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Abstract: The utilization and preparation of functional hybrid films for optical sensing applications and
membranes is of utmost importance. In this work, we report the convenient and scalable preparation
of self-crosslinking particle-based films derived by directed self-assembly of alkoxysilane-based
cross-linkers as part of a core-shell particle architecture. The synthesis of well-designed monodisperse
core-shell particles by emulsion polymerization is the basic prerequisite for subsequent particle
processing via the melt-shear organization technique. In more detail, the core particles consist of
polystyrene (PS) or poly(methyl methacrylate) (PMMA), while the comparably soft particle shell
consists of poly(ethyl acrylate) (PEA) and different alkoxysilane-based poly(methacrylate)s. For hybrid
film formation and convenient self-cross-linking, different alkyl groups at the siloxane moieties were
investigated in detail by solid-state Magic-Angle Spinning Nuclear Magnetic Resonance (MAS, NMR)
spectroscopy revealing different crosslinking capabilities, which strongly influence the properties of the
core or shell particle films with respect to transparency and iridescent reflection colors. Furthermore,
solid-state NMR spectroscopy and investigation of the thermal properties by differential scanning
calorimetry (DSC) measurements allow for insights into the cross-linking capabilities prior to and
after synthesis, as well as after the thermally and pressure-induced processing steps. Subsequently,
free-standing and self-crosslinked particle-based films featuring excellent particle order are obtained by
application of the melt-shear organization technique, as shown by microscopy (TEM, SEM).

Keywords: hybrid films; colloidal crystals; self-assembly; colloids; particle processing; emulsion
polymerization; cross-linking

1. Introduction

Artificial functional materials derived by self-assembly of tailored particles both reveal
fundamental insights into colloidal crystallization and access to organic, inorganic, or hybrid
colloidal films. Such highly interesting materials can feature fascinating optical, electrical, or magnetic
properties [1–5]. In general, colloidal crystals can be easily obtained by inexpensive and convenient
bottom-up approaches leading to materials with sufficient optical performance, i.e., iridescent reflection
colors caused by Bragg diffraction of visible light [6–8]. Moreover, such artificially generated colloidal
crystals can be equipped with so-called smart functionalities, i.e., stimuli-responsive polymers,
leading to reversibly remote-switchable polymer opals for a manifold of optical sensing applications.
Recent reviews within the field of switchable opal structures are given by, e.g., Ge et al. [9] or
other authors [10–13]. In general, the feasibility of hierarchically structured hybrid materials
led to the combination of a plethora of properties within this field [14–16]. Hierarchical colloidal
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architectures with tailored domain sizes have attracted attention because of their tremendous potential
for applications in fields of catalysis, separation, sensors, optics, and biomedicine [17–20]. One major
strategy for the preparation of hybrid particle-based films with ordered structures is polymer
templating, which is also referred to as soft templating. So-called polymer opals consist of rather
monodisperse submicroscopic particles arranged in a face-centered cubic (fcc) lattice. The particle order
can be accomplished in a simple fashion by various techniques of drying, deposition, or by spin coating
from the particle dispersions [5,6]. However, the scalable preparation of crack- and defect-free films
still remains challenging, as evidenced by the works of Aizenberg et al. [21,22], and the preparation
typically involves a multi-step procedure comprising colloidal crystallization, monomer infiltration,
and subsequent cross-linking steps [5,6,12]. An alternative approach for particle-based film formation
is the so-called melt-shear organization technique [23–25]. By applying moderate pressure to the tacky
mass of hard core–soft shell particles and while increasing the temperature, the hard core particles can
merge into the colloidal crystal structure inside a continuous matrix of soft shell material in one step.
Free-standing polymer opals with iridescent reflection colors can thus be produced. Moreover, for the
melt-shear organization, no dispersion medium or solvent for the particles is necessary. In the recent
past, this technique has been advantageously applied for the large-scale production of polymer opal
films and subsequent particle assembly by bending-induced oscillatory shearing (BIOS) [26]. However,
a subsequent cross-linking step is necessary in order to obtain stable opal films due to the following
reasons: It has to be mentioned that the uncured particle film—free of any cross-linking sites—is soft as
a rubber and behaves like a viscous liquid and therefore lacks robustness [27]. For further mechanical
improvements, subsequent cross-linking processes were applied after the melt-shear organization of
the core-shell particle films for stabilizing the matrix materials of the particle films. Exemplarily,
Viel et al. reported on a UV-induced cross-linking strategy by using benzophenone as radical
photo-cross-linker [28]. After this additional step, the final elastomeric opal films could be strained,
and the opal film deformation proved to be almost reversible for mechanochromic sensing applications.
Schäfer et al. developed a thermally induced cross-linking route as subsequent step after the melt-shear
organization process, which proved to be feasible for thicker particle films (above 200 µm) in order
to generate a homogeneous cross-linking density [23]. Additionally, the melt-shear organization
technique was used for the preparation of opal films consisting of inorganic particles and soft polymer
shell materials [29–31]. In order to avoid additional cross-linking steps after particle processing and to
overcome issues with cross-linking efficiencies for thicker films (>150 µm), self-cross-linking reactions
should be taken into consideration.

In the present study, three different siloxane-containing methacrylate monomers, i.e.,
3-methacryloxypropyltriethoxysilane (MPSEt), 3-methacryloxypropyltriisopropoxysilane (MPSIsoprop),
and 3-methacryloxypropyltris(methoxyethoxy)silane (MPSMeEt) are studied as soft-shell polymers for
hybrid film formation by application of the melt-shear organization technique. The cross-linking kinetics
and hybrid film formation are elucidated by investigating thermal properties of the core-shell particles,
variation of the processing parameters followed by scanning electron microscopy (SEM) of the obtained
films, and by solid-state NMR spectroscopy. The insights into the cross-linking kinetics and comparison
of the different hybrid particle architectures offer the possibility to produce hierarchically ordered hybrid
film materials in one processing step without use of further subsequent cross-linking strategies.

2. Experimentation

2.1. Materials

Methyl methacrylate (MMA), allyl methacrylate (ALMA) and styrene were obtained from
Fisher Scientific (Schwerte, Germany), ethyl acrylate (EA) from BASF SE (Ludwigshafen, Germany),
and Dowfax 2A1 from Dow Chemicals (Midland, MI, USA). The siloxane-containing methacrylates
were purchased from ABCR (Karlsruhe, Germany). All other chemicals were obtained from
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Sigma-Aldrich (Munich, Germany). The inhibitors were removed from the monomers by passing
through a basic alumina column. All other substances were used as received.

2.2. Synthesis of PMMA-co-ALMA and PS-co-ALMA Core Particles

The core particles were synthesized in a 1 L double-wall reactor equipped with a stirrer and
reflux condenser under argon atmosphere. A dispersion of 440 g water, 3.6 g MMA, 0.4 g ALMA,
and 50 mg sodium dodecylsulfate (SDS) was filled into the reactor for seed particles synthesis. For PS
particles, MMA was replaced by styrene and the amount of SDS was adjusted to 250 mg (300 mg SDS
for smaller-sized PS cores). The emulsion polymerization was initiated by the addition of 50 mg sodium
bisulfate, 150 mg sodium persulfate for PMMA particles synthesis (500 mg for PS particle synthesis),
and 50 mg sodium bisulfate, each dissolved in 5 mL of water and added in this order. After 15 min,
the monomer emulsion consisting of 170 mg SDS, 100 mg KOH, 120 mg Dowfax 2A1 72 g water,
50.4 g MMA, and 5.6 g ALMA was continuously added with a speed of 1.2 mL min−1 using a rotary
piston pump. For PS particle synthesis, the monomer emulsion consisted of 230 mg SDS, 200 mg KOH,
230 mg Dowfax 2A1, 90 g water, 70 g styrene, 7 g ALMA, and was continuously added with a speed of
1 mL min−1 utilizing a rotary piston pump Reglo-CPF digital, RH00 (Ismatec, Wertheim, Germany).

2.3. Particle Shell Formation by Copoylmerization of Alkoxysilane-Containing Methacrylates with
Ethyl Acrylate

Three different alkoxysilane-containing methacrylates were used for particle shell synthesis
for the PMMA core particles. For this purpose, in a 250 mL double-wall reactor equipped
with a stirrer and reflux condenser under argon atmosphere, the core particle dispersion was
added and buffered with 4 mL phosphate buffer (0.1 M) to pH 7. As initiator, 150 mg sodium
persulfate was added. After 15 min, the monomer emulsion consisting of 30 mg SDS, 30 mg
Dowfax 2A1, 5.82 g water, 180 mg phosphate buffer (0.1 M), and 5.15 g of the respective
alkoxy-silane monomers were continuously added with a speed of 0.27 mL min−1 utilizing
a rotary piston pump. As monomers, ethyl acrylate with 15 mol % of the alkoxysilane-containing
methacrylates 3-methacryloxypropyltriethoxysilane 1 (MPSEt), 3-methacryloxypropyl-triisopropoxysilane
2 (MPSIsoprop), and 3-methacryloxypropyltris(methoxyethoxy)silane 3 (MPSMeEt) were used.

For the shell synthesis of the two different PS particle batches, the procedure was nearly identical
as for the shell synthesis of the PMMA particles. Only the added monomer emulsion was modified,
which consisted of 45 mg SDS, 45 mg Dowfax 2A1, 6 g water, 4.79 g ethyl acrylate, 0.53 g MPSEt,
and 180 mg phosphate buffer (0.1 M). The ratio of cross-linker to monomer correlates to 3.7 mol %.

2.4. Melt-Shear Organization Procedure

For the preparation of the opal film, the hybrid core-shell particle mass was lyophilized and
750 mg of the obtained powder was enclosed between two polyethylene terephthalate (PET) foils.
The powder between the foils was inserted into a Collin laboratory press P200 P/M (Dr. Collin GmbH,
Ebersberg, Germany) and the particle films were prepared by using the melt-shear organization
technique at different temperatures, ranging from 115 ◦C to 140 ◦C, and pressures ranging from 140 bar
to 180 bar for 3 min.

2.5. Characterization

Transmission electron microscopy (TEM) measurements were carried out on a Zeiss EM109
(Oberkochen, Germany) electron microscope operating at 80 kV. The shown images were obtained
with a Gatan BioScan camera (Gatan, Pleasanton, CA, USA). For dynamic light scattering (DLS)
measurements, a Zetasizer ZS90 (Malvern Instruments, Malvern, UK) was used. Differential scanning
calorimetry (DSC) was performed with a Mettler Toledo DSC-1 (Columbus, OH, USA) with a
heating rate of 5 K min−1. For scanning electron microscopy (SEM), a FEI/Philips XL30 FEG
(Hillsboro, OR, USA) with accelerating voltages between 5 and 20 kV was used. The SEM samples
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were coated with gold for 100 s at 30 mA using a Quorum Q300T D (Laughton, UK) sputter coater.
For UV/Vis measurements, a vis-NIR fiber spectrophotometer USB 4000 (Ocean Optics, Dunedin,
FL, USA) with a deuterium/tungsten halogen lamp (HL-2000, Ocean Optics, Dunedin, FL, USA)
was used. All solid-state NMR spectra were measured on a Bruker Avance III HD 600 spectrometer
(Rheinstetten, Germany) employing a 4 mm broad band H/X probe. Spectra were recorded at 14 T,
corresponding to a frequency of 119.23 MHz for 29Si and 150.90 MHz for 13C, at 8 kHz and 10 kHz
spinning, respectively, at room temperature. Spectra were referenced to tetramethylsilane (TMS),
employing kaolinite (−92.5 ppm) for 29Si and adamantane (+38.5 ppm) for 13C as external standards.
The ramped CP-MAS sequence [32] was utilized with a contact time of 3.5 ms for 29Si and 5 ms for 13C.
The recycle delay was set to 4 s and tppm decoupling [33] employing a 15◦ phase jump, was applied
during data acquisition. 29Si and 13C static measurements were performed employing single pulse
excitation with a 30◦ pulse and a recycle delay of 4 s.

3. Results and Discussion

3.1. Synthesis Hybrid Particles with Alkoxysilane-Containing Methacrylates

Starved-feed emulsion polymerization was carried out for the preparation of monodisperse
hybrid core–shell particles. The chemical structure of the particles is given in Figure 1: poly(methyl
methacrylate) (PMMA) or polystyrene (PS) core particles having a comparably soft shell material
of copolymerized ethyl acrylate (EA) with different alkoxysilane-containing methacrylates, i.e.,
either 3-methacryloxypropyltriethoxysilane 1 (MPSEt), 3-methacryloxypropyltriisopropoxysilane 2
(MPSIsoprop), or 3-methacryloxypropyltris(methoxyethoxy)silane 3 (MPSMeEt).
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Figure 1. Particle architecture consisting of either P(MMA-co-ALMA) or P(S-co-ALMA) cores and
a shell of poly(ethyl acrylate) with different alkoxysilanes as comonomers, i.e., MPSEt 1, MPSIsoprop 2,
MPSMeEt 3.

Starting from the same core particle batch of PMMA, the hybrid shell was prepared with
an amount of 15 mol % of the respective alkoxysilane-containing methacrylate with EA. The calculated
amount of monomers (EA and alkoxysilane-methacrylate 1–3) was the same in order to maintain the
ratio between core and shell material. The adjustment of the core to shell ratio is one critical parameter
for the intended melt-shear organization: too little shell material will lead to a rather hard material
that is not capable of merging into the colloidal crystal structure during processing. A large amount
of shell material enables better flowing and thus processing ability of the particles, but it will cause
less order because of gradation of the particle stacks [26,29,34]. Therefore, an exact control over the
particle architecture is mandatory for the melt-shear organization. In order to determine the core–shell
ratio and the monodispersity of the particles, transmission electron microscopy (TEM) and dynamic
light scattering experiments (DLS) were carried out for each particle synthesis step. Exemplarily,
TEM images of the P(MMA-co-ALMA) core particles and P(MMA-co-ALMA)@P(EA-co-MPSEt)
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are given as Figure 2, while TEM images of all other samples are given as Figures S1–S4 in the
Supporting Information.

The TEM images in Figure 2 for PMMA-based particles (and Figures S1–S4 for PS-based
particles) prove the excellent control over the applied emulsion polymerization for the preparation of
monodisperse particles. A crucial aspect during emulsion polymerization was the control over the pH
value of the dispersion during the radical polymerization in order to avoid a self-crosslinking reaction
of the reactive siloxane moieties. For this purpose, a phosphate buffer was used during polymerization.
Another critical point to be mentioned is the applied drying protocol for the obtained particle mass
after agglomeration or precipitation: in first attempts, moderate thermal treatment for drying the
particle mass in an oven led—again—to cross-linking reactions, impeding the processing capabilities
of the particle mass. Therefore, lyophilization of the particle dispersion after synthesis was carried out.
Additionally to TEM investigations, the particle size was determined by DLS measurements (Figure 3).

The average particle sizes were determined to be 209 ± 14 nm for the core particles and
234 ± 13 nm for the MPSEt containing core–shell particles, as well as 244 ± 16 nm (MPSIsoprop)
and 230 ± 16 nm (MPSMeEt), respectively (additional DLS measurements for PS-based particles in
Figure S5). In summary, from the results derived by TEM and DLS measurements, it can be concluded
that the particle sizes were similar and hence comparable to each other. This will allow for direct
comparison of the different alkoxy-silane methacrylates used with respect to processing and hybrid
film formation, which will be described in detail in the following sections.
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3.2. Investigation of the Cross-Linking Capabilities of the Poly(alkoxysilane-methacrylate)s

As both the features of the core and shell material and the cross-linking behavior of the
different alkoxysilane-methacrylates are very important for processing of the particles by melt-shear
organization, differential scanning calorimetry (DSC) measurements were carried out. Besides the
determination of the corresponding glass transition temperatures, Tg, exothermic cross-linking
reactions could be elucidated. At higher temperatures, however, the incipient degradation signals of
the PMMA core overlapped with the exothermic cross-linking reaction, as shown in the corresponding
thermogram (Figure S6). In order to further study the heat of cross-linking reaction, PS particles as
core material were used for DSC measurements in order to unravel the cross-linking reactions of the
hybrid shell materials. The intrinsically higher thermal stability of the decorated PS particle system as
well as the heat of cross-linking were investigated in the DSC thermogram in Figure 4.
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Comparing the first (black) and the second (red) cycle of DSC measurements for the lyophilized
powder revealed significant exothermic signals for the first run, which can be assigned to the
cross-linking reaction. It is worthy to mention that the cross-linking reaction of the siloxanes seemed
to be already complete after the first DSC measurement, as there were no exothermic peaks for
the second DSC run. The amount of siloxane-based cross-linker for the PS-core model system was
3.7 mol %. Therefore, a shift of the Tg before and after thermal cross-linking reaction could be observed,
i.e., from −12 ◦C to 5 ◦C. This finding is within the expectation for the still soft, but after thermal
treatment slightly cross-linked matrix material. Compared to this, the PMMA core particle film feature
a high amount of siloxane cross-linkers of 15 mol %. Therefore, the Tg of the siloxane-containing
segments completely disappeared after thermal treatmenst up to 240 ◦C due to the loss of segmental
dynamics for the matrix material (Figure S6). One additional important insight into the system was that
only the lyophilization of the particle dispersion provided a thermally cross-linkable material. For DSC
measurements of oven-tried particle samples (12 h, 40 ◦C), no exothermic peaks could be observed in
the corresponding thermograms (not shown). As a result, the lyophilization step as method itself is
therefore capable of efficiently inhibiting such siloxane crosslinking reactions.

In order to investigate the three different alkoxysilane-methacrylates MPSEt, MPSIsoprop,
and MPSMeEt cross-linked siloxane sites after lyophilization, solid-state NMR measurements were
performed. While TEM and DLS measurements allow for the identification of the shape and the average
size of the core and core–shell particles, the analysis of the cross-linking sites of siloxane moieties
necessitates a characterization at the molecular level. In principle, vibrational spectroscopy techniques
such as IR and Raman spectroscopy allow such analysis. However, these techniques suffer from
resolution, which makes their interpretation challenging, especially when complex hybrid material
containing inorganic and organic components are involved. As an alternative to solve this structural
puzzle, solid-state NMR has been evaluated to characterize inorganic-organic hybrid materials, and the
interactions of organic components with inorganic ones [35–45]. This technique has the advantage that
the nuclei of the inorganic component, i.e., 29Si, and the nuclei of the organic component, i.e., 13C, have
specific chemical shift ranges that allow a precise analysis of their chemical environment and thus
the clear identification of functional groups and their connectivity. Many examples of silica hybrid
materials containing organic polymers are found in the literature [30,46–52], where the potential of
29Si and 13C solid-state NMR techniques were demonstrated to obtain detailed structural information.
Figure 5 shows the 29Si static spectra of the three linker systems and the corresponding 29Si CP MAS
spectra of the lyophilized powder samples for comparison. All 29Si CP MAS spectra show typical
signals in the range of Tn groups (n = 0, 1, 2, 3) (between ca. −40 and −75 ppm) where n represents the
number of –O–Si– bonds at the silicon atom of the linker molecule. This number n is a measure for the
degree of cross-linking via silicon of the linker molecules [53,54]. With increasing n, the cross-linking
character via silica increases. Possible structures for the MPSEt linker system assigning Tn groups are
shown in Figure S7. Although 29Si CP MAS NMR is not quantitative, the progress of cross-linking
can be approximated by analyzing the spectra line shape. Comparing the Tn group patterns for the
different linker systems in Figure 5, it is clearly visible that in the lyophilization step the cross-linking
degree varies in the order MPSEt < MPSIsoprop < MPSMeEt. This means that MPSMeEt has the
highest probability to cross-link in the lyophilization step.

Interestingly, the 29Si CP MAS spectra also show signals in the range of Qn groups (n = 1, 2, 3)
(between ca. −80 and −105 ppm) [55] illustrated in Figure S7 which refer to “bulk silica”—that is,
derived from Si(OH)4 by cross-linking. The origin of this “bulk silica” is not completely clear but
it can be assumed that its formation refers to side products that appeared in the synthesis of the
linker systems. For the sake of completeness, the comparison of 13C static spectra of the three linker
systems and the corresponding 13C CP MAS spectra of the lyophilized powder samples are shown
in Figures S8–S10. These spectra in principle provide information on the linking moieties of the
organic component. Comparison of the three linker systems reveals no significant differences in
the line shape of the 13C CP MAS spectra obtained for the lyophilized powder samples. This is not
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very surprising, since these spectra are dominated by 13C signals referring to the polymer core of the
particles. According to the results from DLS measurements (see above) the diameter of the shell is only
10% of the diameter of the particles. Thus, linker-dependent differences of the shell structure of the
particles are not clearly visible in the 13C CP MAS spectra.
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Figure 5. 29Si static spectra of the free linkers MPSEt (a), MPSIsoprop (c) and MPSMeEt (e),
and corresponding 29Si CP MAS spectra of the lyophilized powder samples prepared with these
linkers (b,d,f). Note: the broad signal in the high field region of the static spectra refers to the rotor
insert that was employed to handle the liquid linkers for static measurements with the solid-state NMR
probe. The spectra of the lyophilized powder samples were deconvoluted to ease the signal assignment
to different structural elements.

3.3. Hybrid Film Formation by Melt-Shear Organization

As concluded from the results in the previous section, the particle dispersion obtained after emulsion
polymerization had to be lyophilized for the ensuing processing steps. The obtained particle powder
was subjected to the melt-shear organization. For this purpose, the particle powder was transferred
between the plates of a moderately hot press sandwiched with a PET foil (see Experimentation Section).
The optimized processing conditions to obtain homogeneous hybrid particle films were determined to
be 140 ◦C processing temperature and 180 bar pressure for 180 s. In the case of P(MMA-co-ALMA)
core particles, the particle films feature a high transparency because of the low refractive index
(cf. nPMMA = 1.4906; nPEA = 1.4685) contrast between the core and the hybrid poly(methacrylate) shell
material. The influence of the different siloxane-containing poly(methacrylate) copolymers with PEA
were investigated with respect to their optical features (transparency, size of molten transparent film).
The obtained particle films having the three different siloxane-polymethacrylates incorporated in the shell
after melt-shear organization are displayed in Figure 6.

From the optical impressions in Figure 6, the quality of the obtained particle films can be
evaluated by comparing the transparency of the inner area of the film and the width of the white
areas surrounding the film. The white particle powder surrounding the transparent inner film area
indicated the incapacity of particle merging during the melt-shear organization. In brief, the best result
was obtained for the hybrid particle film having 3-methacryloxypropyltriethoxysilane (MPSEt) as
part of the soft shell material. The obtained particle films (Figure 6a,b) clearly exhibited the smallest
white border and additionally featured the highest film transparency. The other films containing the
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alkoxy-silane poly(methacrylates) MPSIsoprop (c) and MPSMeEt (d) featured a significantly larger
white powder area as well as a decreased transparency of the inner particle film area.

As further proof for the ability of 3-methacryloxypropyltriethoxysilane-containing (MPSEt) shell
particles, these findings were transferred to core-shell particles with P(S-co-ALMA) cores having
a shell of P(EA-co-MPSEt). The resulting hybrid particle films after melt-shear organization are
shown in Figure 7.
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Figure 6. Photos for the particle-based films obtained after melt-shear organization at 140 ◦C,
180 bar, for 180 s. In detail, the core–shell particles consisted of a P(MMA-co-ALMA) core and
a shell material consisting of the investigated siloxane-containing polymers, i.e., P(EA-co-MPSEt)
(a,b), P(EA-co-MPSIsoprop) (c), and P(EA-co-MPSMeEt) (d). The scale bar corresponds to 1 cm.
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Compared to the particle films derived from polymethacrylate core-shell particles, PS has higher
refractive index (nPS = 1.5916) causing a higher net refractive index contrast between the shell
and the core material in the processed particle film. Consequently, the obtained hybrid particle
films featured a weak iridescent reflection color (Figure 7). As a first result after application of
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the melt-shear organization technique, the optical impressions clearly pointed out that MPSEt is
a suitable monomer for enabling the preparation of a hybrid and meltable shell for PS or PMMA
core particles. This approach led to the formation of free-standing hybrid particles films with high
transparency (in the case of PMMA as core material) or iridescent reflection color (in the case of PS
as core material) after particle processing. The cross-linking reactions of the hybrid particle films
after particle processing based on P(S-co-ALMA)@P(EA-co-MPSEt) will be elucidated in the following
section, while morphological aspects and film properties will be investigated by SEM in Section 3.5.

3.4. Investigation of the Cross-Linked Siloxane Moieties after Film Formation

For investigation of the cross-linked sites after melt-shear organization of P(S-co-ALMA)@P(EA-
co-MPSEt) particles, DSC measurements were performed from the obtained film samples. Comparison
of the corresponding DSC thermograms are given in Figure 8. There, the lyophilized powder of
P(S-co-ALMA)@P(EA-co-MPSEt) and the hybrid particle film after melt-shear organization are shown
giving additional insights into the cross-linking state of the hybrid materials.Nanomaterials 2017, 7, 390  10 of 15 
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Figure 8. DSC thermograms of P(S-co-ALMA)@P(EA-co-MPSEt) lyophilized particle powder in
comparison with the hybrid particle film after melt-shear organization. DSC measurements were
performed with a heating rate of 5 K min−1 in nitrogen atmosphere.

As explained in Section 3.2, the cross-linking reaction of the lyophilized powder revealed
exothermic peaks because of the cross-linking reaction during the DSC measurements in the
temperature range between 140 ◦C and 180 ◦C. The comparison of the results for the pristine
particle powder with the results for the processed particles after melt-shear organization revealed
a significant change for the intensity of the exothermic peaks. The decreasing signal intensities for
the hybrid film materials compared to the particle material clearly pointed towards a partial in-situ
cross-linking during particle processing. However, by comparing the first and second cycle of the
DSC measurements, the hybrid particle film after melt-shearing clearly indicated that the siloxane
cross-linking reaction was still incomplete after this short time of particle processing (3 min).

As solid-state NMR spectroscopy was the method of choice for investigating the cross-linking
capabilities at a molecular level, an additional hybrid film sample was prepared by prolonged thermal
treatment at 180 ◦C for 4 h. The results of the 29Si CP MAS measurements for the lyophilized sample,
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the film sample and the film sample after additional heat treatment are shown in Figure 9 for the
samples based on the MPSEt linker system.
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Figure 9. 29Si CP MAS spectra of samples based on the MPSEt linker system in three different states:
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As clearly visible in Figure 9, T0 groups obtained in the lyophilized sample (Figure 9a) have
disappeared in the hybrid film sample (Figure 9b) while T1, T2, and T3 groups have appeared in this
sample. This clearly indicates the induced cross-linking via silica during formation of the hybrid
film, as described above for the lyophilized samples. Finally, after heat treatment of the hybrid film
(Figure 9c), also the signal of the T1 group has vanished while the signal of the T3 group increased
in intensity. This observation is in line with the proceeding cross-linking, which is induced by heat
treatment. Similarly, also for the MPSIsoprop- and MPSMeEt-based systems, the hybrid film as
well as the hybrid film after heat treatment were investigated by 29Si CP MAS NMR, as shown
in Figures S11 and S12. Also for both these linker systems, the change of the Tn groups indicates
a proceeding of the cross-linking, however this process starts at a higher progress of cross-linking
compared to the MPSEt linker system, which is most probably related to different hydrolysis kinetics
of the linker molecules.

3.5. Morphological Studies on the Hybrid Particle Films

As mentioned in the introduction, core-shell particle processing by using the melt-shear
organization enables the possibility to create hybrid particle films without the necessity of a dispersion
medium for the particles. As a major drawback of previous investigations for core–shell particle
processing by this method, subsequent cross-linking strategies had to be applied after film formation,
i.e., either by the application of UV-induced cross-linking chemistry or thermal treatment [23,24,56–59].
In all cases, cross-linking moieties had to be introduced by extrusion of the core-shell particles mass
in order to assure a homogeneous mixing of the cross-linking species. Here, we present a route
for avoiding the additional steps by introducing self-cross-linkable siloxane moieties, which enable
cross-linking reactions in the last particle processing step based on a novel particle architecture. Finally,
the obtained hybrid particle films were investigated by SEM measurements. In Figure 10, the surface
and cross-section of obtained hybrid particle films consisting of P(S-co-ALMA)@P(EA-co-MPSEt)
core–shell particles processed at 140 ◦C are given. Additional SEM images of PMMA-based films with
the three different cross-linkers are displayed in Figures S13–S15.
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Figure 10. SEM images of the surface (a) and cross-section (b) of the P(S-co-ALMA)@P(EA-co-MPSEt)
film after processing at 140 ◦C. The scale bars correspond to 1 µm.

The SEM images of the topography of the hybrid particle film revealed that the material was
not ordered throughout the whole material. Some parts of the surface exhibited a sufficient particle
order, while some areas featured a significant amount of defects. As a result of the previous sections,
particle processing at 140 ◦C, i.e., in the temperature range of siloxane-cross-linking, led to less ordered
particle films. It is assumed that cross-linking reaction competes with particle merging, impeding the
preparation of ordered particle films.

Therefore, the same core–shell particle material was processed at 115 ◦C, i.e., significantly below
the determined cross-linking reaction temperature for the alkoxy-silane polymethacrylates shell as
determined by DSC measurements. For comparison to the particle films processed at 140 ◦C (Figure 10),
the hybrid particle film processed at 115 ◦C is given in Figure 11. As a result, by processing of the
core–shell particles below the identified cross-linking temperature, hybrid core–shell particle films
with an increased particle order were obtained. An estimation of the particle to particle distances out
of the SEM images given in Figures 10 and 11 revealed a value of about 198 ± 15 nm.
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Figure 11. SEM images of the surface from the P(S-co-ALMA)@P(EA-co-MPSEt) film after processing at
115 ◦C below the crosslinking temperature.

4. Conclusions

In the present study, the capability of a novel hybrid cross-linking strategy for the
preparation of colloidal crystal films from tailored core-shell particles was examined. The controlled
synthesis of core-shell particles was accomplished by starved-feed emulsion polymerization for
different alkoxysilane cross-linkers, i.e., 3-methacryloxypropyltriethoxysilane (MPSEt), 3-methacrylo
xypropyl-triisopropoxysilane (MPSIsoprop), and 3-methacryloxypropyl-tris(methoxyethoxy)silane
(MPSMeEt) in the shell of the particle architecture. The hybrid core-shell particles were studied by
DLS measurements and TEM, proving the success and excellent control over the polymerization.
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After lyophilization of the obtained particle dispersions, the particle powder was processed by the
melt-shear organization process and colloidal crystal films were obtained in one step. As proven by
DSC and MAS NMR experiments, the cross-linking reaction was self-induced during this processing
step at around 115 ◦C. Further thermal treatment increased the crosslinking density within the material.
The shell composition of ethyl acrylate and 3-methacryloxypropyltriethoxysilane revealed the optimum
results with respect to film formation, processing capabilities, as well as intrinsic order of the underlying
particle domains. Finally, the hard core material was varied from PMMA to PS in order to influence
the refractive index contrast and hence to gain access to hybrid particle films with iridescent colors in
one step. The herein reported insights into self-crosslinking properties and convenient particle order
strategy will be extended to functional polymer systems. This will pave the way to applications in the
fields of smart stimuli-responsive colloidal crystal films as optical sensors.

Supplementary Materials: The following are available online at www.mdpi.com/2079-4991/7/11/390/s1,
Figures S1–S4: TEM images of the synthesized core-shell particles; Figure S5: DLS measurement of P(S-co-ALMA)
particles and core-shell particles; Figure S6: DSC measurement of P(MMA-co-ALMA)@P(EA-co-MPSEt)
lyophilized particle powder; Figure S7: Structural possibilities of cross-linking revealed by 29Si solid-state
NMR; Figures S8–S10: 13C static NMR spectra of the neat linkers with signal assignment, and comparison with
13C CP MAS spectra of lyophilized powder samples; Figures S11 and S12: 29Si CP MAS spectra of MPSIsoprop-
and MPSMeEt-based samples; Figures S13–S15: SEM images of the films from the P(MMA-co-ALMA) particles
with different alkoxysilanes.
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