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Abstract: Here, we have reviewed some typical plasmonic structures based on Archimedes’ spiral
(AS) architectures, which can produce polarization-sensitive focusing phenomenon and generate
plasmonic vortices (PVs) carrying controllable orbital angular momentum (OAM) because of the
relation between the incident polarized states and the chiralities of the spiral structures. These features
can be used to analyze different circular polarization states, which has been one of the rapidly
developing researching topics in nanophotonics in recent years. Many investigations demonstrate
that the multifunctional spiral-based plasmonic structures are excellent choices for chiral selection
and generating the transmitted field with well-defined OAM. The circular polarization extinction
ratio, as an evaluation criterion for the polarization selectivity of a designed structure, could be
effectively improved by properly modulating the parameters of spiral structures. Such functional
spiral plasmonic nanostructures are promising for applications in analyzing circular polarization
light, full Stokes vector polarimetric sensors, near-field imaging, and so on.

Keywords: surface plasmon polaritons; circular polarization (CP); archimedes’ spiral structures;
orbital angular momentum (OAM)

1. Introduction

Polarization, as one of the basic properties of the light, is widely used in modern sensor systems [1],
by which the important information of reflecting objects can be obtained and recognized because there
are different polarization characteristics for different objects. Additionally, this property can be also
employed in other applications, including optical communications [2], imaging polarimetry [3] and
microscopy [4]. Investigations of acquiring the linear polarization state have been performed very well
from the visible [5,6] to infrared range [7]. In contrast, it is still a challenge to directly detect and analyze
the circular polarization state, where a quarter wave plate and a linear polarizer are simultaneously
needed. However, the utilization of bulky optical devices hinders the miniaturization of integrated optical
system [8,9]. The emerged nano-scale metallic structures, which produce a strongly polarization-dependent
optical response, can be a promising alternative for obtaining polarization information.

Such Archimedes’ spiral plasmonic structures can be used as the circular polarization analyzer
for replacing a quarter wave plate combined with a linear polarizer, which will offer the possibility for
potentially miniature integration. At an early time, the Archimedes’ spiral configurations served as spiral
antennas due to the broadband characteristics as circularly-polarized radiators [10–13], which can also
provide a new idea for the underlying polarization-dependent effect. In recent years, more attention has
been paid to the Archimedes’ spiral structure with regard to its functionality for circular polarization
analysis and generating arbitrary orbital angular momentum (OAM) under illuminations of circular
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polarization light (CPL). The angular momentum of an optical beam contains the intrinsic component of
the spin angular momentum (SAM), associated with the handedness of circular polarizations, and the
extrinsic component of the OAM originating from the spiral phase profile of the beam around the axis of
propagation. These spiral structures have brought about extensive investigations for optical applications
in polarization selection, polarization conversion, plasmonic focusing and selective trapping [14–20].

In this review, we firstly review several nanostructures based on Archimedes’ spiral, including the
pure single-turn Archimedes’ spiral slit (ASS), multiple-turn ASS, a hybrid spiral plasmonic lens,
a concentric annular groove surrounded by ASS, Archimedes’ spiral gratings (ASG) combined with
ASS, a metal-insulator-metal (MIM) waveguide combined with ASS, the aberrance of ASS, and so on,
which can realize the functions of selecting and analyzing the polarization states of CPL incidences.
These nanostructures have distinct superiority in miniaturization and analyzing the CPL incidences
with high efficiency. In addition, they can generate the optical vortex light carrying well-defined OAM.
The construction of double spiral gratings with central hole dynamically switches the incident CPL into
the beams with different OAMs due to the extra OAM originating from the spiral geometry structure.
The introduction of the symmetric broken Archimedes’ spiral geometry structure supplies the opportunity
to nano-scale optical elements for sensing applications and convenient optical integration for measuring
full Stokes-vectors of the polarization information.

2. The Polarization-Sensitive Mechanism

The schematic diagram of a single-turn left-handed ASS in the cylindrical coordinates is illustrated
in Figure 1, and its geometry can be described in a simple algebraic form. The geometric design of the
ASS can also be called the plasmonic vortex lens (PVL). The distance r from the center of the PVL to
the slit with the azimuthal angle ϕ is given by r = r0 − Λ × ϕ/2
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where r0 is the initial radius of the
PVL, and Λ is the wavelength of surface plasmon polaritons (SPPs) [21,22].
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Figure 1. Schematic diagram of a single-turn left-handed Archimedes’ spiral slit (ASS) etched though a
thin gold film.

The mechanisms of polarization-sensitive focusing and generating OAM for the ASS have been
exploited adequately [23–27]. In particular, the first study on the chiral surface plasmon induced by
the ASS was reported in 2006 [25], in which the chirality of the system is defined by the incident CPL
associated with the incident topological charges and the rotating directions of the incident CPL along
its propagating directions, as well as the ASS associated with the order of the structural azimuthal
variation. The CPL is considered to carry the SAM of σ = si
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[26]. The generated plasmonic vortex can be characterized by topological charge jpv whose
formula [28] can be expressed by:

jpv = m + li + si (1)

where m is a parameter denoting the chirality of the PVL and si and li represent the SAM and OAM of the
incident photons. Owing to the geometric asymmetry, such a spiral structure can provide extra phase
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compensation. The phase compensation mechanisms of the spiral structure under different incidences are
illustrated in Figure 2. Figure 2a corresponds to the incident case of radially-polarized light, and Figure 2b,c
corresponds to the CPL incidences with different chiralities respectively for the proposed left-handed
ASS. When the radially-polarized light or CPL illuminates the spiral plasmonic structure, the entire
beam is in transverse magnetic (TM) polarization with respect to the slit wall, enabling SPPs excitation
with initial phases from all directions. The colored arrows indicate the propagating directions and the
phase difference of the generated SPP waves. As shown in Figure 2a, owing to the non-chirality of the
radially-polarized light, the phase compensation is only provided by the geometric phase from the ASS
whose chirality is −1. For the CPL incidence, there is no OAM, so li = 0. Actually, the interaction between
the incident light and the anisotropic (inhomogeneous) nanostructure is the superposition of the SAM, the
OAM and the ASS chirality on the SPPs’ interference. When the CPL carrying proper SAM illuminates
the ASS, the ASS can act as a converter from the SAM to OAM [29,30]. When the rotation direction of
the spiral structure is the same as that of polarized incident light shown in the Figure 2b (namely, the
spiral structure and the incident light have the same chirality), the excited SPP wave carries the phase
including the initial phase from the CPL and the geometric phase determined by the radius mismatch.
In this case, the SPP waves reach the center of the ASS with opposite phases and interfere destructively,
which will form the Bessel beam with a topological charge of jpv = 2. While the RCP incident case is
given in Figure 2c, the SPP waves that arrive at the center of PVL have the same phase and then interfere
constructively, which will form the Bessel beam with a topological charge of jpv = 0. Thus, the generated
beams for incident light with opposite chirality have different topological charges and obviously different
field distributions.
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Figure 2. Schematic diagram of the phase of the generated surface plasmon polariton (SPP) wave
at the virtual contour with the dashed black line inside the left-handed ASS by: (a) radial polarized
light; (b) left circular polarization (LCP) incidence; the topological charge of the SPP vortex is jpv = 2;
(c) right circular polarization (RCP) incidence; the topological charge of the SPP vortex is jpv = 0.
Reproduced with permission from [28]. Copyright Springer, 2015.

The above-mentioned relationship can be denoted by the angular momentum conservation law and
the dominant vertical electric field of the SPP wave at the concentric position of the PVL, which can be
simply expressed by the Bessel function as:

Ez(r, ϕ, z) ∝ E0 exp(ikzz) exp(i(si + m)ϕ)J(si+m)(kρr) (2)

where kρ and kz denote the wavenumber radial to the center axis and perpendicular to the metal plate,
respectively, (r, ϕ) is the polar coordinate corresponding to the Cartesian coordinate(x,y).

In general, the transmitted intensities of the ASS can be simulated by finite-different time-domain
(FDTD: FDTD Solutions) or the finite element method (FEM: COMSOL Multiphysics) with the proper
boundary conditions [28]. In experiments, the different transmitted intensities’ distributions can be
detected by a metallic apertured near-field scanning optical microscope (NSOM) fiber probe system [31].
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3. Different Structural Constructions

3.1. Pure Archimedes’ Spiral Plasmonic Lens

The single-turn Archimedes’ spiral plasmonic lens was designed and investigated as a miniature
circular polarization analyzer in 2009 by Q. Zhan [31,32]. The schematic diagram of a single-turn
left-handed Archimedes’ spiral plasmonic lens under CPL illumination is illustrated in Figure 3,
in which the width of spiral slit is set as 200 nm. The spiral constant of r0 in the above algebraic
formula was set as r0 = 2Λ, and the incident wavelength was chosen to be 808 nm.
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Figure 3. Schematic diagram of a single-turn left-handed Archimedes’ spiral plasmonic structure
with CPL illumination. A single-turn left handed spiral (LHS) slit was etched through the gold film,
which was deposited on the glass substrate. Reproduced with permission [31]. Copyright American
Chemical Society, 2010.

Such a spiral plasmonic lens has been investigated analytically and experimentally for its
sensitivity to the incident CPL polarizations. With increasing radius of the spiral slit, the structure can
generate a phase shift to the propagating SPP wave, which will finally adjust the phase of the SPP
wave at the structural center. Hence, such a miniature geometry structure processes the feature of
focusing the CPL with a given handedness into a confined spot while defocusing the CPL with the
other handedness into a donut-shaped point, which can be used for selecting the polarization states of
CPL incidences. Besides, for this type of spiral plasmonic lens, there is no need to adjust the central
alignment (axially symmetric structures [33–36] required to align the center of the circularly-polarized
beam and the center of the plasmonic lens), which will broaden the real applications in parallel
imaging [37].

The near-field intensity distributions are shown in Figure 4a,b for left-handed ASS under CPL
illuminations, which are measured by a metallic apertured near-field scanning optical microscope (NSOM)
fiber probe. The measured results agree well with the theoretical analysis as shown in Figure 4c,d, except for
a dark center intensity distribution under RCP illumination as shown in Figure 4a because the metallic
apertured NSOM fiber probe is more sensitive to transversal components [38,39]. However, such an
experimental phenomenon does not contradict a confined spot in theoretical analysis since the peak
detected signal of the NSOM fiber probe in the focus region under RCP incidence is still two-times higher
than that under LCP light incidence.

Such a symmetry broken structure of the spiral slit lens can be easily fabricated into gold film and
selectively focus LCP incidence and RCP incidence into spatially-separated fields. By means of NSOM or
two-photon fluorescence microscopy [40], the surface intensity distributions can be detected. The generated
SPPs propagating toward the center of the plasmonic lens interfere constructively with the same phase
or destructively with the opposite phase, which led to a zeroth-order evanescent field distribution with a
central peak or a donut-shaped second-order evanescent field distribution, respectively.

Both the experimental and analytical results of surface intensity distributions under RCP and LCP
incidences match well with the simulations [32]. By adjusting the structure parameters of PVL and
incident wavelength, the optical field can be focused into the far-field region, which is demonstrated by
finite-difference time-domain simulation and experiments [41]. In this work, the r0 of the single-turn
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ASS is set to be 2 µm, and the free space wavelength is chosen to be 405 nm. A tightly focused spot
with the size of 330 nm nearly at 3.5 µm from the metal surface can be obtained, when the structural
chirality is opposite the chirality of the CPL incidence. This focusing enhancement in the far-field
region is because of the short wavelength [42,43] and the constructive interference of the SPP wave
at the center of the plasmonic lens. These far-field properties make it possible to probe the signal of
sample in the far-field, therefore taking the place of conventional near-field optical devices. which
suffer from a very short working distance.Nanomaterials 2017, 7, 405  5 of 22 

 

 
Figure 4. Measured near-field scanning optical microscope (NSOM) images at the air/gold  
interface (a,b); Reproduced with permission from [31], Copyright American Chemical Society, 2010. 
Analytical calculation surface intensity distribution (c,d); Reproduced with permission from [32], 
Copyright Optical Society of America, 2009. For an LHS lens structure under (a,c) RCP illumination 
and (b,d) LCP illumination. 

Both the experimental and analytical results of surface intensity distributions under RCP and 
LCP incidences match well with the simulations [32]. By adjusting the structure parameters of PVL 
and incident wavelength, the optical field can be focused into the far-field region, which is 
demonstrated by finite-difference time-domain simulation and experiments [41]. In this work, the r0 
of the single-turn ASS is set to be 2 μm, and the free space wavelength is chosen to be 405 nm. A 
tightly focused spot with the size of 330 nm nearly at 3.5 μm from the metal surface can be obtained, 
when the structural chirality is opposite the chirality of the CPL incidence. This focusing 
enhancement in the far-field region is because of the short wavelength [42,43] and the constructive 
interference of the SPP wave at the center of the plasmonic lens. These far-field properties make it 
possible to probe the signal of sample in the far-field, therefore taking the place of conventional  
near-field optical devices. which suffer from a very short working distance. 

3.2. Multiple-Turn Spiral Slit 

After the single turn spiral slit was investigated, the performance of multiple-turn ASS shown 
in Figure 5 was reported in 2011 [44]. Based on the same phase matching theory, such a 
multiple-turn spiral structure works in a more effective and practical way for the application of 
plasmonic lens because the increasing turns will improve the coupling effects of the generated SPP 
wave.  

The schematic diagram of the left-handed five-turn spiral slit etched through 300-nm silver 
film as a plasmonic lens is shown in Figure 5a. The RCP illuminates along the negative z-coordinate 
on the structure with the wavelength of 660 nm as depicted in Figure 5b. Figure 5c illustrates the 
phase retardations of the generated SPP wave along the propagation direction with colorful arrows, 
which means that the excited SPP wave carrying the initial phase at the ASS experiences phase 
retardations proportional to the distance from the slit to the center when it propagates from the slit 
to the center of the ASS, as we analyze above. Additionally, they will keep the same phase once 
they reach the center of the ASS and finally lead to a constructive interference pattern. 

Figure 4. Measured near-field scanning optical microscope (NSOM) images at the air/gold interface (a,b);
Reproduced with permission from [31], Copyright American Chemical Society, 2010. Analytical calculation
surface intensity distribution (c,d); Reproduced with permission from [32], Copyright Optical Society of
America, 2009. For an LHS lens structure under (a,c) RCP illumination and (b,d) LCP illumination.

3.2. Multiple-Turn Spiral Slit

After the single turn spiral slit was investigated, the performance of multiple-turn ASS shown in
Figure 5 was reported in 2011 [44]. Based on the same phase matching theory, such a multiple-turn
spiral structure works in a more effective and practical way for the application of plasmonic lens
because the increasing turns will improve the coupling effects of the generated SPP wave.

The schematic diagram of the left-handed five-turn spiral slit etched through 300-nm silver film
as a plasmonic lens is shown in Figure 5a. The RCP illuminates along the negative z-coordinate on
the structure with the wavelength of 660 nm as depicted in Figure 5b. Figure 5c illustrates the phase
retardations of the generated SPP wave along the propagation direction with colorful arrows, which
means that the excited SPP wave carrying the initial phase at the ASS experiences phase retardations
proportional to the distance from the slit to the center when it propagates from the slit to the center of
the ASS, as we analyze above. Additionally, they will keep the same phase once they reach the center
of the ASS and finally lead to a constructive interference pattern.

The FDTD simulation results for such multiple-turn ASS demonstrate its advantages for
generating a high quality, zero-order evanescent Bessel beam and relative high focusing depth of the
focus spot under RCP illumination. While under the LCP incidence, a dark center will be obtained,
as expected. Thus, such multiple-turn ASS will be quite useful in detecting the polarization characters
of the incident CPL. Nevertheless, a fact should be noted that the intensity will reach the maximum
when the turns are increased to be five owing to the limitation of the propagating length of the SPP
wave. Such a multiple-turn ASS can find potential applications for focusing beams, intensity actuating,
CPL polarization analysis, and so on.
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Figure 5. (a) Schematic diagram of left-handed multiple-turn plasmonic lens; (b) RCP light at a
wavelength of 660 nm illuminates along the negative z-coordinate (c) schematic diagram of the relative
phase of surface plasmon waves excited by the spiral slit under RCP illumination. The different color
arrows represent the different phases’ increment of the electric field Ez. Reproduced with permission
from [44]. Copyright Springer, 2011.

3.3. Hybrid Spiral Plasmonic Lens

The ASS mentioned above can only couple the radially-polarized component of
circularly-polarized incidence into SPP waves. On the base of the single-turn ASS, a hybrid spiral
plasmonic lens has been further proposed for enhancing the coupling efficiency [45,46] (as shown
in Figure 6). It combines a single-turn ASS with a single-turn arranged triangular aperture array,
coupling both the radial and the azimuthal polarization components of CPL. The experimental and
numerical results verify the expectations of the design very well. As shown in Figure 6a, the spiral
arrangement of 32 isosceles triangular apertures etched into a 150-nm gold film can couple both the
radial and the azimuthal polarization components of CPL [47]. When the azimuthal component is
incident to the triangular apertures’ array, constructive focusing can be achieved owing to the in-phase
surface plasmons at the two equal sides and adjacent aperture. When the radial component is incident
to the triangular aperture array, destructive focusing will be achieved owing to the out-of-phase
surface plasmons at the two equal sides and adjacent aperture. Such a left-handed spiral triangle
lens can focus the RCP and LCP incidence into different patterns of the electric field distributions.
The measured intensity distributions by NSOM for the left-handed spiral triangle lens under RCP
and LCP illuminations are shown in Figure 7a,b, respectively. Besides, the spiral arrangement of
triangular array (symmetry broken) does not need the central alignment of the plasmonic lens to
the singularity point of illumination either, which can overcome the difficulty of using the scanning
mechanism for imaging.

The distance between the spiral triangular aperture array and the spiral slit is set as 0.75 λspp,
resulting in a phase difference of 3
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phase difference may be obtained between
SPP waves excited at the spiral triangular aperture array and the spiral slit, leading to constructive
interference at the center with the highest field enhancement. Thus, the combination of the spiral
slit with spirally-arranged triangular aperture array shown in Figure 6b can focus RCP light into a
more tightly focused spot and defocus the LCP light into a donut-shaped distribution with a dark
center. The superiorities of the combination lie in the higher power conversion efficiency and the field
enhancement compared with the formerly-designed pure ASS plasmonic lens. The field enhancement
at the focusing and the power conversion efficiency of the circular polarization analyzer are increased
by 39.53% and 94.69% by numerical studies, respectively.

In terms of the hybrid plasmonic lens, a zeroth-order (second-order) evanescent Bessel vortex
beam will be obtained under RCP (LCP) incident illumination with higher coupling efficiency.
For both circularly-polarized illuminations, donut-shaped patterns with a dark center are obtained in
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experimental results owing to the low coupling efficiency of the longitudinal field, while the detected
peak signal in the focus region for RCP incidence is obviously higher than that with LCP incidence. One
of the methods to improve the coupling efficiency of the longitudinal field is to use the worn-out NSOM
fiber probe with a 200-nm aperture. Therefore, a detector with diameter of d placed in the focus region
can detect the signals for distinguishing the RCP and LCP well. Additionally, the circularly-polarized
extinction ratio better than 16 can be attained with a diameter of the aperture as 0.3λ, which shows that
it can be a high-efficiency miniature circular polarization analyzer. Besides, an array of these hybrid
plasmonic lenses can be also used in parallel near-field and polarimetric imaging.Nanomaterials 2017, 7, 405  7 of 22 
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beam (FIB) milling. Reproduced with permission from [46]. Copyright Optical Society of America, 2012.
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3.4. ASS with a Concentric Annular Groove

The combination of ASS and a concentric annular groove, as shown in Figure 8, has also
been proposed and investigated in theory for realizing the selection for CPL in the far-field [48].
The improved performance compared with the pure ASS comes from the fact that the existence of
the circular annular groove can scatter the SPPs at the groove into the propagating wave and then
converge the propagating waves into the far-field. The scattered light by the annular groove can
interfere constructively or destructively in the far-field, which make it available and convenient for
practical applications in the far-field, where the signal can be detected by conventional optical devices.
Simulated results indicate that such a simplified structure can be also used to focus the incident CPL
into the far-field region effectively, if the rotation direction of polarization light is opposite the chirality
of the ASS. Additionally, the full width at half maximum (FWHM) of the focal spot can always maintain
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less than the half wavelength of incident light, which can overcome the shortcoming of the near-field
characteristics of the intensity distribution.
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Figure 8. Schematic diagram of the designed structure under the illumination of the RCP plane wave
along the positive z-direction. Reproduced with permission from [48]. Copyright Springer, 2011.

The schematic diagram (Figure 8) shows a left-handed ASS milled into a 300-nm silver film with
a concentric annular groove as a plasmonic lens, and the corresponding parameters are also indicated.
The circularly-polarized plane wave illuminates along the positive z-direction with wavelength of 660 nm,
and the ASS width w1 and the groove depth h are set as 100 and 50 nm, respectively. When the RCP light
is incident on the plasmonic lens structure, SPP waves excited by the ASS will propagate along the metal
surface, and then, they are scattered by the concentric annular groove into propagating waves into free
space. Eventually, the scattered propagating waves from the annular groove will interfere constructively
because of the same phase on the z-axis.

Figure 9 shows the simulated |E|2 distribution in the x-z-plane for the left-handed spiral
plasmonic lens shown in Figure 8 with concentric annular groove radius r2 = 0.90 µm under RCP
and LCP incidence, respectively. Such a left-handed combined structure focuses RCP light into a
central spot efficiently, as shown in Figure 9a. Owing to the existing scattering phase function of the
scattered light caused by the concentric annular groove, the intensity along the propagation direction
is enhanced gradually (there is an obvious difference in intensity point by point) into the far-field.
The FWHM of the focus is calculated to be 0.44 λ0 smaller than the half wavelength of incident light
(λ0); while such a structure focuses LCP incident light into a ring with a dark center spot as shown in
Figure 9b, due to the destructive interference of scattered light of the SPP wave in the far-field.Nanomaterials 2017, 7, 405  9 of 22 
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The focus effect of similar combined structures with five concentric annular grooves R = 0.58, 0.90,
1.22, 1.54 and 1.86 µm are also investigated. Simulated results reveal that the focus depth can be modulated
by adjusting the number and radius of concentric annular grooves. The demonstrated potentials make
this structure have great applications in the areas of optical detection, imaging, and so on. This plasmonic
lens provides new trains of thought for later studies on combing a multiple-turn spiral slit with several
grooves, which can improve the coupling efficiency and elongate the focal depth effectively.

3.5. ASS Combined with Coaxial Archimedes’ Spiral Gratings

A combined plasmonic structure by ASS with coaxial Archimedes’ spiral gratings (ASG) on both
sides of the gold film (Figure 10) has also been proposed and investigated in theory by our group,
which is designed based on the same spin-dependent polarization-sensitive and spin-dependent
focusing effect of the ASS [28]. The designed structure is sensitive to incident polarization of CPL,
and it can realize the focusing and defocusing effects under the illumination of different CPL effectively
owing to the existence of ASG.
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Figure 10. Schematic diagram of the proposed structure under the illumination of the circular
polarization plane wave along the positive z-direction (from glass side); (a) a single-turn left-hand spiral
slit surrounded by Archimedes’ spiral gold grating on both sides of the metal film; (b) lateral view of
the structure along the location of the line depicted in (a). The red arrows represent the propagation
of SPPs. The incident light is coupled into SPPs through the spiral slit, and the SPPs generated
from the corresponding slits at each side have the opposite direction of propagation. The spiral
gratings reflect part of the SPP wave due to Bragg reflection. Reproduced with permission from [28].
Copyright Springer, 2015.

A combined plasmonic structure by ASS with coaxial Archimedes’ spiral gratings (ASG) on both
sides of the gold film (Figure 10) has also been proposed and investigated fully, which is designed based
on the same spin-dependent polarization-sensitive and spin-dependent focusing effect of the ASS [28].
The designed structure is sensitive to incident polarization of CPL, and it can realize the focusing and
defocusing effects under the illumination of different CPL effectively owing to the existence of ASG.

The additional ASG structure makes more incident light coupled into SPPs for enhancing the field
intensity [49]. The incident light is propagating from the glass side to the metal ASS side. By adding
the Archimedes’ spiral gratings on the bottom of the metal, the coupling efficiency of incident light to
SPPs could be enhanced efficiently. Meanwhile, with the method of adding ASG on the top of the metal
film, the exocentric SPPs can be diminished, and it can decouple into scattering light; therefore, the focus
intensity will be stronger.
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The simulation results are shown in Figure 11. Both the electric field intensity for the LCP and
RCP illumination cases are improved obviously compared to that of the single ASS, which is better for
practical utility.
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Figure 11. |E|2 distribution in the z-y-plane for the left-hand spiral plasmonic lens. Top column
(a,b): Pure single-turn left-hand ASS; bottom column (c,d): left-hand ASS surrounded by left-hand
Archimedes’ spiral grating (ASG) on both sides of the metal film; (a,c) LCP illumination; (b,d) RCP
illumination. Reproduced with permission from [28]. Copyright Springer, 2015.

3.6. Combination of ASG and MIM Waveguide

The above reviewed structures only work at a specific wavelength and allow both RCP and
LCP light transmit though the plasmonics lens. Therefore, if a structure can work in a relative
broadband and block CPL with a given handedness, the performance of polarization selectivity will
be better. In 2012, R. Hollingsworth et al. proposed a hybrid structure combining ASG with an MIM
waveguide [50] as shown in Figure 12. In their investigations, the structure can work very well in
visible and near-infrared regions or longer wavelengths. Both numerical simulations and experiments
have been performed to demonstrate its admirable performance of circularly dichroism.Nanomaterials 2017, 7, 405  11 of 22 
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The combined structure can be fabricated with the state-of-the-art photolithography systems, and
only standard thin film of three lithography levels is required for the fabrication process. The gold film
was deposited on the silicon dioxide (SiO2), and the center region of the metal spiral gratings was cut
out to form a cavity with an aperture whose cross-section was a trapezoid MIM waveguide [51–53].
The dielectric layer of SiO2 uniformly covered the metal region, and a metal cap was used to cover
the circular aperture as shown in Figure 12. The ASG is similar to longer wavelength antenna
analogues [10], which can only transmit CPL with a specific chirality, but block CPL with the opposite
chirality. Meanwhile, the metal cap can effectively obstruct the direct transmission of the incident
light. Such a spiral configuration can concentrate the RCP light and then radiate the energy out of
the circular aperture into the far-field region. However, for the LCP light, the field is concentrated
into the plasmonic vortex, which embraces the metal cap, and finally, the energy will be absorbed
owing to the ohmic losses. These facts indicate that the novel model is a kind of transmitting structure,
and the polarization character of CPL incidence can be detected by measuring the far-field transmission.
The superiority of this designed structure makes it easy to detect the signals by measuring the far-field
transmission and to modulate the concrete operating wavelength. By varying the incident wavelength,
the transmission for RCP incidence is still larger than that under LCP illumination in a relatively broad
operating wavelength. This is why this structure can work in a controllable operating wavelength.
Meanwhile, by modulating the parameters (spiral arm length), more incident energy can be coupled
into the SPP mode, and the total transmission can be increased correspondingly under RCP incidence.

The investigation on the influencing performances of the arm length (from 3
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shown in Figure 13. The simulation results reveal that by increasing the arm lengths, the RCP
transmission increases, while LCP transmission nearly remains constant for a relatively broad operating
wavelength, which means circular polarization selectivity can be improved with increasing the arm
lengths. The most representative parameter for evaluating the actual performance of the designed
structures is the extinction ratios. The extinction ratios can reach their maximum when the arm
length goes to 4.2
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, and then, it will slightly reduce with the increased arm length because of the
slightly increasing LCP transmission. The simulated results agree well with the measured far-field
transmission, which demonstrates that such a configuration can be utilized individually as a miniature
circular polarization analyzer with a controllable bandwidth.Nanomaterials 2017, 7, 405  12 of 22 
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3.7. The Derivative ASS Structure

With the development of the ASS structures, Bo Yan et al. presented a new aberrance based on
the algebraic formula of simple ASS [54]. The chiral metallic spiral-ring structure contains discrete
metallic slits with curved edges whose top view is depicted in Figure 14. In Cartesian coordinates,
the spiral’s slit can be described as follows:(

xi
yi

)
=

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)i−1(
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Figure 14. Schematic diagram of the metallic spiral-ring structure. Circularly-polarized illumination 
(620 nm) is along the z-direction, which comes out of the plane. The metallic spiral ring with a  
200-nm inner radius r1 and a 400-nm outer radius r2 was etched through a 200-nm gold film 
deposited on the silica substrate. Reproduced with permission from [54]. Copyright Society of 
Photo-Optical Instrumentation Engineer, 2014. 
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Figure 14. Schematic diagram of the metallic spiral-ring structure. Circularly-polarized illumination
(620 nm) is along the z-direction, which comes out of the plane. The metallic spiral ring with a 200-nm
inner radius r1 and a 400-nm outer radius r2 was etched through a 200-nm gold film deposited on
the silica substrate. Reproduced with permission from [54]. Copyright Society of Photo-Optical
Instrumentation Engineer, 2014.

This new spiral ring structure is a type of ASS aberrance according to Equation (2). The entirety
of the structure is a circular shape. The spiral slit is along the Archimedes’ spiral route, and the
adjacent spiral route is rotated by 60◦, which is small enough for exciting the localized surface
plasmons (LSPs) [55] between the adjacent metallic slits. LSPs will contribute to extraordinary light
enhancement in nano-scale metallic parts, which are non-propagation excitations and do not require
the phase-matching conditions [56,57]. The inner radius r1 and the outer radius r2 are set to be 200 and
400 nm. The scattering characteristics for one metallic part are primarily studied at the near-field region
(just 100 nm above the gold surface) at a 620-nm operating wavelength for RCP and LCP illumination.
As a result, the energy is concentrated into different regions for opposite CPL incidence owing to
the spin-dependent effect. Additionally, the obvious differences in the intensity distribution of the
Ez component are caused by the different phase delays of LSPs, indicating its potential utilization
in modulating the near-field distribution for the opposite CPL incidences. By calculating the total
electric field intensity through a specific aperture under illumination, the localized modes have been
investigated to observe the resonant peak for LCP and RCP cases, respectively. The obtained resonant
peaks for LCP are at 619 and 830 nm, shown in Figure 15a,b, respectively, and those for the RCP case at
591 and 812 nm are shown in Figure 15c,d, respectively. This fact indicates that the localized plasmon
resonance due to the curved edges of the metallic slit occurs at different positions (inner/outer radius)
for the shorter/longer incident wavelengths, respectively. The excited LSP modes along the circular
have the phase delay resulting from the spiral phase; thus, phase distributions by spiral ring plasmonic
structures are opposite under different CPL illuminations.
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The spiral four-ring structure (shown in the inset of Figure 15e) manufactured by focused ion
beam (FIB) in a 200 nm-thick gold film was further investigated. Additionally, the experimental
results of the transmission spectra referring to the normalized intensity were detected through an
aperture with a radius of 200 nm, about 100 nm above the gold surface, as depicted in Figure 15e.
The experimental results show that such a spiral four-ring plasmonic structure can effectively allow
the LCP light to penetrate the structure while blocking the RCP incidence absolutely owing to stronger
ring-to-ring coupling compared with the spiral single-ring structure in a relatively broadband.
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3.8. Double Spiral Gratings with a Central Hole 

Based on the polarization-dependent characteristics, these Archimedes’ spiral structures are 
utilized to generate light possessing a well-defined topological charge. Lee et al. have proposed a 
kind of plasmonic beaming structure by using the double spiral grating architecture for dynamic 
switching of the plasmonic beam [58–60]. Commonly, plasmonic spiral structures to generate 
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Figure 15. (a–d) The electric fields’ distributions of Ez by spiral-ring structures under LCP and RCP
illumination at the peak intensity wavelength; (e) relative transmission spectra of a metallic spiral
four-ring structure under LCP and RCP illumination, respectively. Inset: the image of the metallic
spiral four-ring structure. The field intensity is calculated through an aperture with a radius of
200 nm, which is located 100 nm from the gold surface. Reproduced with permission from [54].
Copyright Society of Photo-Optical Instrumentation Engineer, 2014.

3.8. Double Spiral Gratings with a Central Hole

Based on the polarization-dependent characteristics, these Archimedes’ spiral structures are
utilized to generate light possessing a well-defined topological charge. Lee et al. have proposed a kind
of plasmonic beaming structure by using the double spiral grating architecture for dynamic switching
of the plasmonic beam [58–60]. Commonly, plasmonic spiral structures to generate optical beaming
are in stark contrast to the plasmonic lens; that is, the transverse field (Ex,Ey) dominates the electric
field component. Such periodic grating structures are designed to efficiently convert the near-field
SPPs to the far-field radiations by compensating the momentum mismatch between the SPP mode and
the radiation mode, which was firstly demonstrated by using the “bull’s eye” structure for generating
plasmonic beaming [61]. The formula of this spiral grating, which similar to the algebraic formula of
Archimedes’ spiral, is indicated below:

rspiral,i(φ) = r0 +
lgeometryΛ
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where r0, n, p represent the initial radius of the spiral grating, the total number of spiral gratings and
the winding number of each spiral, respectively. The subtle difference between Equation (3) and the
algebraic formula of Archimedes’ spiral is that in Equation (3), the initial azimuthal angle of each spiral
grating is arbitrarily determined by parameter ϕi. The radius mismatch of the structure compensates
additional propagation phase delay to the SPP mode, and the additional angular momentum provided
by the geometrical structure is called the geometrical angular momentum (lgeometry). The schematic
diagram of the proposed structure with a double spiral is shown in Figure 16a,b, where lgeometry = 2,
r0 = Λ/2 + rhole, ϕ1 =
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/2, p = 2.5, n = 2. The advantage of the double spiral over the
single one is that the double spiral structure can maintain on-axis beaming characteristics very well,
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while the symmetry-broken construction of the single spiral will produce distortion of the generated
beam. The lgeometry of the proposed clockwise double-spiral plasmonic structure is two, and the final
topological charge of the generated beam is determined by the polarization of incident light. Thus, the
generated beams for different CPL incidences have different topological charges and obviously distinct
intensity distributions. Figure 16c,e shows the 3D electric field intensity distributions in the range of
0~20 µm above the dielectric grating layer under LCP and RCP incidences, respectively. Figure 16d,f
shows the Ez distributions on the z = 10-µm plane in two cases correspondingly. The clockwise direction
of one cycle detected of the phase modulation near the z-axis shown in Figure 16d is determined by the
geometrical AM and SAM of incident light (ltotal = lgeometry + lspin = 1), which is opposite the rotation
direction of LCP illumination. This result demonstrates the switchable characteristic of the designed
structure by changing the polarization states.
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Figure 16. (a,b) Schematic diagram of the proposed double-spiral configuration with a central hole used for
numerical calculation; 3-dimensional (3D) view of the electric field intensity distribution of such a structure
with LCP light incidence (c) and RCP light incidence (e) ranging from 0 to 20 µm above the dielectric
grating layer and (d,f) the vertical electric field (Ez) distribution on the corresponding z = 10-µm plane
(c,e) respectively. Reproduced with permission from [58]. Copyright Optical Society of America, 2011.

When the incident polarization is the same as the rotation of the spiral geometry, the vector sum
of tangential field components has a cancellation effect on the axis; therefore, the on-axis beaming
generation will be prohibited. The total topological charge is ltotal = 3, which results in a different
beam pattern, as shown in Figure 16e, and the generated beam has a dark central intensity distribution.
Thus, it is clear that a bright spot can be formed only under LCP illumination, which means such
an ASG structure can also be used to select the polarization of CPL. The performance of such a
double switchable plasmonic structure can be characterized by the on-off ratio, which is calculated
by integrating the time averaged power flow along the z-direction passing through a circular region
with a concrete diameter (976 nm) situated at the suitable plane (z = 8.5 µm) under LCP incidence
and then dividing it by that under the RCP case. In this design, the on-off ratio can be obtained as
23.3 dB. Such a double-spiral architecture realizing switchable beam characteristics can find many
useful applications in plasmonic data processing, optical sensing and nanoscale optical antennas [62].
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3.9. Spiral Structure Based on a Nano-Pinhole Array

Recently, we have also proposed a broadband circular polarization analyzer based on a
single-turn Archimedean nano-pinhole array [63]. The schematic diagram of the proposed single-turn
Archimedean pinhole structure under the incidences of CPL, in which there is a layer of 250-nm gold
film deposited on the surface of the glass substrate, are illustrated in Figure 17. The 25 nano-pinholes are
arranged along the Archimedean spiral formula of r = r0 + λspp × ϕ/2

USV Symbol Macro(s) Description
0392 Β \textBeta GREEK CAPITAL LETTER BETA

0393 Γ \textGamma GREEK CAPITAL LETTER GAMMA

0394 Δ \textDelta GREEK CAPITAL LETTER DELTA

0395 Ε \textEpsilon GREEK CAPITAL LETTER EPSILON

0396 Ζ \textZeta GREEK CAPITAL LETTER ZETA

0397 Η \textEta GREEK CAPITAL LETTER ETA

0398 Θ \textTheta GREEK CAPITAL LETTER THETA

0399 Ι \textIota GREEK CAPITAL LETTER IOTA

039A Κ \textKappa GREEK CAPITAL LETTER KAPPA

039B Λ \textLambda GREEK CAPITAL LETTER LAMDA

039C Μ \textMu GREEK CAPITAL LETTER MU

039D Ν \textNu GREEK CAPITAL LETTER NU

039E Ξ \textXi GREEK CAPITAL LETTER XI

039F Ο \textOmicron GREEK CAPITAL LETTER OMICRON

03A0 Π \textPi GREEK CAPITAL LETTER PI

03A1 Ρ \textRho GREEK CAPITAL LETTER RHO

03A3 Σ \textSigma GREEK CAPITAL LETTER SIGMA

03A4 Τ \textTau GREEK CAPITAL LETTER TAU

03A5 Υ \textUpsilon GREEK CAPITAL LETTER UPSILON

03A6 Φ \textPhi GREEK CAPITAL LETTER PHI

03A7 Χ \textChi GREEK CAPITAL LETTER CHI

03A8 Ψ \textPsi GREEK CAPITAL LETTER PSI

03A9 Ω \textOmega GREEK CAPITAL LETTER OMEGA

03AA Ϊ \textIotadieresis
\"{\textIota}

GREEK CAPITAL LETTER IOTA WITH DIALYTIKA

03AB Ϋ \"{\textUpsilon} GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA

03AC ά \'{\textalpha} GREEK SMALL LETTER ALPHA WITH TONOS

03AD έ \'{\textepsilon} GREEK SMALL LETTER EPSILON WITH TONOS

03AE ή \'{\texteta} GREEK SMALL LETTER ETA WITH TONOS

03AF ί \'{\textiota} GREEK SMALL LETTER IOTA WITH TONOS

03B0 ΰ \"{\textupsilonacute} GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS

03B1 α \textalpha GREEK SMALL LETTER ALPHA

03B2 β \textbeta GREEK SMALL LETTER BETA

03B3 γ \textgrgamma GREEK SMALL LETTER GAMMA

03B4 δ \textdelta GREEK SMALL LETTER DELTA

03B6 ζ \textzeta GREEK SMALL LETTER ZETA

03B7 η \texteta GREEK SMALL LETTER ETA

03B8 θ \texttheta GREEK SMALL LETTER THETA

03B9 ι \textgriota GREEK SMALL LETTER IOTA

03BA κ \textkappa GREEK SMALL LETTER KAPPA

03BB λ \textlambda GREEK SMALL LETTER LAMDA

03BC μ \textmu
\textmugreek

GREEK SMALL LETTER MU

03BD ν \textnu GREEK SMALL LETTER NU

03BE ξ \textxi GREEK SMALL LETTER XI

03BF ο \textomicron GREEK SMALL LETTER OMICRON

03C0 π \textpi GREEK SMALL LETTER PI

03C1 ρ \textrho GREEK SMALL LETTER RHO

03C2 ς \textgrsigma
\textvarsigma

GREEK SMALL LETTER FINAL SIGMA

03C3 σ \textsigma GREEK SMALL LETTER SIGMA

03C4 τ \texttau GREEK SMALL LETTER TAU

03C5 υ \textupsilon GREEK SMALL LETTER UPSILON

03C6 φ \textgrphi GREEK SMALL LETTER PHI

03C7 χ \textchi GREEK SMALL LETTER CHI

18

, which can be etched into gold
film very easily in experiments with FIB milling. From the theoretical analysis, the peculiarity of the
nano-pinhole array-based structure lies in superposing light fields generated from each dipole sources,
which results in enhanced total transmitted longitudinal electric field. Such a designed structure has
obviously different electric fields with relatively high extinction ratios at different detecting locations.
Besides, it can work at a relative broad operating wavelength from 650 to 900 nm.
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The comparisons of the performances between the single-turn ASS with initial radius  
r0 = 1400 nm shown in Figure 18a-c and the proposed structure (Archimedean nano-pinholes array) 
with r0 = 1400 nm in Figure 18d-f have been given in the yoz plane views under the RCP (middle 
column) and LCP (right column) incidences, respectively, in which the electric field intensity of the 
single-turn ASS shown in Figure 18b,c is obviously weaker than that of the Archimedean  
nano-pinhole array shown in Figure 18e,f The simulated results indicate that the designed 
Archimedean nano-pinhole array is more effective because of the enhanced coupling efficiency of 

Figure 17. The schematic diagram of the single-turn Archimedean pinholes array (25 pinholes):
lateral view (a) and the top view (b). Reproduced with permission from [63]. Copyright Optical Society of
America, 2015.

The comparisons of the performances between the single-turn ASS with initial radius r0 = 1400 nm
shown in Figure 18a-c and the proposed structure (Archimedean nano-pinholes array) with r0 = 1400 nm
in Figure 18d-f have been given in the yoz plane views under the RCP (middle column) and LCP (right
column) incidences, respectively, in which the electric field intensity of the single-turn ASS shown in
Figure 18b,c is obviously weaker than that of the Archimedean nano-pinhole array shown in Figure 18e,f
The simulated results indicate that the designed Archimedean nano-pinhole array is more effective because
of the enhanced coupling efficiency of SPPs. The weaker transmitted field intensity of the traditional
ASS is due only to the contribution from the radial dipole sources associated with the radial component,
while for our proposed Archimedean nano-pinhole array, the enhanced total transmitted field distribution
is originating from superposing fields caused by all dipole sources (the radial dipole sources, the coupling
between the radial and azimuthal dipole sources). The simulated results show that such a designed
left-handed plasmonic lens can focus RCP light into a confined focus spot and defocus the LCP light into a
donut-shaped field, which matches well with the theoretical analysis. Thus, it can be used as a circular
polarization analyzer with a high extinction ratio.
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Figure 18. The longitudinal electric field intensity distributions at the yoz plane under circular polarization
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3.10. Bilayer Holey Spiral Plasmonic Lens

Pierfrancesco Zilio et al. have also proposed a bilayer holey spiral plasmonic lens as shown in
Figure 19 [63]. The transmitting far-field light from the proposed plasmonics lens has been simulated,
which demonstrates that the transmitted light carries pure OAM. The top view and cross-section of a
single-layer holey PVL are shown in Figure 19a,b. A new PVL with two layers is also illustrated in
Figure 19c, and its parameters are all optimized for the working wavelength of 780 nm. Such a PVL
with two spirals whose rotated degrees are 360/m (here m = 2) can improve the coupling efficiency of
the PVs, which is the SPPs carrying the angular momentum actually.
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wavelength of 780 nm. Inserts in (b,c) are the electric field profiles of the plasmonic modes excited
by CPL of two PVLs structures. Reproduced with permission from [64]. Copyright Optical Society of
America, 2014.



Nanomaterials 2017, 7, 405 17 of 21

The principle of operation is nearly analogous to the single-layer PVL with a circular hole in the
center of the lens [65]. For the bilayer architectures, things are obviously different. The existence of
the MIM waveguide makes PV in the form of a TM0 plasmonic mode [56]. The dielectric layer with a
170-nm thickness as the MIM waveguide only allows the existence of the fundamental TM0 plasmonic
mode because the thickness is smaller than the cutoff of TM1 mode. Thus, the converted PV in the form
of an SPP excited by the spiral slit efficiently transmits through the central hole to the air. In contrast,
direct transmitted light is blocked. The coupled PV can be fully characterized by topological charge
jpv, as depicted in Equation (1). The transmitted field includes a plasmonic evanescent part with the
component of Ez and a propagating spherical wave in the far-field with transverse components Ex and
Ey. The topological charge of the propagating spherical wave can be expressed as follows [65]

lf = jpv − sgn(jpv) = m + li + si − sgn(m + li + si) (5)

The simulated results of the electric field and the phase distributions have been demonstrated in
Figure 20a–c for three PVLs with specific m and N values. N denotes the number of spiral turns. The |E|||
field distributions are the cross-section located 800 nm below the hole for the PVL with m = 1, N = 6,
m = 2, N = 3, m = 2, N = 3, respectively. The subjacent column displays the corresponding arg(Ex) fields.
According to Equation (5), the calculated topological charge lf = 1 and 2 of the transmitted Ex are in perfect
agreement with the subjacent column of Figure 20. Compared with a single-layer PVL, both the efficiency
of transmission and the purity of OAM are improved. Though the entire structure seems more complex
than the single layer architecture, only two subsequent FIB millings with the suitable alignment between
the two lithographic steps are required for fabrications. As a consequence, such a proposed MIM-PVL
architecture can transform CPL illumination into light carrying any specific topological charges in terms of
the expected functions. The designed structures will play a significant role in the further investigations of
PVs, optical tweezers, optical communication and sensing applications.Nanomaterials 2017, 7, 405  18 of 22 

 

 
Figure 20. The FEM simulations of the MIM-PVL architecture. The upper column of (a–c) shows the 
|E||| field in the x-y plane located 800 nm below the hole for the PVLs of m = 1, N = 6; m = 2, N = 3; m 
= 2, N = 3, respectively. N denotes the numbers of spiral turns. The subjacent column displays the 
corresponding arg(Ex) fields. From [64]; reprinted with permission. Copyright Optical Society of 
America, 2014. 

4. Conclusions 

All of above-mentioned configurations take advantage of the polarization-dependent effect 
resulting from the symmetry-broken character of the Archimedes’ spiral structure, which actually is 
a chiral metallic structure. Such ASS structures, under illuminations of circular polarization 
incidences, can effectively excite the SPP wave at the curved slit surface, and then, the generated 
SPP wave propagates with the initial phase difference determined by the polarization of incident 
light towards the center. After propagating from the spiral slit to the center of the plasmonic 
structures, the SPP wave acquires an extra phase delay proportional to the propagation distance 
and finally interferes constructively or destructively, resulting in the distinct intensity distribution 
patterns. When the SPP wave from the opposite direction reaches the center with the same phase, a  
zeroth-order evanescent Bessel beam with a central peak will be obtained. Otherwise, a 
donut-shaped second-order evanescent Bessel vortex with a dark center will be attained.  

For obtaining better SPP coupling efficiency and high power conversion, several additional 
constructions are proposed to combine with the ASS and multiple-turn AS structures (grooves, 
gratings and others) for optical sensing applications. A spirally-arranged triangle aperture array is 
introduced for coupling the azimuthal polarization components of CPL. This hybrid spiral 
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Figure 20. The FEM simulations of the MIM-PVL architecture. The upper column of (a–c) shows the
|E||| field in the x-y plane located 800 nm below the hole for the PVLs of m = 1, N = 6; m = 2, N = 3;
m = 2, N = 3, respectively. N denotes the numbers of spiral turns. The subjacent column displays
the corresponding arg(Ex) fields. From [64]; reprinted with permission. Copyright Optical Society of
America, 2014.
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4. Conclusions

All of above-mentioned configurations take advantage of the polarization-dependent effect
resulting from the symmetry-broken character of the Archimedes’ spiral structure, which actually is a
chiral metallic structure. Such ASS structures, under illuminations of circular polarization incidences,
can effectively excite the SPP wave at the curved slit surface, and then, the generated SPP wave
propagates with the initial phase difference determined by the polarization of incident light towards
the center. After propagating from the spiral slit to the center of the plasmonic structures, the SPP
wave acquires an extra phase delay proportional to the propagation distance and finally interferes
constructively or destructively, resulting in the distinct intensity distribution patterns. When the SPP
wave from the opposite direction reaches the center with the same phase, a zeroth-order evanescent
Bessel beam with a central peak will be obtained. Otherwise, a donut-shaped second-order evanescent
Bessel vortex with a dark center will be attained.

For obtaining better SPP coupling efficiency and high power conversion, several additional
constructions are proposed to combine with the ASS and multiple-turn AS structures (grooves,
gratings and others) for optical sensing applications. A spirally-arranged triangle aperture array is
introduced for coupling the azimuthal polarization components of CPL. This hybrid spiral plasmonic
lens combining pure single-turn ASS with a spirally-arranged triangle aperture can be used as an
efficient miniature circular polarization analyzer for its obvious enhanced field and power conversion
efficiency. The combination of the ASS and the coaxial ASGs on both sides of the gold film can improve
the efficiency of the incident light coupling into SPPs and diminish the exocentric SPPs contributing
to a stronger focus intensity; while the utility of the MIM waveguide at the center of the metal film
covered with a metal cap can form a pure transmission structure and such an element can selectively
transmit the CPL light with only one given chirality in a broad wavelength. In addition, a novel
spiral-ring structure, which contains discrete metallic slits with curved edges, is an aberrance of ASS
and concentrates the energy into different regions for opposite circularly-polarized incidence due
to the different phase delays for them. Furthermore, a spiral four-ring structure is demonstrated
because of its outstanding transmission spectra in a relative broad operating wavelength region for
analyzing the polarization characteristics of CPL. Next, the bilayer holey Archimedes’ spiral structure
is used as a plasmonic lens due to its function of generating far-field transmission light carrying pure
OAM, and double ASGs with a central hole as plasmonic beaming structures are reviewed for their
switchable characteristics.

Generally speaking, there are still some other types of Archimedean structures that have
been published in recent years, such as rectangular slits array [66,67], a graphene-coated spiral
dielectric lens [68,69] and the metallic slit with an auxiliary groove [70], which can function in
different applications, such as plasmonic wave manipulation with different propagating directions
and plasmonic focusing characteristics. Anyway, by using nano-aperture-based spiral structures, the
excited SPP waves can be unidirectionally controlled under different CPL incidences, which provides
new paths for manipulating the circular polarization states that can be used as the CPL analyzer and
the OAM generator. By combining new shapes of nano-apertures with the proposed spiral structure,
the special intensities’ distributions can be obtained in the transmitted fields for special applications in
future research. The versatility of Archimedes’ spiral structures makes them conveniently integrated
with other subwavelength optical elements and finds more interesting applications in real optics.
Meanwhile, this type of ASS structure can be also used in the manipulation of the THz wave, which can
be used in THz communication systems, THz imaging systems, and so on.
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