Supplementary Material.

From Ion Current to Electroosmotic Flow Rectification in Asymmetric Nanopore Membranes

Juliette Experton, Xiaojian Wu and Charles R. Martin*

Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States

*Correspondence: crmartin@chem.ufl.edu

Calculations of Percent of Ions in the Double Layer and Transference Number

To simplify our calculations, we assume that the tip is a cylinder of length h and radius r. The tip walls have a surface charge density of -12 mC m^{-2} , based on previously reported values for polyethylene terephthalate (PET) [1,2]. Inside the tip, there is a solution of 10 mM KCl which gives a thickness of the electrical double layer (Debye length) of 3 nm at 25 °C.

The surface charge density on the pore tip walls can be converted to a number of moles of carboxylate groups at the surface of the cylinder, n_{coo} , according to Equation S1, where F is the Faraday constant.

$$n_{COO} = \frac{1.2 \times 10^{-6} \times 2\pi rh}{F}$$
 Equation S1

If we assume an equivalent number of moles of cations (K^+) in the electrical double layer, n_{dl} (Equation S2).

$$n_{dl} = n_{COO} = \frac{1.2 \times 10^{-6} \times 2\pi rh}{F}$$
 Equation S2

To a first approximation, the number of moles of ions, n_b , which is the sum of the numbers of moles of K⁺ and Cl⁻, $n_{K,b}$ and $n_{Cl,b}$ respectively, in the bulk solution in the pore tip is determined by the bulk concentration (10 mM) (Equation S3).

$$n_b = n_{K,b} + n_{Cl,b} = 2 \times 10^{-5} \times \pi (r - 3 \times 10^{-7})^2 h$$
 Equation S3

Therefore the fraction of total number of moles of ions that are double layer cations, as a function of r, the radius of the pore tip in nm, is

$$\%_{dl} = \frac{n_{dl}}{n_b + d_{dl}} = \frac{0.12 \, r}{0.12 \, r + F \times 10^{-7} (r - 3)^2} \times 100$$
 Equation S4

The transference number of cations (K^+) through the tip, t_+ , is defined as [3]

$$t_{+} = \frac{(n_{dl} + n_{K,b}) \times u_{Na}}{(n_{dl} + n_{K,b}) \times u_{K} + n_{Cl,b} \times u_{Cl}}$$
Equation S5

Where u_K and u_{Cl} are the mobilities of K⁺ and Cl⁻, respectively.

Considering $u_K = 7.619 \times 10^{-4} \ cm^2 \ s^{-1} \ V^{-1}$ and $u_{Cl} = 7.912 \times 10^{-4} \ cm^2 \ s^{-1} \ V^{-1}$ [3],

$$t_{+} = \frac{(0.24 \, r + F \times 10^{-7} (r - 3)^2) \times 7.619}{1.8286 \, r + 15.824 \, F \times 10^{-7} (r - 3)^2}$$
Equation S6

References

1. Dejardin, P.; Vasina, E.N.; Berezkin, V.V.; Sobolev, V.D.; Volkov, V.I. Streaming potential in cylindrical pores of poly(ethylene terephthalate) track-etched membranes: Variation of apparent zeta potential with pore radius. *Langmuir* **2005**, *21*, 4680-4685.

2. Xue, J.M.; Xie, Y.B.; Yan, Y.; Ke, J.; Wang, Y.G. Surface charge density of the tracketched nanopores in polyethylene terephthalate foils. *Biomicrofluidics* **2009**, *3*, 8.

3. Bard, A.J.; Faulkner, L.R. Electrochemical methods: Fundamentals and applications, 2nd ed. John Wiley & Sons: New York, 2001; pp 65-69.