Next Issue
Previous Issue

Table of Contents

Nanomaterials, Volume 7, Issue 12 (December 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Rh is an intriguing metal due to its good UV plasmonic and photocatalytic properties. The most [...] Read more.
View options order results:
result details:
Displaying articles 1-55
Export citation of selected articles as:

Editorial

Jump to: Research, Review, Other

Open AccessEditorial Nanoengineered Interfaces, Coatings, and Structures by Plasma Techniques
Nanomaterials 2017, 7(12), 449; doi:10.3390/nano7120449
Received: 7 October 2017 / Revised: 12 December 2017 / Accepted: 12 December 2017 / Published: 15 December 2017
PDF Full-text (148 KB) | HTML Full-text | XML Full-text
Abstract
Nanoparticles, nanotubes, nanobelts, nanoneedles, nanosheets, nanowires, nanopillars: the variety of nanostructured interfaces that can be created and modified using plasma processes is virtually endless.[...] Full article

Research

Jump to: Editorial, Review, Other

Open AccessArticle Dynamic Mechanical Properties and Microstructure of Graphene Oxide Nanosheets Reinforced Cement Composites
Nanomaterials 2017, 7(12), 407; doi:10.3390/nano7120407
Received: 15 October 2017 / Revised: 17 November 2017 / Accepted: 18 November 2017 / Published: 24 November 2017
Cited by 1 | PDF Full-text (11365 KB) | HTML Full-text | XML Full-text
Abstract
This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO) nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA). Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement,
[...] Read more.
This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO) nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA). Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM) atomic force microscope (AFM), and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM)/backscattered mode (BSEM) showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP) testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content. Full article
Figures

Open AccessArticle The Preparation and Microstructure of Nanocrystal 3C-SiC/ZrO2 Bilayer Films
Nanomaterials 2017, 7(12), 408; doi:10.3390/nano7120408
Received: 11 October 2017 / Revised: 30 October 2017 / Accepted: 20 November 2017 / Published: 23 November 2017
PDF Full-text (4766 KB) | HTML Full-text | XML Full-text
Abstract
The nanocrystal 3C-SiC/ZrO2 bilayer films that could be used as the protective coatings of zirconium alloy fuel cladding were prepared on a single-crystal Si substrate. The corresponding nanocrystal 3C-SiC film and nanocrystal ZrO2 film were also dividedly synthesized. The microstructure of
[...] Read more.
The nanocrystal 3C-SiC/ZrO2 bilayer films that could be used as the protective coatings of zirconium alloy fuel cladding were prepared on a single-crystal Si substrate. The corresponding nanocrystal 3C-SiC film and nanocrystal ZrO2 film were also dividedly synthesized. The microstructure of nanocrystal films was analyzed by grazing incidence X-ray diffraction (GIXRD) and cross-sectional transmission electron microscopy (TEM). The 3C-SiC film with less than 30 nm crystal size was synthesized by Plasma Enhanced Chemical Vapor Deposition (PECVD) and annealing. The corresponding formation mechanism of some impurities in SiC film was analyzed and discussed. An amorphous Zr layer about 600 nm in width was first deposited by magnetron sputtering and then oxidized to form a nanocrystal ZrO2 layer during the annealing process. The interface characteristics of 3C-SiC/ZrO2 bilayer films prepared by two different processes were obviously different. SiZr and SiO2 compounds were formed at the interface of 3C-SiC/ZrO2 bilayer films. A corrosion test of 3C-SiC/ZrO2 bilayer films was conducted to qualitatively analyze the surface corrosion resistance and the binding force of the interface. Full article
Figures

Open AccessArticle Hierarchical Mn2O3 Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances
Nanomaterials 2017, 7(12), 409; doi:10.3390/nano7120409
Received: 7 October 2017 / Revised: 12 November 2017 / Accepted: 21 November 2017 / Published: 23 November 2017
PDF Full-text (8042 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Porous Mn2O3 microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn2O3 microspheres by first producing MnCO3 microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO
[...] Read more.
Porous Mn2O3 microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn2O3 microspheres by first producing MnCO3 microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO3 microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn2O3 nanorods consisting of microspheres. The C@Mn2O3 microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn2O3 microspheres prepared at 500 °C show high specific capacitances of 383.87 F g−1 at current density of 0.5 A g−1, and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn2O3 microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg−1 at power density of 500.00 W kg−1, and a maximum power density of 20.14 kW kg−1 at energy density of 46.8 Wh kg−1. We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon. Full article
(This article belongs to the Special Issue Nanomaterials Based Fuel Cells and Supercapacitors)
Figures

Figure 1

Open AccessArticle The Effect of Eu Doping on Microstructure, Morphology and Methanal-Sensing Performance of Highly Ordered SnO2 Nanorods Array
Nanomaterials 2017, 7(12), 410; doi:10.3390/nano7120410
Received: 11 October 2017 / Revised: 8 November 2017 / Accepted: 14 November 2017 / Published: 23 November 2017
PDF Full-text (13399 KB) | HTML Full-text | XML Full-text
Abstract
Layered Eu-doped SnO2 ordered nanoarrays constructed by nanorods with 10 nm diameters and several hundred nanometers length were synthesized by a substrate-free hydrothermal route using alcohol and water mixed solvent of sodium stannate and sodium hydroxide at 200 °C. The Eu dopant
[...] Read more.
Layered Eu-doped SnO2 ordered nanoarrays constructed by nanorods with 10 nm diameters and several hundred nanometers length were synthesized by a substrate-free hydrothermal route using alcohol and water mixed solvent of sodium stannate and sodium hydroxide at 200 °C. The Eu dopant acted as a crystal growth inhibitor to prevent the SnO2 nanorods growth up, resulting in tenuous SnO2 nanorods ordered arrays. The X-ray diffraction (XRD) revealed the tetragonal rutile-type structure with a systematic average size reduction and unit cell volume tumescence, while enhancing the residual strain as the Eu-doped content increases. The surface defects that were caused by the incorporation of Eu ions within the surface oxide matrix were observed by high-resolution transmission electron microscope (HRTEM). The results of the response properties of sensors based on the different levels of Eu-doped SnO2 layered nanoarrays demonstrated that the 0.5 at % Eu-doped SnO2 layered nanorods arrays exhibited an excellent sensing response to methanal at 278 °C. The reasons of the enhanced sensing performance were discussed from the complicated defect surface structure, the large specific surface area, and the excellent catalytic properties of Eu dopant. Full article
Figures

Open AccessArticle Stability and Synergistic Effect of Polyaniline/TiO2 Photocatalysts in Degradation of Azo Dye in Wastewater
Nanomaterials 2017, 7(12), 412; doi:10.3390/nano7120412
Received: 20 October 2017 / Revised: 16 November 2017 / Accepted: 17 November 2017 / Published: 23 November 2017
PDF Full-text (5021 KB) | HTML Full-text | XML Full-text
Abstract
The polyaniline/TiO2 (PANI/TiO2) composite photocatalysts were prepared by the in situ chemical oxidation of aniline (An) in the presence of TiO2 particles. For this purpose, photocatalysts with different amounts of PANI polymer were prepared and analysed. Fourier-transform infrared (FT-IR)
[...] Read more.
The polyaniline/TiO2 (PANI/TiO2) composite photocatalysts were prepared by the in situ chemical oxidation of aniline (An) in the presence of TiO2 particles. For this purpose, photocatalysts with different amounts of PANI polymer were prepared and analysed. Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis indicated successful synthesis of the PANI polymer and its conductivity was also determined. The micrographs of field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were used to explain the impact of the aniline amount on the aggregation process during the synthesis of the composites. The smallest size of aggregates was obtained for the photocatalysts with 15% of PANI (15PANI/TiO2) due to the formation of homogenous PANI. The photocatalytic activity of studied PANI/TiO2 photocatalysts was validated by monitoring the discoloration and mineralization of Reactive Red azo dye (RR45) in wastewater. The 15PANI/TiO2 sample presented the highest photocatalytic efficiency under ultraviolet A (UVA) irradiation, in comparison to pure TiO2. This was explained by the formation of uniformly dispersed PANI on the TiO2 particles, which was responsible for the synergistic PANI-TiO2 effect. Full article
(This article belongs to the Special Issue Experimental Nanosciences, Computational Chemistry, and Data Analysis)
Figures

Figure 1

Open AccessFeature PaperArticle Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression
Nanomaterials 2017, 7(12), 413; doi:10.3390/nano7120413
Received: 29 September 2017 / Revised: 7 November 2017 / Accepted: 20 November 2017 / Published: 24 November 2017
PDF Full-text (4977 KB) | HTML Full-text | XML Full-text
Abstract
Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites
[...] Read more.
Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material’s strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure. Full article
Figures

Open AccessArticle Toxicity Assessment of Carbon Nanomaterials in Zebrafish during Development
Nanomaterials 2017, 7(12), 414; doi:10.3390/nano7120414
Received: 21 October 2017 / Revised: 25 October 2017 / Accepted: 22 November 2017 / Published: 25 November 2017
PDF Full-text (3942 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Carbon nanomaterials (CNMs) are increasingly employed in nanomedicine as carriers for intracellular transport of drugs, imaging probes, and therapeutics agents, thanks to their unique optical and physicochemical properties. However, a better understanding about the effects of CNMs on a vertebrate model at the
[...] Read more.
Carbon nanomaterials (CNMs) are increasingly employed in nanomedicine as carriers for intracellular transport of drugs, imaging probes, and therapeutics agents, thanks to their unique optical and physicochemical properties. However, a better understanding about the effects of CNMs on a vertebrate model at the whole animal level is required. In this study, we compare the toxicity of oxidized carbon nano-onions (oxi-CNOs), oxidized carbon nano-horns (oxi-CNHs) and graphene oxide (GO) in zebrafish (Danio rerio). We evaluate the possible effects of these nanomaterials on zebrafish development by assessing different end-points and exposure periods. Full article
Figures

Open AccessArticle Investigating Exchange Bias and Coercivity in Fe3O4–γ-Fe2O3 Core–Shell Nanoparticles of Fixed Core Diameter and Variable Shell Thicknesses
Nanomaterials 2017, 7(12), 415; doi:10.3390/nano7120415
Received: 15 October 2017 / Revised: 22 November 2017 / Accepted: 23 November 2017 / Published: 26 November 2017
PDF Full-text (6270 KB) | HTML Full-text | XML Full-text
Abstract
We have carried out extensive measurements on novel Fe3O4–γ-Fe2O3 core–shell nanoparticles of nearly similar core diameter (8 nm) and of various shell thicknesses of 1 nm (sample S1), 3 nm (sample S2), and 5 nm (sample
[...] Read more.
We have carried out extensive measurements on novel Fe3O4–γ-Fe2O3 core–shell nanoparticles of nearly similar core diameter (8 nm) and of various shell thicknesses of 1 nm (sample S1), 3 nm (sample S2), and 5 nm (sample S3). The structure and morphology of the samples were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The direct current (DC) magnetic measurements were carried out using a superconducting quantum interference device (SQUID). Exchange bias and coercivity were investigated at several temperatures where the applied field was varied between 3 and −3 T. Several key results are obtained, such as: (a) the complete absence of exchange bias effect in sample S3; (b) the occurrence of nonconventional exchange bias effect in samples S2 and S1; (c) the sign-change of exchange bias field in sample S2; (d) the monotonic increase of coercivity with temperature above 100 K in all samples; (e) the existence of a critical temperature (100 K) at which the coercivity is minimum; (f) the surprising suppression of coercivity upon field-cooling; and (g) the observation of coercivity at all temperatures, even at 300 K. The results are discussed and attributed to the existence of spin glass clusters at the core–shell interface. Full article
Figures

Open AccessArticle Experimental Comparison of Photothermal Conversion Efficiency of Gold Nanotriangle and Nanorod in Laser Induced Thermal Therapy
Nanomaterials 2017, 7(12), 416; doi:10.3390/nano7120416
Received: 3 November 2017 / Revised: 16 November 2017 / Accepted: 22 November 2017 / Published: 26 November 2017
PDF Full-text (5024 KB) | HTML Full-text | XML Full-text
Abstract
An experimental comparison of the photothermal conversion efficiency (PCE) for gold nanotriangles (GNTs) and nanorods (GNRs) was carried out in the present work. The discrete dipole approximation method was applied to identify the spectral characteristic of GNTs and GNRs with different aspect ratios.
[...] Read more.
An experimental comparison of the photothermal conversion efficiency (PCE) for gold nanotriangles (GNTs) and nanorods (GNRs) was carried out in the present work. The discrete dipole approximation method was applied to identify the spectral characteristic of GNTs and GNRs with different aspect ratios. On this basis, the PCE of GNTs and GNRs in photothermal therapy were compared theoretically. Afterwards, an in vitro experiment was adopted to investigate the thermal effect of porcine muscle induced by laser irradiation, with and without injected GNTs and GNRs. The influences of laser total power, nanoparticle concentration, and nanoparticle type were investigated. It was found that for the commonly-used wavelengths for photothermal therapy, the PCE of GNTs is higher than that of the GNRs. Furthermore, for GNRs loaded in tissue in vitro, high laser power and high concentration of nanoparticles leads to the degeneration and even carbonization of tissue. However, for the GNTs with the same situation (laser power, nanoparticle volume concentration, and heating time), it could lead to the tissue’s evaporation instead of carbonization. Full article
(This article belongs to the Special Issue Nanomaterials for Imaging, Diagnosis or Therapy)
Figures

Open AccessArticle Inhibition of Bacteria Associated with Wound Infection by Biocompatible Green Synthesized Gold Nanoparticles from South African Plant Extracts
Nanomaterials 2017, 7(12), 417; doi:10.3390/nano7120417
Received: 11 October 2017 / Revised: 9 November 2017 / Accepted: 10 November 2017 / Published: 26 November 2017
PDF Full-text (6280 KB) | HTML Full-text | XML Full-text
Abstract
Unlike conventional physical and chemical methods, the biogenic synthesis of gold nanoparticles (GNPs) is considered a green and non-toxic approach to produce biocompatible GNPs that can be utilized in various biomedical applications. This can be achieved by using plant-derived phytochemicals to reduce gold
[...] Read more.
Unlike conventional physical and chemical methods, the biogenic synthesis of gold nanoparticles (GNPs) is considered a green and non-toxic approach to produce biocompatible GNPs that can be utilized in various biomedical applications. This can be achieved by using plant-derived phytochemicals to reduce gold salt into GNPs. Several green synthesized GNPs have been shown to have antibacterial effects, which can be applied in wound dressings to prevent wound infections. Therefore, the aim of this study is to synthesize biogenic GNPs from the South African Galenia africana and Hypoxis hemerocallidea plants extracts and evaluate their antibacterial activity, using the Alamar blue assay, against bacterial strains that are known to cause wound infections. Additionally, we investigated the toxicity of the biogenic GNPs to non-cancerous human fibroblast cells (KMST-6) using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. In this paper, spherical GNPs, with particle sizes ranging from 9 to 27 nm, were synthesized and fully characterized. The GNPs from H. hemerocallidea exhibited antibacterial activity against all the tested bacterial strains, whereas GNPs produced from G. africana only exhibited antibacterial activity against Pseudomonas aeruginosa. The GNPs did not show any significant toxicity towards KMST-6 cells, which may suggest that these nanoparticles can be safely applied in wound dressings. Full article
(This article belongs to the Special Issue Antibacterial Activity of Nanomaterials)
Figures

Figure 1

Open AccessArticle Transparent and Flexible Capacitors with an Ultrathin Structure by Using Graphene as Bottom Electrodes
Nanomaterials 2017, 7(12), 418; doi:10.3390/nano7120418
Received: 27 October 2017 / Revised: 17 November 2017 / Accepted: 24 November 2017 / Published: 28 November 2017
PDF Full-text (6469 KB) | HTML Full-text | XML Full-text
Abstract
Ultrathin, transparent and flexible capacitors using graphene as the bottom electrodes were directly fabricated on polyethylene naphthalate (PEN) substrates. ZrO2 dielectric films were deposited on the treated surface of graphene by atomic layer deposition (ALD). The deposition process did not introduce any
[...] Read more.
Ultrathin, transparent and flexible capacitors using graphene as the bottom electrodes were directly fabricated on polyethylene naphthalate (PEN) substrates. ZrO2 dielectric films were deposited on the treated surface of graphene by atomic layer deposition (ALD). The deposition process did not introduce any detectible defects in the graphene, as indicated by Raman measurements, guaranteeing the electrical performances of the graphene electrodes. The Aluminum-doped zinc oxide (AZO) films were prepared as the top electrodes using the ALD technique. The capacitors presented a high capacitance density (10.3 fF/μm2 at 10 kHz) and a relatively low leakage current (5.3 × 10−6 A/cm2 at 1 V). Bending tests revealed that the capacitors were able to work normally at an outward bending radius of 10 mm without any deterioration of electrical properties. The capacitors exhibited an average optical transmittance of close to 70% at visible wavelengths. Thus, it opens the door to practical applications in transparent integrated circuits. Full article
Figures

Figure 1

Open AccessArticle Properties-Adjustable Alumina-Zirconia Nanolaminate Dielectric Fabricated by Spin-Coating
Nanomaterials 2017, 7(12), 419; doi:10.3390/nano7120419
Received: 15 October 2017 / Revised: 26 November 2017 / Accepted: 27 November 2017 / Published: 29 November 2017
PDF Full-text (10745 KB) | HTML Full-text | XML Full-text
Abstract
In this paper, an alumina-zirconia (Al2O3-ZrO2) nanolaminate dielectric was fabricated by spin-coating and the performance was investigated. It was found that the properties of the dielectric can be adjusted by changing the content of Al2O
[...] Read more.
In this paper, an alumina-zirconia (Al2O3-ZrO2) nanolaminate dielectric was fabricated by spin-coating and the performance was investigated. It was found that the properties of the dielectric can be adjusted by changing the content of Al2O3/ZrO2 in nanolaminates: when the content of Al2O3 was higher than 50%, the properties of nanolaminates, such as the optical energy gap, dielectric strength (Vds), capacitance density, and relative permittivity were relatively stable, while the change of these properties became larger when the content of Al2O3 was less than 50%. With the content of ZrO2 varying from 50% to 100%, the variation of these properties was up to 0.482 eV, 2.12 MV/cm, 135.35 nF/cm2, and 11.64, respectively. Furthermore, it was demonstrated that the dielectric strength of nanolaminates were influenced significantly by the number (n) of bilayers. Every increment of one Al2O3-ZrO2 bilayer will enhance the dielectric strength by around 0.39 MV/cm (Vds ≈ 0.86 + 0.39n). This could be contributed to the amorphous alumina which interrupted the grain boundaries of zirconia. Full article
(This article belongs to the Special Issue Mechanics, Electrical and Optical Properties of Nano-Thin Films)
Figures

Figure 1

Open AccessArticle A Facile Approach to Tune the Electrical and Thermal Properties of Graphene Aerogels by Including Bulk MoS2
Nanomaterials 2017, 7(12), 420; doi:10.3390/nano7120420
Received: 9 November 2017 / Revised: 25 November 2017 / Accepted: 27 November 2017 / Published: 1 December 2017
PDF Full-text (6441 KB) | HTML Full-text | XML Full-text
Abstract
Graphene aerogels (GAs) have attracted extensive interest in diverse fields, owing to their ultrahigh surface area, low density and decent electrical conductivity. However, the undesirable thermal conductivity of GAs may limit their applications in energy storage devices. Here, we report a facile hydrothermal
[...] Read more.
Graphene aerogels (GAs) have attracted extensive interest in diverse fields, owing to their ultrahigh surface area, low density and decent electrical conductivity. However, the undesirable thermal conductivity of GAs may limit their applications in energy storage devices. Here, we report a facile hydrothermal method to modulate both the electrical and thermal properties of GAs by including bulk molybdenum disulfide (MoS2). It was found that MoS2 can help to reduce the size of graphene sheets and improve their dispersion, leading to the uniform porous micro-structure of GAs. The electrical measurement showed that the electrical conductivity of GAs could be decreased by 87% by adding 0.132 vol % of MoS2. On the contrary, the thermal conductivity of GAs could be increased by ~51% by including 0.2 vol % of MoS2. The quantitative investigation demonstrated that the effective medium theories (EMTs) could be applied to predict the thermal conductivity of composite GAs. Our findings indicated that the electrical and thermal properties of GAs can be tuned for the applications in various fields. Full article
(This article belongs to the Special Issue Carbon nanostructure for energy storage and conversion)
Figures

Open AccessArticle Improved In Vivo Efficacy of Anti-Hypertensive Biopeptides Encapsulated in Chitosan Nanoparticles Fabricated by Ionotropic Gelation on Spontaneously Hypertensive Rats
Nanomaterials 2017, 7(12), 421; doi:10.3390/nano7120421
Received: 5 September 2017 / Revised: 26 October 2017 / Accepted: 27 October 2017 / Published: 2 December 2017
PDF Full-text (1864 KB) | HTML Full-text | XML Full-text
Abstract
Recent biotechnological advances in the food industry have led to the enzymatic production of angiotensin I-converting enzyme (ACE)-inhibitory biopeptides with a strong blood pressure lowering effect from different food proteins. However, the safe oral administration of biopeptides is impeded by their enzymatic degradation
[...] Read more.
Recent biotechnological advances in the food industry have led to the enzymatic production of angiotensin I-converting enzyme (ACE)-inhibitory biopeptides with a strong blood pressure lowering effect from different food proteins. However, the safe oral administration of biopeptides is impeded by their enzymatic degradation due to gastrointestinal digestion. Consequently, nanoparticle (NP)-based delivery systems are used to overcome these gastrointestinal barriers to maintain the improved bioavailability and efficacy of the encapsulated biopeptides. In the present study, the ACE-inhibitory biopeptides were generated from stone fish (Actinopyga lecanora) protein using bromelain and stabilized by their encapsulation in chitosan (chit) nanoparticles (NPs). The nanoparticles were characterized for in vitro physicochemical properties and their antihypertensive effect was then evaluated on spontaneously hypertensive rats (SHRs). The results of a physicochemical characterization showed a small particle size of 162.70 nm, a polydispersity index (pdi) value of 0.28, a zeta potential of 48.78 mV, a high encapsulation efficiency of 75.36%, a high melting temperature of 146.78 °C and an in vitro sustained release of the biopeptides. The results of the in vivo efficacy indicated a dose-dependent blood pressure lowering effect of the biopeptide-loaded nanoparticles that was significantly higher (p < 0.05) compared with the un-encapsulated biopeptides. Moreover, the results of a morphological examination using transmission electron microscopy (TEM) demonstrated the nanoparticles as homogenous and spherical. Thus, the ACE-inhibitory biopeptides stabilized by chitosan nanoparticles can effectively reduce blood pressure for an extended period of time in hypertensive individuals. Full article
Figures

Figure 1

Open AccessArticle Cationic Biomimetic Particles of Polystyrene/Cationic Bilayer/Gramicidin for Optimal Bactericidal Activity
Nanomaterials 2017, 7(12), 422; doi:10.3390/nano7120422
Received: 30 October 2017 / Revised: 23 November 2017 / Accepted: 29 November 2017 / Published: 2 December 2017
PDF Full-text (2703 KB) | HTML Full-text | XML Full-text
Abstract
Nanostructured particles of polystyrene sulfate (PSS) covered by a cationic lipid bilayer of dioctadecyldimethylammonium bromide (DODAB) incorporated gramicidin D (Gr) yielding optimal and broadened bactericidal activity against both Escherichia coli and Staphylococcus aureus. The adsorption of DODAB/Gr bilayer onto PSS nanoparticles (NPs)
[...] Read more.
Nanostructured particles of polystyrene sulfate (PSS) covered by a cationic lipid bilayer of dioctadecyldimethylammonium bromide (DODAB) incorporated gramicidin D (Gr) yielding optimal and broadened bactericidal activity against both Escherichia coli and Staphylococcus aureus. The adsorption of DODAB/Gr bilayer onto PSS nanoparticles (NPs) increased the zeta-average diameter by 8–10 nm, changed the zeta-potential of the NPs from negative to positive, and yielded a narrow size distributions for the PSS/DODAB/Gr NPs, which displayed broad and maximal microbicidal activity at very small concentrations of the antimicrobials, namely, 0.057 and 0.0057 mM DODAB and Gr, respectively. The results emphasized the advantages of highly-organized, nanostructured, and cationic particles to achieve hybrid combinations of antimicrobials with broad spectrum activity at considerably reduced DODAB and Gr concentrations. Full article
(This article belongs to the Special Issue Antibacterial Activity of Nanomaterials)
Figures

Open AccessArticle Physico-Chemical and Electrochemical Properties of Nanoparticulate NiO/C Composites for High Performance Lithium and Sodium Ion Battery Anodes
Nanomaterials 2017, 7(12), 423; doi:10.3390/nano7120423
Received: 31 October 2017 / Revised: 20 November 2017 / Accepted: 27 November 2017 / Published: 2 December 2017
PDF Full-text (3928 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Nanoparticulate NiO and NiO/C composites with different carbon proportions have been prepared for anode application in lithium and sodium ion batteries. Structural characterization demonstrated the presence of metallic Ni in the composites. Morphological study revealed that the NiO and Ni nanoparticles were well
[...] Read more.
Nanoparticulate NiO and NiO/C composites with different carbon proportions have been prepared for anode application in lithium and sodium ion batteries. Structural characterization demonstrated the presence of metallic Ni in the composites. Morphological study revealed that the NiO and Ni nanoparticles were well dispersed in the matrix of amorphous carbon. The electrochemical study showed that the lithium ion batteries (LIBs), containing composites with carbon, have promising electrochemical performances, delivering specific discharge capacities of 550 mAh/g after operating for 100 cycles at 1C. These excellent results could be explained by the homogeneity of particle size and structure, as well as the uniform distribution of NiO/Ni nanoparticles in the in situ generated amorphous carbon matrix. On the other hand, the sodium ion battery (NIB) with the NiO/C composite revealed a poor cycling stability. Post-mortem analyses revealed that this fact could be ascribed to the absence of a stable Solid Electrolyte Interface (SEI) or passivation layer upon cycling. Full article
Figures

Open AccessArticle Highly Sensitive and Stretchable Strain Sensor Based on Ag@CNTs
Nanomaterials 2017, 7(12), 424; doi:10.3390/nano7120424
Received: 20 October 2017 / Revised: 18 November 2017 / Accepted: 27 November 2017 / Published: 4 December 2017
PDF Full-text (8673 KB) | HTML Full-text | XML Full-text
Abstract
Due to the rapid development and superb performance of electronic skin, we propose a highly sensitive and stretchable temperature and strain sensor. Silver nanoparticles coated carbon nanowires (Ag@CNT) nanomaterials with different Ag concentrations were synthesized. After the morphology and components of the nanomaterials
[...] Read more.
Due to the rapid development and superb performance of electronic skin, we propose a highly sensitive and stretchable temperature and strain sensor. Silver nanoparticles coated carbon nanowires (Ag@CNT) nanomaterials with different Ag concentrations were synthesized. After the morphology and components of the nanomaterials were demonstrated, the sensors composed of Polydimethylsiloxane (PDMS) and CNTs or Ag@CNTs were prepared via a simple template method. Then, the electronic properties and piezoresistive effects of the sensors were tested. Characterization results present excellent performance of the sensors for the highest gauge factor (GF) of the linear region between 0–17.3% of the sensor with Ag@CNTs1 was 137.6, the sensor with Ag@CNTs2 under the strain in the range of 0–54.8% exhibiting a perfect linearity and the GF of the sensor with Ag@CNTs2 was 14.9. Full article
Figures

Open AccessFeature PaperArticle The UV Plasmonic Behavior of Distorted Rhodium Nanocubes
Nanomaterials 2017, 7(12), 425; doi:10.3390/nano7120425
Received: 6 October 2017 / Revised: 24 November 2017 / Accepted: 28 November 2017 / Published: 4 December 2017
Cited by 1 | PDF Full-text (7898 KB) | HTML Full-text | XML Full-text
Abstract
For applications of surface-enhanced spectroscopy and photocatalysis, the ultraviolet (UV) plasmonic behavior and charge distribution within rhodium nanocubes is explored by a detailed numerical analysis. The strongest plasmonic hot-spots and charge concentrations are located at the corners and edges of the nanocubes, exactly
[...] Read more.
For applications of surface-enhanced spectroscopy and photocatalysis, the ultraviolet (UV) plasmonic behavior and charge distribution within rhodium nanocubes is explored by a detailed numerical analysis. The strongest plasmonic hot-spots and charge concentrations are located at the corners and edges of the nanocubes, exactly where they are the most spectroscopically and catalytically active. Because intense catalytic activity at corners and edges will reshape these nanoparticles, distortions of the cubical shape, including surface concavity, surface convexity, and rounded corners and edges, are also explored to quantify how significantly these distortions deteriorate their plasmonic and photocatalytic properties. The fact that the highest fields and highest carrier concentrations occur in the corners and edges of Rh nanocubes (NCs) confirms their tremendous potential for plasmon-enhanced spectroscopy and catalysis. It is shown that this opportunity is fortuitously enhanced by the fact that even higher field and charge concentrations reside at the interface between the metal nanoparticle and a dielectric or semiconductor support, precisely where the most chemically active sites are located. Full article
Figures

Figure 1

Open AccessArticle Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment
Nanomaterials 2017, 7(12), 426; doi:10.3390/nano7120426
Received: 30 October 2017 / Revised: 22 November 2017 / Accepted: 28 November 2017 / Published: 4 December 2017
PDF Full-text (8269 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Targeting cancer cells without injuring normal cells is the prime objective in treatment of cancer. In this present study, solvothermal and wet chemical precipitation techniques were employed to synthesize iron oxide (IO), hydroxyapatite (HAp), and hydroxyapatite coated iron oxide (IO-HAp) nanoparticles for magnetic
[...] Read more.
Targeting cancer cells without injuring normal cells is the prime objective in treatment of cancer. In this present study, solvothermal and wet chemical precipitation techniques were employed to synthesize iron oxide (IO), hydroxyapatite (HAp), and hydroxyapatite coated iron oxide (IO-HAp) nanoparticles for magnetic hyperthermia mediated cancer therapy. The synthesized well dispersed spherical IO-HAp nanoparticles, magnetite, and apatite phases were confirmed by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field emission transmission electron microscopy (FETEM) with Energy Dispersive X-ray spectroscopy (EDS). The non-toxic behavior of synthesized IO-HAp nanoparticles was confirmed by cytotoxicity assay (Trypan blue and MTT assay). The synthesized nanoparticles revealed a remarkable magnetic saturation of 83.2 emu/g for IO and 40.6 emu/g for IO-HAp nanoparticles in presence of 15,000 Oe (1.5 T) magnetic field at room temperature (300 K). The magnetic hyperthermia study that was performed with IO-HAp nanoparticles showed an excellent hyperthermia effect (SAR value 85 W/g) over MG-63 osteosarcoma cells. The in vitro hyperthermia temperature (~45 °C) was reached within 3 min, which shows a very high efficiency and kills nearly all of the experimental MG-63 osteosarcoma cells within 30 min exposure. These results could potentially open new perceptions for biomaterials that are aimed for anti-cancer therapies based on magnetic hyperthermia. Full article
Figures

Open AccessArticle Hyaluronan-Based Nanohydrogels as Effective Carriers for Transdermal Delivery of Lipophilic Agents: Towards Transdermal Drug Administration in Neurological Disorders
Nanomaterials 2017, 7(12), 427; doi:10.3390/nano7120427
Received: 3 November 2017 / Revised: 26 November 2017 / Accepted: 30 November 2017 / Published: 4 December 2017
Cited by 1 | PDF Full-text (4394 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We suggest a convenient nanoemulsion fabrication method to create hyaluronan (HA)-based nanohydrogels for effective transdermal delivery. First, hyaluronan-conjugated dodecylamine (HA–Do) HA-based polymers to load the lipophilic agents were synthesized with hyaluronan (HA) and dodecylamine (Do) by varying the substitution ratio of Do to
[...] Read more.
We suggest a convenient nanoemulsion fabrication method to create hyaluronan (HA)-based nanohydrogels for effective transdermal delivery. First, hyaluronan-conjugated dodecylamine (HA–Do) HA-based polymers to load the lipophilic agents were synthesized with hyaluronan (HA) and dodecylamine (Do) by varying the substitution ratio of Do to HA. The synthetic yield of HA–Do was more than 80% (HA–Do (A): 82.7 ± 4.7%, HA–Do (B): 87.1 ± 3.9% and HA–Do (C): 81.4 ± 4.5%). Subsequently, nanohydrogels were fabricated using the nanoemulsion method. Indocyanine green (ICG) simultaneously self-assembled with HA–Do, and the size depended on the substitution ratio of Do in HA–Do (nanohydrogel (A): 118.0 ± 2.2 nm, nanohydrogel (B): 121.9 ± 11.4 nm, and nanohydrogel (C): 142.2 ± 3.8 nm). The nanohydrogels were delivered into cells, and had excellent biocompatibility. Especially, nanohydrogel (A) could deliver and permeate ICG into the deep skin layer, the dermis. This suggests that nanohydrogels can be potent transdermal delivery systems. Full article
(This article belongs to the Special Issue Nanoparticles in Neurology)
Figures

Open AccessCommunication Thermally and Electrically Conductive Nanopapers from Reduced Graphene Oxide: Effect of Nanoflakes Thermal Annealing on the Film Structure and Properties
Nanomaterials 2017, 7(12), 428; doi:10.3390/nano7120428
Received: 8 November 2017 / Revised: 25 November 2017 / Accepted: 30 November 2017 / Published: 5 December 2017
PDF Full-text (912 KB) | HTML Full-text | XML Full-text
Abstract
In this study, we report a novel strategy to prepare graphene nanopapers from direct vacuum filtration. Instead of the conventional method, i.e., thermal annealing nanopapers at extremely high temperatures prepared from graphene oxide (GO) or partially reduced GO, we fabricate our graphene nanopapers
[...] Read more.
In this study, we report a novel strategy to prepare graphene nanopapers from direct vacuum filtration. Instead of the conventional method, i.e., thermal annealing nanopapers at extremely high temperatures prepared from graphene oxide (GO) or partially reduced GO, we fabricate our graphene nanopapers directly from suspensions of fully reduced graphene oxide (RGO), obtained after RGO and thermal annealing at 1700 °C in vacuum. By using this approach, we studied the effect of thermal annealing on the physical properties of the macroscopic graphene-based papers. Indeed, we demonstrated that the enhancement of the thermal and electrical properties of graphene nanopapers prepared from annealed RGO is strongly influenced by the absence of oxygen functionalities and the morphology of the nanoflakes. Hence, our methodology can be considered as a valid alternative to the classical approach. Full article
Figures

Open AccessArticle Piezoelectric Potential in Single-Crystalline ZnO Nanohelices Based on Finite Element Analysis
Nanomaterials 2017, 7(12), 430; doi:10.3390/nano7120430
Received: 7 October 2017 / Revised: 8 November 2017 / Accepted: 1 December 2017 / Published: 7 December 2017
PDF Full-text (1155 KB) | HTML Full-text | XML Full-text
Abstract
Electric potential produced in deformed piezoelectric nanostructures is of significance for both fundamental study and practical applications. To reveal the piezoelectric property of ZnO nanohelices, the piezoelectric potential in single-crystal nanohelices was simulated by finite element method calculations. For a nanohelix with a
[...] Read more.
Electric potential produced in deformed piezoelectric nanostructures is of significance for both fundamental study and practical applications. To reveal the piezoelectric property of ZnO nanohelices, the piezoelectric potential in single-crystal nanohelices was simulated by finite element method calculations. For a nanohelix with a length of 1200 nm, a mean coil radius of 150 nm, five active coils, and a hexagonal coiled wire with a side length 100 nm, a compressing force of 100 nN results in a potential of 1.85 V. This potential is significantly higher than the potential produced in a straight nanowire with the same length and applied force. Maintaining the length and increasing the number of coils or mean coil radius leads to higher piezoelectric potential in the nanohelix. Appling a force along the axial direction produces higher piezoelectric potential than in other directions. Adding lateral forces to an existing axial force can change the piezoelectric potential distribution in the nanohelix, while the maximum piezoelectric potential remains largely unchanged in some cases. This research demonstrates the promising potential of ZnO nanohelices for applications in sensors, micro-electromechanical systems (MEMS) devices, nanorobotics, and energy sciences. Full article
(This article belongs to the Special Issue ZnO and TiO2 Based Nanostructures)
Figures

Figure 1

Open AccessArticle Novel Mesoporous Flowerlike Iron Sulfide Hierarchitectures: Facile Synthesis and Fast Lithium Storage Capability
Nanomaterials 2017, 7(12), 431; doi:10.3390/nano7120431
Received: 8 November 2017 / Revised: 28 November 2017 / Accepted: 1 December 2017 / Published: 6 December 2017
PDF Full-text (4351 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The 3D flowerlike iron sulfide (F-FeS) is successfully synthesized via a facile one-step sulfurization process, and the electrochemical properties as anode materials for lithium ion batteries (LIBs) are investigated. Compared with bulk iron sulfide, we find that the unique structural features, overall flowerlike
[...] Read more.
The 3D flowerlike iron sulfide (F-FeS) is successfully synthesized via a facile one-step sulfurization process, and the electrochemical properties as anode materials for lithium ion batteries (LIBs) are investigated. Compared with bulk iron sulfide, we find that the unique structural features, overall flowerlike structure, composed of several dozen nanopetals and numerous small size iron sulfide particles embedded within the fine nanopetals, and hierarchical pore structure features provide signification improvements in lithium storage performance, with a high-rate discharge capacity of 779.0 mAh g−1 at a rate of 5 A g−1, due to effectively alleviating the volume expansion during the lithiation/delithiation process, and shorting the diffusion length of both lithium ion and electron. Especially, an excellent cycling stability are achieved, a high discharge capacity of 890 mAh g−1 retained at a rate of 1.0 A g−1, suggesting its promising applications in lithium ion batteries (LIBs). Full article
(This article belongs to the Special Issue Three-dimensional Nanomaterials for Energy Storage and Conversions)
Figures

Open AccessArticle Evaluation of the Corrosion Resistance Properties of Electroplated Chitosan-Zn1−xCuxO Composite Thin Films
Nanomaterials 2017, 7(12), 432; doi:10.3390/nano7120432
Received: 4 November 2017 / Revised: 27 November 2017 / Accepted: 1 December 2017 / Published: 6 December 2017
PDF Full-text (3489 KB) | HTML Full-text | XML Full-text
Abstract
Novel chitosan–zinc copper oxide (Zn1−xCuxO) composites were electrochemically synthesized through galvanostatic deposition. The prepared chitosan-based composite thin films were elaborately investigated to determine their structural, morphological, compositional, impedance, and corrosion properties. X-ray diffraction analysis was performed to reveal their
[...] Read more.
Novel chitosan–zinc copper oxide (Zn1−xCuxO) composites were electrochemically synthesized through galvanostatic deposition. The prepared chitosan-based composite thin films were elaborately investigated to determine their structural, morphological, compositional, impedance, and corrosion properties. X-ray diffraction analysis was performed to reveal their structural orientation of composite thin films. Energy dispersive analysis by X-ray evidently confirmed the existence of Zn, Cu, and O in the composite thin films. Nyquist plots revealed that the chitosan-Zn1−xCuxO thin films had obvious semi-circular boundaries, and higher resistance was observed for chitosan-ZnO due to the grain boundary effect. Corrosion properties were evaluated using both an electrochemical method and the ASTM weight gain method, which revealed good corrosion rates of 34 and 35 × 10−3 mm/y, respectively, for chitosan-ZnO thin film. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Self-Supported Ni(P, O)x·MoOx Nanowire Array on Nickel Foam as an Efficient and Durable Electrocatalyst for Alkaline Hydrogen Evolution
Nanomaterials 2017, 7(12), 433; doi:10.3390/nano7120433
Received: 31 October 2017 / Revised: 24 November 2017 / Accepted: 28 November 2017 / Published: 6 December 2017
PDF Full-text (9784 KB) | HTML Full-text | XML Full-text
Abstract
Earth-abundant and low-cost catalysts with excellent electrocatalytic hydrogen evolution reaction (HER) activity in alkaline solution play an important role in the sustainable production of hydrogen energy. In this work, a catalyst of Ni(P, O)x·MoOx nanowire array on nickel foam has
[...] Read more.
Earth-abundant and low-cost catalysts with excellent electrocatalytic hydrogen evolution reaction (HER) activity in alkaline solution play an important role in the sustainable production of hydrogen energy. In this work, a catalyst of Ni(P, O)x·MoOx nanowire array on nickel foam has been prepared via a facile route for efficient alkaline HER. Benefiting from the collaborative advantages of Ni(P, O)x and amorphous MoOx, as well as three-dimensional porous conductive nickel scaffold, the hybrid electrocatalyst shows high catalytic activity in 1 M KOH aqueous solution, including a small overpotential of 59 mV at 10 mA cm−2, a low Tafel slope of 54 mV dec-1, and excellent cycling stability. Full article
(This article belongs to the Special Issue Nanomaterials Based Fuel Cells and Supercapacitors)
Figures

Figure 1

Open AccessArticle Development of Octyl Methoxy Cinnamates (OMC)/Silicon Dioxide (SiO2) Nanoparticles by Sol-Gel Emulsion Method
Nanomaterials 2017, 7(12), 434; doi:10.3390/nano7120434
Received: 13 November 2017 / Revised: 26 November 2017 / Accepted: 27 November 2017 / Published: 7 December 2017
PDF Full-text (2189 KB) | HTML Full-text | XML Full-text
Abstract
Although octyl methoxy cinnamates (OMC) is the most used Ultraviolet B (UVB) filter in sunscreen, it has poor light stability in emulsion system. In this study, OMC/SiO2 nanoparticles were prepared via sol-gel emulsion method. Tetraethoxy silane (TEOS) was used as the silica
[...] Read more.
Although octyl methoxy cinnamates (OMC) is the most used Ultraviolet B (UVB) filter in sunscreen, it has poor light stability in emulsion system. In this study, OMC/SiO2 nanoparticles were prepared via sol-gel emulsion method. Tetraethoxy silane (TEOS) was used as the silica source to encapsulate OMC. Modification of experimental parameters such as stirring speed of condensation reaction and emulsion condition, pH value of acid-catalyzed, surfactant and different percentage of TEOS and OMC, adding of OMC and surfactant to different phase may affect the particle size, and yield and entrapment efficiency in preparation process of OMC/SiO2 nanoparticles. Concluding all the parameter, we found that when condensation reaction and emulsion conditions are at 1000 rpm, pH 1.5, Span 80/Tween 20, TEOS/OMC ratios 1:1, OMC and surfactants added in oil phase, resulting in smaller particle sizes 476.5 nm, higher yield 95.8%, and higher entrapment efficiency 61.09%. Fourier transform infrared (FTIR) analysis demonstrated that OMC/SiO2 nanoparticles were successfully prepared. In vitro release profile supposed that OMC/SiO2 nanoparticles can delay OMC releasing and had 60.83% decreasing of cumulative amount. Therefore, the OMC/SiO2 nanoparticles have the potential to develop as new sunscreen materials in the use for cosmetics field in the future. Full article
Figures

Open AccessArticle Zinc-Modified Nanotransporter of Doxorubicin for Targeted Prostate Cancer Delivery
Nanomaterials 2017, 7(12), 435; doi:10.3390/nano7120435
Received: 26 October 2017 / Revised: 23 November 2017 / Accepted: 30 November 2017 / Published: 8 December 2017
PDF Full-text (2431 KB) | HTML Full-text | XML Full-text
Abstract
This work investigated the preparation of chitosan nanoparticles used as carriers for doxorubicin for targeted cancer delivery. Prepared nanocarriers were stabilized and functionalized via zinc ions incorporated into the chitosan nanoparticle backbone. We took the advantage of high expression of sarcosine in the
[...] Read more.
This work investigated the preparation of chitosan nanoparticles used as carriers for doxorubicin for targeted cancer delivery. Prepared nanocarriers were stabilized and functionalized via zinc ions incorporated into the chitosan nanoparticle backbone. We took the advantage of high expression of sarcosine in the prostate cancer cells. The prostate cancer targeting was mediated by the AntiSar antibodies decorated surface of the nanocage. Formation of the chitosan nanoparticles was determined using a ninhydrin assay and differential pulse voltammetry. Obtained results showed the strong effect of tripolyphosphine on the nanoparticle formation. The zinc ions affected strong chitosan backbone coiling both in inner and outer chitosan nanoparticle structure. Zinc electrochemical signal depended on the level of the complex formation and the potential shift from −960 to −950 mV. Formed complex is suitable for doxorubicin delivery. It was observed the 20% entrapment efficiency of doxorubicin and strong dependence of drug release after 120 min in the blood environment. The functionality of the designed nanotransporter was proven. The purposed determination showed linear dependence in the concentration range of Anti-sarcosine IgG labeled gold nanoparticles from 0 to 1000 µg/mL and the regression equation was found to be y = 3.8x − 66.7 and R2 = 0.99. Performed ELISA confirmed the ability of Anti-sarcosine IgG labeled chitosan nanoparticles with loaded doxorubicin to bind to the sarcosine molecule. Observed hemolytic activity of the nanotransporter was 40%. Inhibition activity of our proposed nanotransporter was evaluated to be 0% on the experimental model of S. cerevisiae. Anti-sarcosine IgG labeled chitosan nanoparticles, with loaded doxorubicin stabilized by Zn ions, are a perspective type of nanocarrier for targeted drug therapy managed by specific interaction with sarcosine and metallothionein for prostate cancer. Full article
(This article belongs to the Special Issue Pharmaceutical Nanotechnology)
Figures

Figure 1

Open AccessArticle Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering
Nanomaterials 2017, 7(12), 436; doi:10.3390/nano7120436
Received: 31 October 2017 / Revised: 30 November 2017 / Accepted: 5 December 2017 / Published: 10 December 2017
PDF Full-text (4012 KB) | HTML Full-text | XML Full-text
Abstract
Interpenetrating polymer networks (IPNs) have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs
[...] Read more.
Interpenetrating polymer networks (IPNs) have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO). First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%). The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues) and migration (skin, intestine) than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering. Full article
(This article belongs to the Special Issue Nanofibrous Scaffolds for Biomedical Application)
Figures

Figure 1

Open AccessArticle Increased Efficiency of Solar Cells Protected by Hydrophobic and Hydrophilic Anti-Reflecting Nanostructured Glasses
Nanomaterials 2017, 7(12), 437; doi:10.3390/nano7120437
Received: 4 October 2017 / Revised: 31 October 2017 / Accepted: 6 December 2017 / Published: 14 December 2017
Cited by 1 | PDF Full-text (3996 KB) | HTML Full-text | XML Full-text
Abstract
We investigated the fabrication of large-area (cm2) nanostructured glasses for solar cell modules with hydrophobic and hydrophilic properties using soft lithography and colloidal lithography. Both of these techniques entail low-cost and ease of nanofabrication. We explored the use of simple 1D
[...] Read more.
We investigated the fabrication of large-area (cm2) nanostructured glasses for solar cell modules with hydrophobic and hydrophilic properties using soft lithography and colloidal lithography. Both of these techniques entail low-cost and ease of nanofabrication. We explored the use of simple 1D and 2D nanopatterns (nanowires and nanocones) and the effect of introducing disorder in the nanostructures. We observed an increase in the transmitted light for ordered nanostructures with a maximum value of 99% for wavelengths >600 nm when ordered nanocones are fabricated on the two sides of the solar glass. They produced an increment in the efficiency of the packaged solar cell with respect to the glass without nanostructures. On the one hand, the wettability properties showed that the ordering of the nanostructures improved the hydrophobicity of the solar glasses and increased their self-cleaning capacity. On the other hand, the disordered nanostructures improved the hydrophilic properties of solar glasses, increasing their anti-fogging capacity. The results show that by selecting the appropriate nanopattern, the wettability properties (hydrophobic or hydrophilic) can be easily improved without decreasing the efficiency of the solar cell underneath. Full article
Figures

Open AccessArticle New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures
Nanomaterials 2017, 7(12), 438; doi:10.3390/nano7120438
Received: 9 November 2017 / Revised: 30 November 2017 / Accepted: 5 December 2017 / Published: 11 December 2017
PDF Full-text (3100 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
New three-dimensional (3D) porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions), mechanical stability (e.g., flexibility, high electroactive mass loadings), and electrochemical performance (e.g., low volumetric energy densities and rate capabilities). Here a new
[...] Read more.
New three-dimensional (3D) porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions), mechanical stability (e.g., flexibility, high electroactive mass loadings), and electrochemical performance (e.g., low volumetric energy densities and rate capabilities). Here a new electrode concept is introduced based on the direct growth of vertically-aligned carbon nanotubes (VA-CNTs) on embroidered Cu current collectors. The direct growth of VA-CNTs was achieved by plasma-enhanced chemical vapor deposition (PECVD), and there was no application of any post-treatment or cleaning procedure. The electrochemical behavior of the as-grown VA-CNTs was analyzed by charge/discharge cycles at different specific currents and with electrochemical impedance spectroscopy (EIS) measurements. The results were compared with values found in the literature. The as-grown VA-CNTs exhibit higher specific capacities than graphite and pristine VA-CNTs found in the literature. This together with the possibilities that the Cu embroidered structures offer in terms of specific surface area, total surface area, and designs provide a breakthrough in new 3D electrode concepts. Full article
(This article belongs to the Special Issue Carbon nanostructure for energy storage and conversion)
Figures

Open AccessArticle The Effect of Different Coupling Agents on Nano-ZnO Materials Obtained via the Sol–Gel Process
Nanomaterials 2017, 7(12), 439; doi:10.3390/nano7120439
Received: 10 October 2017 / Revised: 27 November 2017 / Accepted: 8 December 2017 / Published: 12 December 2017
PDF Full-text (4003 KB) | HTML Full-text | XML Full-text
Abstract
Hybrid nanomaterials based on zinc oxide were synthesized via the sol–gel method, using different silane coupling agents: (3-glycidyloxypropyl)trimethoxysilane (GPTMS), phenyltriethoxysilane (PhTES), octyltriethoxysilane (OTES), and octadecyltriethoxysilane (ODTES). Morphological properties and the silane precursor type effect on the particle size were investigated using dynamic light
[...] Read more.
Hybrid nanomaterials based on zinc oxide were synthesized via the sol–gel method, using different silane coupling agents: (3-glycidyloxypropyl)trimethoxysilane (GPTMS), phenyltriethoxysilane (PhTES), octyltriethoxysilane (OTES), and octadecyltriethoxysilane (ODTES). Morphological properties and the silane precursor type effect on the particle size were investigated using dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The bonding characteristics of modified ZnO materials were investigated using Fourier transform infrared spectroscopy (FTIR). The final solutions were deposited on metallic substrate (aluminum) in order to realize coatings with various wettability and roughness. The morphological studies, obtained by ESEM and TEM analysis, showed that the sizes of the ZnO nanoparticles are changed as function of silane precursor used in synthesis. The thermal stability of modified ZnO materials showed that the degradation of the alkyl groups takes place in the 300–500 °C range. Water wettability study revealed a contact angle of 142 ± 5° for the surface covered with ZnO material modified with ODTES and showed that the water contact angle increases as the alkyl chain from the silica precursor increases. These modified ZnO materials, therefore, can be easily incorporated in coatings for various applications such as anti-corrosion and anti-icing. Full article
(This article belongs to the Special Issue Sol-Gel Preparation of Nanomaterials)
Figures

Figure 1

Open AccessArticle Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde
Nanomaterials 2017, 7(12), 440; doi:10.3390/nano7120440
Received: 18 September 2017 / Revised: 20 November 2017 / Accepted: 6 December 2017 / Published: 12 December 2017
PDF Full-text (2043 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A simple method for the synthesis of formate esters and formamides is presented based on the Au/TiO2-catalyzed aerobic oxidative coupling between alcohols or amines and formaldehyde. The suitable form of formaldehyde is paraformaldehyde, as cyclic trimeric 1,3,5-trioxane is inactive. The reaction
[...] Read more.
A simple method for the synthesis of formate esters and formamides is presented based on the Au/TiO2-catalyzed aerobic oxidative coupling between alcohols or amines and formaldehyde. The suitable form of formaldehyde is paraformaldehyde, as cyclic trimeric 1,3,5-trioxane is inactive. The reaction proceeds via the formation of an intermediate hemiacetal or hemiaminal, respectively, followed by the Au nanoparticle-catalyzed aerobic oxidation of the intermediate. Typically, the oxidative coupling between formaldehyde (2 equiv) and amines occurs quantitatively at room temperature within 4 h, and there is no need to add a base as in analogous coupling reactions. The oxidative coupling between formaldehyde (typically 3 equiv) and alcohols is unprecedented and occurs more slowly, yet in good to excellent yields and selectivity. Minor side-products (2–12%) from the acetalization of formaldehyde by the alcohol are also formed. The catalyst is recyclable and can be reused after a simple filtration in five consecutive runs with a small loss of activity. Full article
Figures

Open AccessFeature PaperArticle Silver Nanoparticles in the Lung: Toxic Effects and Focal Accumulation of Silver in Remote Organs
Nanomaterials 2017, 7(12), 441; doi:10.3390/nano7120441
Received: 30 October 2017 / Revised: 1 December 2017 / Accepted: 5 December 2017 / Published: 12 December 2017
PDF Full-text (11960 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The distribution of silver (Ag) into remote organs secondary to the application of Ag nanoparticles (Ag-NP) to the lung is still incompletely understood and was investigated in the rat with imaging methods. Dose-finding experiments were carried out with 50 nm- or 200 nm-sized
[...] Read more.
The distribution of silver (Ag) into remote organs secondary to the application of Ag nanoparticles (Ag-NP) to the lung is still incompletely understood and was investigated in the rat with imaging methods. Dose-finding experiments were carried out with 50 nm- or 200 nm-sized polyvinyl pyrrolidine (PVP)-coated Ag-NP using alveolar macrophages in vitro and female rats, which received Ag-NP via intratracheal instillation. In the main study, we administered 37.5–300 µg per rat lung of the more toxic Ag50-PVP and assessed the broncho-alveolar lavage fluid (BALF) for inflammatory cells, total protein and fibronectin after three and 21 days. In parallel, lung tissue was analysed for DNA double-strand breaks and altered cell proliferation. While 75–150 µg Ag50-PVP per rat lung caused a reversible inflammation, 300 µg led to DNA damage, accelerated cell proliferation and progressively increasing numbers of neutrophilic granulocytes. Ag accumulation was significant in homogenates of liver and other peripheral organs upon lung dose of ≥75 µg. Quantitative laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) combined with enhanced dark field microscopy and autometallography revealed focal accumulations of Ag and/or Ag-NP in sections of peripheral organs: mediastinal lymph nodes contained Ag-NP especially in peripheral macrophages and Ag in argyrophilic fibres. In the kidney, Ag had accumulated within proximal tubuli, while renal filter structures contained no Ag. Discrete localizations were also observed in immune cells of liver and spleen. Overall, the study shows that concentrations of Ag-NP, which elicit a transient inflammation in the rat lung, lead to focal accumulations of Ag in peripheral organs, and this might pose a risk to particular cell populations in remote sites. Full article
Figures

Open AccessArticle Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition
Nanomaterials 2017, 7(12), 442; doi:10.3390/nano7120442
Received: 27 October 2017 / Revised: 4 December 2017 / Accepted: 6 December 2017 / Published: 13 December 2017
PDF Full-text (6832 KB) | HTML Full-text | XML Full-text
Abstract
Nanocomposite systems and nanoparticle (NP) films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework,
[...] Read more.
Nanocomposite systems and nanoparticle (NP) films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs) films and of Ag NPs/TiO2 porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO2 (Ag/Ti 50-50) nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE). We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO2 NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable. Full article
Figures

Open AccessArticle Novel Hydrogel-Advanced Modified Clay Nanocomposites as Possible Vehicles for Drug Delivery and Controlled Release
Nanomaterials 2017, 7(12), 443; doi:10.3390/nano7120443
Received: 31 October 2017 / Revised: 24 November 2017 / Accepted: 8 December 2017 / Published: 13 December 2017
PDF Full-text (6304 KB) | HTML Full-text | XML Full-text
Abstract
Present study refers to the synthesis of new advanced materials based on poly(methacrylic acid) (PMAA) with previously reported own advanced modified clays by edge covalent bonding. This will create the premises to obtain nanocomposite hydrogels with combined hydrophilic-hydrophobic behavior absolutely necessary for co-delivery
[...] Read more.
Present study refers to the synthesis of new advanced materials based on poly(methacrylic acid) (PMAA) with previously reported own advanced modified clays by edge covalent bonding. This will create the premises to obtain nanocomposite hydrogels with combined hydrophilic-hydrophobic behavior absolutely necessary for co-delivery of polar/nonpolar substances. For the synthesis, N,N’-methylenebisacrylamide was used as cross-linker and ammonium persulphate as initiator. As a consequence of the inclusion of clay into the polymer matrix and the intercalation of PMAA between the layers as well as the presence of hydrophobic interactions occurred between partners, the final hydrogel nanocomposites possessed greater swelling degrees, slower de-swelling process and enhanced mechanical properties depending on the clay type in comparison with pure hydrogel. In vitro MTS ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt]) colorimetric assay showed that direct exposure with PMMA-clay-based constructs did not affect cell viability and proliferation in time (24 and 48 h) on either normal or adenocarcinoma cell lines. Full article
Figures

Open AccessArticle Morphological and Optical Characteristics of Chitosan(1−x):Cuox (4 ≤ x ≤ 12) Based Polymer Nano-Composites: Optical Dielectric Loss as an Alternative Method for Tauc’s Model
Nanomaterials 2017, 7(12), 444; doi:10.3390/nano7120444
Received: 26 October 2017 / Revised: 26 November 2017 / Accepted: 8 December 2017 / Published: 13 December 2017
PDF Full-text (8367 KB) | HTML Full-text | XML Full-text
Abstract
In this work, copper (Cu) nanoparticles with observable surface plasmonic resonance (SPR) peaks were synthesized by an in-situ method. Chitosan host polymer was used as a reduction medium and a capping agent for the Cu nanoparticles. The surface morphology of the samples was
[...] Read more.
In this work, copper (Cu) nanoparticles with observable surface plasmonic resonance (SPR) peaks were synthesized by an in-situ method. Chitosan host polymer was used as a reduction medium and a capping agent for the Cu nanoparticles. The surface morphology of the samples was investigated through the use of scanning electron micrograph (SEM) technique. Copper nanoparticles appeared as chains and white specks in the SEM images. The strong peaks due to the Cu element observed in the spectrum of energy dispersive analysis of X-rays. For the nanocomposite samples, obvious peaks due to the SPR phenomena were obtained in the Ultraviolet-visible (UV-vis) spectra. The effect of Cu nanoparticles on the host band gap was understood from absorption edges shifting of absorption edges to lower photon energy. The optical dielectric loss parameter obtained from the measurable quantities was used as an alternative method to study the band structure of the samples. Quantum mechanical models drawbacks, in the study of band gap, were explained based on the optical dielectric loss. A clear dispersion region was able to be observed in refractive indices spectra of the composite samples. A linear relationship with a regression value of 0.99 was achieved between the refractive index and volume fractions of CuI content. Cu nanoparticles with various sizes and homogenous dispersions were also determined from transmission electron microscope (TEM) images. Full article
(This article belongs to the Special Issue Polymer Nanocomposites)
Figures

Open AccessArticle Impedance Spectroscopy Analysis and Equivalent Circuit Modeling of Graphene Oxide Solutions
Nanomaterials 2017, 7(12), 446; doi:10.3390/nano7120446
Received: 11 October 2017 / Revised: 2 December 2017 / Accepted: 9 December 2017 / Published: 14 December 2017
PDF Full-text (3130 KB) | HTML Full-text | XML Full-text
Abstract
The optical and electrical characteristics of a graphene oxide solution (GS) with different graphene oxide (GO) concentrations in de-ionized water are investigated via the electrochemical impedance spectroscopy (EIS) method. The measurement results produced by the EIS for the GS are represented with both
[...] Read more.
The optical and electrical characteristics of a graphene oxide solution (GS) with different graphene oxide (GO) concentrations in de-ionized water are investigated via the electrochemical impedance spectroscopy (EIS) method. The measurement results produced by the EIS for the GS are represented with both Bode and Nyquist plots in a frequency range from 1 kHz to 10 MHz. Using these results, we develop an equivalent circuit model as a function of the GO concentration, representing the GS as a mixed circuit of two-dimensional (2D) GO dispersed in parallel in de-ionized (DI) water. The underlying physics of the current-flowing behavior in the GS are explained and interpreted using empirical circuit models; the circuit model also shows that highly resistive GO becomes conductive in GS form in the DI water. The findings in this work should draw new attention toward GSes and related applications, including functional composite materials, catalysts, and filter membranes. Full article
Figures

Open AccessCommunication Enhanced Reduction of Few-Layer Graphene Oxide via Supercritical Water Gasification of Glycerol
Nanomaterials 2017, 7(12), 447; doi:10.3390/nano7120447
Received: 31 October 2017 / Revised: 5 December 2017 / Accepted: 6 December 2017 / Published: 14 December 2017
PDF Full-text (1508 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A sustainable and effective method for de-oxygenation of few-layer graphene oxide (FLGO) by glycerol gasification in supercritical water (SCW) is described. In this manner, reduction of FLGO and valorization of glycerol, in turn catalyzed by FLGO, are achieved simultaneously. The addition of glycerol
[...] Read more.
A sustainable and effective method for de-oxygenation of few-layer graphene oxide (FLGO) by glycerol gasification in supercritical water (SCW) is described. In this manner, reduction of FLGO and valorization of glycerol, in turn catalyzed by FLGO, are achieved simultaneously. The addition of glycerol enhanced FLGO oxygen removal by up to 59% due to the in situ hydrogen generation as compared to the use of SCW only. Physicochemical characterization of the reduced FLGO (rFLGO) showed a high restoration of the sp2-conjugated carbon network. FLGO sheets with a starting C/O ratio of 2.5 are reduced by SCW gasification of glycerol to rFLGO with a C/O ratio of 28.2, above those reported for hydrazine-based methods. Additionally, simultaneous glycerol gasification resulted in the concurrent production of H2, CO, CH4 and valuable hydrocarbons such as alkylated and non-alkylated long chain hydrocarbon (C12–C31), polycyclic aromatic hydrocarbons (PAH), and phthalate, phenol, cresol and furan based compounds. Full article
Figures

Open AccessArticle Sequential Growth of Uniform β-NaYF4@β-NaLnF4 (Ln = Y, Lu, Yb) Microcrystals with Luminescent Properties of Multicolor Tuning and Dual-Mode Emission
Nanomaterials 2017, 7(12), 448; doi:10.3390/nano7120448
Received: 13 November 2017 / Revised: 8 December 2017 / Accepted: 11 December 2017 / Published: 14 December 2017
PDF Full-text (4092 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We synthesized the uniform core-shell microstructured compounds with hexagonal phase NaYF4:Er/Yb microrods as the core and hexagonal phase NaLnF4 (NaYbF4, NaLuF4:Yb/Tm, NaYF4:Yb/Er, NaYF4:Eu) as the shell based on the hydrothermal reaction. These
[...] Read more.
We synthesized the uniform core-shell microstructured compounds with hexagonal phase NaYF4:Er/Yb microrods as the core and hexagonal phase NaLnF4 (NaYbF4, NaLuF4:Yb/Tm, NaYF4:Yb/Er, NaYF4:Eu) as the shell based on the hydrothermal reaction. These microscale core-shell structures provided a platform for the spatially confining optical process while possessing high luminescence efficiency. The thickness of the shell could be controlled by adjusting the amounts of shell precursor, which significantly affected the intensity of the shell dopant ions emission and the emission color of core-shell upconversion luminescence (UCL). The uniform NaYF4@NaLnF4 (Ln = Y, Lu, Yb) microrods, with a series of rare-earth ions doped into the core and shell layer at various doping concentrations, achieved color-tuning of the upconversion (UC) emission and dual-mode emission at the single-microcrystal level, thus allowing the efficient utilization of core-shell microcrystals in the photonics and security labeling. This study suggests a new class of luminescent materials in the microscopic field. Full article
Figures

Figure 1

Open AccessArticle Constructing Sheet-On-Sheet Structured Graphitic Carbon Nitride/Reduced Graphene Oxide/Layered MnO2 Ternary Nanocomposite with Outstanding Catalytic Properties on Thermal Decomposition of Ammonium Perchlorate
Nanomaterials 2017, 7(12), 450; doi:10.3390/nano7120450
Received: 27 October 2017 / Revised: 3 December 2017 / Accepted: 9 December 2017 / Published: 15 December 2017
PDF Full-text (5519 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We unprecedentedly report that layered MnO2 nanosheets were in situ formed onto the surface of covalently bonded graphitic carbon nitride/reduced graphene oxide nanocomposite (g-C3N4/rGO), forming sheet-on-sheet structured two dimension (2D) graphitic carbon nitride/reduced graphene oxide/layered MnO2 ternary
[...] Read more.
We unprecedentedly report that layered MnO2 nanosheets were in situ formed onto the surface of covalently bonded graphitic carbon nitride/reduced graphene oxide nanocomposite (g-C3N4/rGO), forming sheet-on-sheet structured two dimension (2D) graphitic carbon nitride/reduced graphene oxide/layered MnO2 ternary nanocomposite (g-C3N4/rGO/MnO2) with outstanding catalytic properties on thermal decomposition of ammonium perchlorate (AP). The covalently bonded g-C3N4/rGO was firstly prepared by the calcination of graphene oxide-guanidine hydrochloride precursor (GO-GndCl), following by its dispersion into the KMnO4 aqueous solution to construct the g-C3N4/rGO/MnO2 ternary nanocomposite. FT-IR, XRD, Raman as well as the XPS results clearly demonstrated the chemical interaction between g-C3N4, rGO and MnO2. TEM and element mapping indicated that layered g-C3N4/rGO was covered with thin MnO2 nanosheets. Furthermore, the obtained g-C3N4/rGO/MnO2 nanocomposite exhibited promising catalytic capacity on thermal decomposition of AP. Upon addition of 2 wt % g-C3N4/rGO/MnO2 ternary nanocomposite as catalyst, the thermal decomposition temperature of AP was largely decreased up by 142.5 °C, which was higher than that of pure g-C3N4, g-C3N4/rGO and MnO2, respectively, demonstrating the synergistic catalysis of the as-prepared nanocomposite. Full article
(This article belongs to the Special Issue Graphitic Carbon Nitride Nanostructures: Catalysis and Beyond)
Figures

Open AccessArticle Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: In Vitro Cellular Uptake
Nanomaterials 2017, 7(12), 451; doi:10.3390/nano7120451
Received: 8 November 2017 / Revised: 6 December 2017 / Accepted: 11 December 2017 / Published: 15 December 2017
Cited by 2 | PDF Full-text (7499 KB) | HTML Full-text | XML Full-text
Abstract
Iron deficiency anemia is a common clinical consequence for people who suffer from chronic kidney disease, especially those requiring dialysis. Intravenous (IV) iron therapy is a widely accepted safe and efficacious treatment for iron deficiency anemia. Numerous IV iron drugs have been approved
[...] Read more.
Iron deficiency anemia is a common clinical consequence for people who suffer from chronic kidney disease, especially those requiring dialysis. Intravenous (IV) iron therapy is a widely accepted safe and efficacious treatment for iron deficiency anemia. Numerous IV iron drugs have been approved by U.S. Food and Drug Administration (FDA), including a single generic product, sodium ferric gluconate complex in sucrose. In this study, we compared the cellular iron uptake profiles of the brand (Ferrlecit®) and generic sodium ferric gluconate (SFG) products. We used a colorimetric assay to examine the amount of iron uptake by three human macrophage cell lines. This is the first published study to provide a parallel evaluation of the cellular uptake of a brand and a generic IV iron drug in a mononuclear phagocyte system. The results showed no difference in iron uptake across all cell lines, tested doses, and time points. The matching iron uptake profiles of Ferrlecit® and its generic product support the FDA’s present position detailed in the draft guidance on development of SFG complex products that bioequivalence can be based on qualitative (Q1) and quantitative (Q2) formulation sameness, similar physiochemical characterization, and pharmacokinetic bioequivalence studies. Full article
(This article belongs to the Special Issue Pharmaceutical Nanotechnology)
Figures

Figure 1

Open AccessArticle Influence of Sterilization and Preservation Procedures on the Integrity of Serum Protein-Coated Magnetic Nanoparticles
Nanomaterials 2017, 7(12), 453; doi:10.3390/nano7120453
Received: 30 October 2017 / Revised: 8 December 2017 / Accepted: 12 December 2017 / Published: 15 December 2017
PDF Full-text (2919 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Protein-coated magnetic nanoparticles are promising candidates for various medical applications. Prior to their application into a biological system, one has to guarantee that the particle dispersions are free from pathogens or any other microbiologic contamination. Furthermore, to find entrance into clinical routine, the
[...] Read more.
Protein-coated magnetic nanoparticles are promising candidates for various medical applications. Prior to their application into a biological system, one has to guarantee that the particle dispersions are free from pathogens or any other microbiologic contamination. Furthermore, to find entrance into clinical routine, the nanoparticle dispersions have to be storable for several months. In this study, we tested several procedures for sterilization and preservation of nanoparticle containing liquids on their influence on the integrity of the protein coating on the surface of these particles. For this, samples were treated by freezing, autoclaving, lyophilization, and ultraviolet (UV) irradiation, and characterized by means of dynamic light scattering, determination of surface potential, and gel electrophoresis afterwards. We found that the UV sterilization followed by lyophilization under the addition of polyethylene glycol are the most promising procedures for the preparation of sterilized long-term durable protein-coated magnetic nanoparticles. Ongoing work is focused on the optimization of used protocols for UV sterilization and lyophilization for further improvement of the storage time. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles in Biological Applications)
Figures

Figure 1

Open AccessArticle High-Performance and Self-Powered Deep UV Photodetectors Based on High Quality 2D Boron Nitride Nanosheets
Nanomaterials 2017, 7(12), 454; doi:10.3390/nano7120454
Received: 6 November 2017 / Revised: 10 December 2017 / Accepted: 15 December 2017 / Published: 19 December 2017
PDF Full-text (4982 KB) | HTML Full-text | XML Full-text
Abstract
High-quality two-dimensional (2D) crystalline boron nitride nanosheets (BNNSs) were grown on silicon wafers by using pulsed plasma beam deposition techniques. Self-powered deep ultraviolet (DUV) photodetectors (PDs) based on BNNSs with Schottky contact structures are designed and fabricated. By connecting the fabricated DUV photodetector
[...] Read more.
High-quality two-dimensional (2D) crystalline boron nitride nanosheets (BNNSs) were grown on silicon wafers by using pulsed plasma beam deposition techniques. Self-powered deep ultraviolet (DUV) photodetectors (PDs) based on BNNSs with Schottky contact structures are designed and fabricated. By connecting the fabricated DUV photodetector to an ammeter, the response strength, response time and recovery time to different DUV wavelengths at different intensities have been characterized using the output short circuit photocurrent without a power supply. Furthermore, effects of temperature and plasma treatment on the induced photocurrent response of detectors have also been investigated. The experimental data clearly indicate that plasma treatment would significantly improve both induced photocurrent and response time. The BNNS-based DUV photodetector is demonstrated to possess excellent performance at a temperature up to 400 °C, including high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high stability, which is better than almost all reported semiconducting nanomaterial-based self-powered photodetectors. Full article
Figures

Open AccessArticle The Room-Temperature Chemiresistive Properties of Potassium Titanate Whiskers versus Organic Vapors
Nanomaterials 2017, 7(12), 455; doi:10.3390/nano7120455
Received: 13 November 2017 / Revised: 2 December 2017 / Accepted: 11 December 2017 / Published: 19 December 2017
PDF Full-text (2508 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The development of portable gas-sensing units implies a special care of their power efficiency, which is often approached by operation at room temperature. This issue primarily appeals to a choice of suitable materials whose functional properties are sensitive toward gas vapors at these
[...] Read more.
The development of portable gas-sensing units implies a special care of their power efficiency, which is often approached by operation at room temperature. This issue primarily appeals to a choice of suitable materials whose functional properties are sensitive toward gas vapors at these conditions. While the gas sensitivity is nowadays advanced by employing the materials at nano-dimensional domain, the room temperature operation might be targeted via the application of layered solid-state electrolytes, like titanates. Here, we report gas-sensitive properties of potassium titanate whiskers, which are placed over a multielectrode chip by drop casting from suspension to yield a matrix mono-layer of varied density. The material synthesis conditions are straightforward both to get stable single-crystalline quasi-one-dimensional whiskers with a great extent of potassium replacement and to favor the increase of specific surface area of the structures. The whisker layer is found to be sensitive towards volatile organic compounds (ethanol, isopropanol, acetone) in the mixture with air at room temperature. The vapor identification is obtained via processing the vector signal generated by sensor array of the multielectrode chip with the help of pattern recognition algorithms. Full article
(This article belongs to the Special Issue Oxide Nanomaterials for Chemical Sensors)
Figures

Open AccessArticle Pure and Highly Nb-Doped Titanium Dioxide Nanotubular Arrays: Characterization of Local Surface Properties
Nanomaterials 2017, 7(12), 456; doi:10.3390/nano7120456
Received: 16 October 2017 / Revised: 11 December 2017 / Accepted: 15 December 2017 / Published: 18 December 2017
PDF Full-text (4553 KB) | HTML Full-text | XML Full-text
Abstract
This paper presents the results of studies of the local surface properties of pure and highly Nb-doped (12 wt %) TiO2 nanotubes (TNT) using the X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) methods, respectively. XPS analysis showed that the pure
[...] Read more.
This paper presents the results of studies of the local surface properties of pure and highly Nb-doped (12 wt %) TiO2 nanotubes (TNT) using the X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) methods, respectively. XPS analysis showed that the pure TNT exhibit an evident over-stoichiometry combined with high level of undesired C contaminations, which was confirmed by the relative concentration of specific elements O, Ti and C (with respect to all the surface atoms) equal to 0.46, 018 and 0.36, respectively. In turn, for the highly Nb-doped (12 wt %) TNT, a slightly different surface chemistry was observed because the relative concentration of specific elements O and Ti and, with respect to all the surface atoms, is slightly lower, that is, 0.42 and 0.12, respectively; this is directly related to the fact that Nb atoms appeared having the relative concentration at the level of 0.09, whereas the undesired C contaminations reached the same level (0.36), as is the case of pure TNT. In addition, SEM analysis confirms that there are evident free spaces between the specific slops containing several TNT, what was additionally confirmed by the contribution of specific surface bonding coming from the SiO2/Si substrate. The obtained information allowed us a new insight on the potential origin of aging effect at the surface of TNT in atmosphere being the undesired limitation for their potential application as the chemical resistive type sensors or in any other fields of their application related to their surface activity. Full article
Figures

Figure 1

Open AccessArticle Fabrication of GO/Cement Composites by Incorporation of Few-Layered GO Nanosheets and Characterization of Their Crystal/Chemical Structure and Properties
Nanomaterials 2017, 7(12), 457; doi:10.3390/nano7120457
Received: 16 November 2017 / Revised: 8 December 2017 / Accepted: 14 December 2017 / Published: 18 December 2017
PDF Full-text (22420 KB) | HTML Full-text | XML Full-text
Abstract
Original graphene oxide (GO) nanosheets were prepared using the Hummers method and found to easily aggregate in aqueous and cement composites. Using carboxymethyl chitosan (CCS) as a dispersant, few-layered GO nanosheets (1–2 layers) were obtained by forming CCS/GO intercalation composites. The testing results
[...] Read more.
Original graphene oxide (GO) nanosheets were prepared using the Hummers method and found to easily aggregate in aqueous and cement composites. Using carboxymethyl chitosan (CCS) as a dispersant, few-layered GO nanosheets (1–2 layers) were obtained by forming CCS/GO intercalation composites. The testing results indicated that the few-layered GO nanosheets could uniformly spread, both in aqueous and cement composites. The cement composites were prepared with GO dosages of 0.03%, 0.05% and 0.07% and we found that they had a compact microstructure in the whole volume. A special feature was determined, namely that the microstructures consisted of regular-shaped crystals created by self-crosslinking. The X-ray diffraction (XRD) results indicated that there was a higher number of cement hydration crystals in GO/cement composites. Meanwhile, we also found that partially-amorphous Calcium-Silicate-Hydrate (C-S-H) gel turned into monoclinic crystals. At 28 days, the GO/cement composites reached the maximum compressive and flexural strengths at a 0.05% dosage. These strengths were 176.64 and 31.67 MPa and, compared with control samples, their increased ratios were 64.87% and 149.73%, respectively. Durability parameters, such as penetration, freeze-thaw, carbonation, drying-shrinkage value and pore structure, showed marked improvement. The results indicated that it is possible to obtain cement composites with a compact microstructure and with high performances by introducing CCS/GO intercalation composites. Full article
(This article belongs to the Special Issue Layered Nano-Sheets: Synthesis and Applications)
Figures

Open AccessArticle Preparation and Characterization of Nanoparticles Made from Co-Incubation of SOD and Glucose
Nanomaterials 2017, 7(12), 458; doi:10.3390/nano7120458
Received: 11 October 2017 / Revised: 6 November 2017 / Accepted: 20 November 2017 / Published: 19 December 2017
PDF Full-text (1651 KB) | HTML Full-text | XML Full-text
Abstract
The attractive potential of natural superoxide dismutase (SOD) in the fields of medicine and functional food is limited by its short half-life in circulation and poor permeability across the cell membrane. The nanoparticle form of SOD might overcome these limitations. However, most preparative
[...] Read more.
The attractive potential of natural superoxide dismutase (SOD) in the fields of medicine and functional food is limited by its short half-life in circulation and poor permeability across the cell membrane. The nanoparticle form of SOD might overcome these limitations. However, most preparative methods have disadvantages, such as complicated operation, a variety of reagents—some of them even highly toxic—and low encapsulation efficiency or low release rate. The aim of this study is to present a simple and green approach for the preparation of SOD nanoparticles (NPs) by means of co-incubation of Cu/Zn SOD with glucose. This method was designed to prepare nanoscale aggregates based on the possible inhibitory effect of Maillard reaction on heating-induced aggregation during the co-incubation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results indicated that the Maillard reaction occurred during the co-incubation process. It was found that enzymatically active NPs of Cu/Zn SOD were simultaneously generated during the reaction, with an average particle size of 175.86 ± 0.71 nm, and a Zeta potential of −17.27 ± 0.59 mV, as established by the measurement of enzymatic activity, observations using field emission scanning electron microscope, and analysis of dynamic light scattering, respectively. The preparative conditions for the SOD NPs were optimized by response surface design to increase SOD activity 20.43 fold. These SOD NPs showed storage stability for 25 days and better cell uptake efficacy than natural SOD. Therefore, these NPs of SOD are expected to be a potential drug candidate or functional food factor. To our knowledge, this is the first report on the preparation of nanoparticles possessing the bioactivity of the graft component protein, using the simple and green approach of co-incubation with glucose, which occurs frequently in the food industry during thermal processing. Full article
(This article belongs to the Special Issue Nanomaterials in Food Safety)
Figures

Open AccessArticle Acidic Mesoporous Zeolite ZSM-5 Supported Cu Catalyst with Good Catalytic Performance in the Hydroxysulfurization of Styrenes with Disulfides
Nanomaterials 2017, 7(12), 459; doi:10.3390/nano7120459
Received: 20 November 2017 / Revised: 10 December 2017 / Accepted: 13 December 2017 / Published: 19 December 2017
PDF Full-text (4077 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Development of highly active heterogeneous catalysts is an effective strategy for modern organic synthesis chemistry. In this work, acidic mesoporous zeolite ZSM-5 (HZSM-5-M), acidic-free mesoporous zeolite TS-1 (TS-1-M), and basic ETS-10 zeolite supported metal Cu catalysts were prepared to investigate their catalytic performances
[...] Read more.
Development of highly active heterogeneous catalysts is an effective strategy for modern organic synthesis chemistry. In this work, acidic mesoporous zeolite ZSM-5 (HZSM-5-M), acidic-free mesoporous zeolite TS-1 (TS-1-M), and basic ETS-10 zeolite supported metal Cu catalysts were prepared to investigate their catalytic performances in the hydroxysulfurization of styrenes with diaryl disulfides. The effect of pore size and acidities of the supports, as well as the Cu species electronic properties of the catalysts on reaction activity were investigated. The results show that Cu+ and Cu2+ binded on HZSM-5-M show the highest activity and product selectivity for the desired β-hydroxysulfides compounds. Full article
(This article belongs to the Special Issue Nanosized Zeolites and their Applications)
Figures

Open AccessArticle Structure and Optical Properties of Titania-PDMS Hybrid Nanocomposites Prepared by In Situ Non-Aqueous Synthesis
Nanomaterials 2017, 7(12), 460; doi:10.3390/nano7120460
Received: 23 November 2017 / Revised: 15 December 2017 / Accepted: 18 December 2017 / Published: 20 December 2017
PDF Full-text (5096 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Organic-inorganic hybrid materials are attractive due to the combination of properties from the two distinct types of materials. In this work, transparent titania-polydimethylsiloxane hybrid materials with up to 15.5 vol. % TiO2 content were prepared by an in situ non-aqueous method using
[...] Read more.
Organic-inorganic hybrid materials are attractive due to the combination of properties from the two distinct types of materials. In this work, transparent titania-polydimethylsiloxane hybrid materials with up to 15.5 vol. % TiO2 content were prepared by an in situ non-aqueous method using titanium (IV) isopropoxide and hydroxy-terminated polydimethylsiloxane as precursors. Spectroscopy (Fourier transform infrared, Raman, Ultraviolet-visible, ellipsometry) and small-angle X-ray scattering analysis allowed to describe in detail the structure and the optical properties of the nanocomposites. Titanium alkoxide was successfully used as a cross-linker and titania-like nanodomains with an average size of approximately 4 nm were shown to form during the process. The resulting hybrid nanocomposites exhibit high transparency and tunable refractive index from 1.42 up to 1.56, depending on the titania content. Full article
(This article belongs to the Special Issue Hybrid Nanomaterials for Future Technologies)
Figures

Figure 1

Open AccessArticle Computer Simulations of Lipid Nanoparticles
Nanomaterials 2017, 7(12), 461; doi:10.3390/nano7120461
Received: 4 November 2017 / Revised: 5 December 2017 / Accepted: 14 December 2017 / Published: 20 December 2017
PDF Full-text (6558 KB) | HTML Full-text | XML Full-text
Abstract
Lipid nanoparticles (LNP) are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain
[...] Read more.
Lipid nanoparticles (LNP) are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain forcefield, of self-assembled LNPs made by tripalmitin lipid in water. We also study the adsorption of Tween 20 surfactant as a protective layer on top of the LNP. We show that, at 310 K (the temperature of interest in biological applications), the structure of the lipid nanoparticles is similar to that of a liquid droplet, in which the lipids show no nanostructuration and have high mobility. We show that, for large enough nanoparticles, the hydrophilic headgroups develop an interior surface in the NP core that stores liquid water. The surfactant is shown to organize in an inhomogeneous way at the LNP surface, with patches with high surfactant concentrations and surface patches not covered by surfactant. Full article
(This article belongs to the Special Issue Experimental Nanosciences, Computational Chemistry, and Data Analysis)
Figures

Figure 1

Review

Jump to: Editorial, Research, Other

Open AccessReview Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors
Nanomaterials 2017, 7(12), 406; doi:10.3390/nano7120406
Received: 10 October 2017 / Revised: 15 November 2017 / Accepted: 16 November 2017 / Published: 23 November 2017
PDF Full-text (10208 KB) | HTML Full-text | XML Full-text
Abstract
Iron oxide nanostructures (IONs) in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties
[...] Read more.
Iron oxide nanostructures (IONs) in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (bio)chemical substances. Full article
Figures

Figure 1

Open AccessFeature PaperReview Lanthanide-Doped Nanoparticles for Diagnostic Sensing
Nanomaterials 2017, 7(12), 411; doi:10.3390/nano7120411
Received: 9 October 2017 / Revised: 15 November 2017 / Accepted: 20 November 2017 / Published: 23 November 2017
PDF Full-text (4737 KB) | HTML Full-text | XML Full-text
Abstract
Lanthanide-doped nanoparticles exhibit unique optical properties, such as a long luminescence lifetime (up to several milliseconds), sharp emission peaks, and upconversion luminescence over the range of wavelengths from near-infrared to visible. Exploiting these optical properties, lanthanide-doped nanoparticles have been widely utilized for cellular
[...] Read more.
Lanthanide-doped nanoparticles exhibit unique optical properties, such as a long luminescence lifetime (up to several milliseconds), sharp emission peaks, and upconversion luminescence over the range of wavelengths from near-infrared to visible. Exploiting these optical properties, lanthanide-doped nanoparticles have been widely utilized for cellular and small animal imaging with the absence of background autofluorescence. In addition, these nanoparticles have advantages of high signal-to-noise ratio for highly sensitive and selective diagnostic detection. In this review, we summarize and discuss recent progress in the development of highly sensitive diagnostic methods using lanthanide-doped nanoparticles. Combined with a smartphone, portable luminescence detecting platforms could be widely applied in point-of-care tests. Full article
(This article belongs to the Special Issue Nanomaterials for Sensing Applications)
Figures

Figure 1

Open AccessReview From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes
Nanomaterials 2017, 7(12), 445; doi:10.3390/nano7120445
Received: 13 November 2017 / Revised: 6 December 2017 / Accepted: 11 December 2017 / Published: 14 December 2017
PDF Full-text (4321 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Asymmetrically shaped nanopores have been shown to rectify the ionic current flowing through pores in a fashion similar to a p-n junction in a solid-state diode. Such asymmetric nanopores include conical pores in polymeric membranes and pyramidal pores in mica membranes. We review
[...] Read more.
Asymmetrically shaped nanopores have been shown to rectify the ionic current flowing through pores in a fashion similar to a p-n junction in a solid-state diode. Such asymmetric nanopores include conical pores in polymeric membranes and pyramidal pores in mica membranes. We review here both theoretical and experimental aspects of this ion current rectification phenomenon. A simple intuitive model for rectification, stemming from previously published more quantitative models, is discussed. We also review experimental results on controlling the extent and sign of rectification. It was shown that ion current rectification produces a related rectification of electroosmotic flow (EOF) through asymmetric pore membranes. We review results that show how to measure and modulate this EOF rectification phenomenon. Finally, EOF rectification led to the development of an electroosmotic pump that works under alternating current (AC), as opposed to the currently available direct current EOF pumps. Experimental results on AC EOF rectification are reviewed, and advantages of using AC to drive EOF are discussed. Full article
Figures

Other

Jump to: Editorial, Research, Review

Open AccessBrief Report Effect of Graphene Oxide (GO) on the Morphology and Microstructure of Cement Hydration Products
Nanomaterials 2017, 7(12), 429; doi:10.3390/nano7120429
Received: 15 September 2017 / Revised: 22 November 2017 / Accepted: 28 November 2017 / Published: 5 December 2017
PDF Full-text (6386 KB) | HTML Full-text | XML Full-text
Abstract
In this study, the effects of graphene oxide (GO) on the microstructure of cement mortars were studied using scanning electron microscopy (SEM), thermogravimetric (TG), and X-ray diffraction (XRD) techniques. Cement mortar samples with different proportions of GO (0.02, 0.04, 0.06, and 0.08 wt
[...] Read more.
In this study, the effects of graphene oxide (GO) on the microstructure of cement mortars were studied using scanning electron microscopy (SEM), thermogravimetric (TG), and X-ray diffraction (XRD) techniques. Cement mortar samples with different proportions of GO (0.02, 0.04, 0.06, and 0.08 wt % based on the weight of cement) were prepared. The test results showed that GO affected the crystallization of cement hydration products, C–S–H (calcium silicate hydrate is the main hydrate product) and CH (calcium hydroxide). The morphology of hydration products changed with the increase of GO content. Furthermore, the results of XRD analyses showed that the diffraction peak intensity and the crystal grain size of CH (001), (100), (101), and (102) for GO samples increased considerably compared with the control sample. Based on the results, it can be understood that GO can modify the crystal surface of CH, leading to the formation of larger crystals. Full article
(This article belongs to the Special Issue Experimental Nanosciences, Computational Chemistry, and Data Analysis)
Figures

Back to Top