), the charge loss remains low at high programming voltages, as shown in Figure 6d.

Nanomaterials 2017, 7, 385  9 of 12 

 

holes are already trapped at the interface between the Au-NPs and the TO layer by the low electric 
field (Figure 5c), the charge loss remains low at high programming voltages, as shown in Figure 6d.  

 
Figure 6. (a) Data retention characteristics of the Au-NP NVMs with low-damage CF4 plasma 
treatment on the BO layer. The data retention properties at different programming voltages of the 
w/o, 20 W, and 30 W samples are shown in (b), (c) and (d), respectively. Schematic energy band 
diagrams of the 20 W sample at low and high programming voltages were illustrated in the inset 
figure of (c). 

The charge storage mechanisms of the Au-NP NVMs with and without the low-damage CF4 
plasma treatment on the BO layer can be further confirmed by the temperature dependence of the 
charge loss behaviors, as shown in Figure 7. The w/o sample exhibits an obvious increase in charge 
loss when the measurement temperature increases from 25 to 85 °C (Figure 7a), implying that the 
electrons are stored in the Au-NPs. The thermionic emission of electrons in Au-NPs contributes to 
the significant dependence of temperature on charge loss. Furthermore, for the 20 W sample, a slight 
increase in charge loss is observed (Figure 7b), because the holes are stored in both the Au-NPs and 
at the interface between the Au-NPs and the TO layer. The holes trapped at the interface between the 
Au-NPs and the TO layer will lose through the TO layer by the tunneling leakage, reducing the 
dependence of temperature on charge loss. Conversely, a nearly negligible increase in charge loss is 
obtained for the 30 W and 50 W samples (Figure 7c,d), indicating that the holes are stored mainly at 
the interface between the Au-NPs and the TO layer. 
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and 30 W samples are shown in (b–d), respectively. Schematic energy band diagrams of the 20 W
sample at low and high programming voltages were illustrated in the inset figure of (c).

The charge storage mechanisms of the Au-NP NVMs with and without the low-damage CF4

plasma treatment on the BO layer can be further confirmed by the temperature dependence of the
charge loss behaviors, as shown in Figure 7. The w/o sample exhibits an obvious increase in charge
loss when the measurement temperature increases from 25 to 85 ◦C (Figure 7a), implying that the
electrons are stored in the Au-NPs. The thermionic emission of electrons in Au-NPs contributes to
the significant dependence of temperature on charge loss. Furthermore, for the 20 W sample, a slight
increase in charge loss is observed (Figure 7b), because the holes are stored in both the Au-NPs and
at the interface between the Au-NPs and the TO layer. The holes trapped at the interface between
the Au-NPs and the TO layer will lose through the TO layer by the tunneling leakage, reducing the
dependence of temperature on charge loss. Conversely, a nearly negligible increase in charge loss is
obtained for the 30 W and 50 W samples (Figure 7c,d), indicating that the holes are stored mainly at
the interface between the Au-NPs and the TO layer.
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4. Conclusions

In summary, the gate-injected Au-NP NVMs with low-damage CF4 plasma treatment on the BO
layer were proposed, which exhibit superior data retention properties. To examine the holes injected
from the Al gate of the CF4-plasma-treated memory devices, some material analysis techniques such
as SIMS, XPS, UPS, SEM, and HRTEM were performed. With the increase in the CF4 plasma reactive
power, more fluorine atoms were incorporated in the BO layer, leading to a higher electric field and
Fermi-level pinning of the Al gate towards the valence band edge of BO layer. Thus, more holes were
injected from the gate and trapped at the interface between the Au-NPs and the TO layer, contributing
to the superior data retention characteristics of the CF4-plasma-treated Au-NP NVMs for use in highly
reliable consumer electronics.
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SiO2 films (a) without and with low-damage CF4 plasma treatment of (b) 20 W, (c) 30 W, and (d) 50 W; Figure S7:
C-V characteristics of the w/o sample programmed at (a) 16 and (b) 20 V, respectively, and the 20 W sample
programmed at (c) 16 and (d) 20 V, respectively, at the retention time of 104 s.
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